
Journal of Computer and Communications, 2020, 8, 39-63
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.82004 Feb. 28, 2020 39 Journal of Computer and Communications

Graphical Processing Unit Based Time-Parallel
Numerical Method for Ordinary Differential
Equations

Sumathi Lakshmiranganatha, Suresh S. Muknahallipatna*

Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY, USA

Abstract
On-line transient stability analysis of a power grid is crucial in determining
whether the power grid will traverse to a steady state stable operating point
after a disturbance. The transient stability analysis involves computing the
solutions of the algebraic equations modeling the grid network and the or-
dinary differential equations modeling the dynamics of the electrical com-
ponents like synchronous generators, exciters, governors, etc., of the grid
in near real-time. In this research, we investigate the use of time-parallel
approach in particular the Parareal algorithm implementation on Graphical
Processing Unit using Compute Unified Device Architecture to compute
solutions of ordinary differential equations. The numerical solution accu-
racy and computation time of the Parareal algorithm executing on the
GPU are demonstrated on the single machine infinite bus test system. Two
types of dynamic model of the single synchronous generator namely the
classical and detailed models are studied. The numerical solutions of the
ordinary differential equations computed by the Parareal algorithm are
compared to that computed using the modified Euler’s method demon-
strating the accuracy of the Parareal algorithm executing on GPU. Simula-
tions are performed with varying numerical integration time steps, and the
suitability of Parareal algorithm in computing near real-time solutions of
ordinary different equations is presented. A speedup of 25× and 31× is
achieved with the Parareal algorithm for classical and detailed dynamic
models of the synchronous generator respectively compared to the sequen-
tial modified Euler’s method. The weak scaling efficiency of the Parareal
algorithm when required to solve a large number of ordinary differential
equations at each time step due to the increase in sequential computations
and associated memory transfer latency between the CPU and GPU is dis-
cussed.

How to cite this paper: Lakshnirangana-
tha, A. and Muknahallipatna, S.S. (2020)
Graphical Processing Unit Based Time-
Parallel Numerical Method for Ordinary
Differential Equations. Journal of Comput-
er and Communications, 8, 39-63.
https://doi.org/10.4236/jcc.2020.82004

Received: December 30, 2019
Accepted: February 25, 2020
Published: February 28, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.82004
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.82004
http://creativecommons.org/licenses/by/4.0/

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 40 Journal of Computer and Communications

Keywords
Time-Parallel, Differential Equation, Numerical Integration, Graphic Processing
Unit

1. Introduction

The time-domain simulation technique is widely used by the power industry to
describe a power grid transient behavior accurately. The high level of accuracy
achieved using the time-domain simulation technique is due to the use of de-
tailed mathematical models of controls, nonlinearity, saturation, and protection
systems. Power system stability studies or analysis typically involve computing
the system response to a sequence of large disturbances, such as generator out-
age or network short circuit, followed by a switching operation as part of protec-
tive measures. The system response computation involves a direct simulation in
the time-domain of duration varying between 1 s and 20 min., or more. The sys-
tem response or stability at different stages of time-domain simulation is affected
by different components of the grid dictated by the level of mathematical mod-
eling of the individual components used.

The power system stability studies using the time-domain simulation tech-
nique are performed using two levels of mathematical models of the grid com-
ponents, namely the short-term and long-term models. The short-term models
represent the rapidly responding system electrical components of the power grid
like generators, exciters, governors, turbines, etc., while the long-term models
represent the slow-oscillatory system power balance (variable load). Using the
short-term models to perform power system stability studies addressing the
post-disturbance times of up to 5 - 10 secs is classified as “Transient Stability”
Analysis (TSA) whereas using the long-term models to stability studies are asso-
ciated with frequency and voltage stability. The focus of the research work pre-
sented in this paper is on the Transient Stability Analysis of the power system.

The TSA involves computing the step-by-step solution of thousands of non-linear
systems of coupled differential-algebraic equations (DAEs) representing the dy-
namic components and the network interconnect of the dynamic components of
the power system. The TSA, in particular, is concerned with the simulation of
faults and contingencies, which can produce instability of the power system. The
focus is to simulate a number of possible contingencies in a short-time horizon
to evaluate possible instability conditions and develop appropriate corrective ac-
tions. The preventive simulation and corresponding corrective action are re-
peated for tens or hundreds of cases, until a system or utility operator by an on-
line evaluation of the power system state, detects unsafe operating conditions.
These exhaustive and computationally intensive simulations are performed to
provide an operator with appropriate corrective action that can be triggered
when a contingency occurs in real-time. However, the online TSA, in particular,

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 41 Journal of Computer and Communications

is a computationally challenging problem, requiring 10 - 15 minutes to perform
preventive simulation of a power system (depends on the size of the power sys-
tem) for a set of fault conditions and outages [1]. In 1990s, a number of re-
searchers explored the use of traditional time-domain simulation and innovative
computer architectures like parallel/vector processing and distributed compu-
ting [2] [3] and [4] to achieve online TSA and demonstrated the limited amount
of parallelism that could be exploited.

The parallelization techniques that can be applied to perform a transient sta-
bility analysis of a power system can be broken into spatial domain decomposi-
tion, numerical method, and temporal domain decomposition or time-parallel
parallelism approaches. The spatial decomposition approach [5] [6] involves
partitioning the system DAEs and distributing the computations over various
processors. The parallelism across numerical method approach is to exploit the
parallelism in the numerical scheme used to solve the DAEs. The approach is to
use waveform relaxation, VDHN-Maclaurin numerical schemes [7] [8] instead
of the traditional trapezoidal, Runge-Kutta, and Adam-Bashford methods. The
temporal decomposition approach involves dividing the integration interval into
blocks and solving the blocks in parallel.

The first two parallelization techniques have been researched and available in
some commercial packages like PSS-E, PowerWorld, and OPAL-RT [9]. The re-
search focus has been on using task level and distributed computing across mul-
tiple contingency analysis but not on speeding up the computations in a single
case. The use of the time-parallel parallelism approach in other fields was first
considered by Nievergelt [10], and he presented a method for parallelizing the
numerical integration of an ordinary differential equation. In 1979, Alvarado
proposed the use of time-parallel with trapezoidal algorithm [11] for transient
problems. However, the implementation of the proposed approach could not
achieve significant computational speedup due to the coupling between adjacent
time steps resulting in sequential execution. Later, pipelining [12] and relaxa-
tion-based techniques [13] were proposed to implement time-parallel in single
case. The speedup gain of the pipelined-in-time was limited due to sequential
convergence, while the gain with the relaxation-based techniques was limited due
to slow convergence. Many time-parallel approaches [14] are applicable to certain
classes of problems only and dependent on specific computer architectures.

In this paper, we investigate the use of the time-parallel approach and in par-
ticular the Parareal algorithm (PRA) implementation on the Graphical Processor
Unit (GPU) using the Compute Unified Device Architecture (CUDA) for solv-
ing ODEs representing the electrical components of the power system. The in-
vestigation in [10] on the use of parallel methods for integrating ODEs was first
attempted in 1964, and later in the year 2002, solving ODEs using the predic-
tor-corrector form of the PRA [15] [16] was investigated. For a decade from
2002, a number of researchers have worked on establishing the stability and
convergence properties [17] [18], scaling of the algorithm performance with the

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 42 Journal of Computer and Communications

number of computing units [19] [20], distribution of workload [21] [22], and
application to solve a large class of traditional problems involving the solutions
of non-linear parabolic equations [23], nonlinear differential equations in the
financial world [24], equations of molecular dynamics [16], quantum chemistry
[25], partial differential equations in optimal control, etc., to mention a few. Re-
cently, the use of time-parallel algortihms to reduce the computational time of
power system dynamics simulation has been investigated by a few researchers.

The implementation of PRA has been investigated in [26] for the detailed
models of power systems for TSA. The authors have investigated different nu-
merical integration methods for coarse solvers to analyze the stability and con-
vergence property of the algorithm. They achieved consistent results with the
midpoint trapezoidal predictor-corrector method for coarse solver and RK4
method for the fine solver of PRA. The performance of PRA is compared with
the Newton-based time-parallel methods using a single machine infinite bus
system (SMIB). The computational speedup of 10× and 40× is achieved with 150
and 250 processors for two cases of the SMIB with varying number of steps. The
authors have evaluated the stability and convergence properties of the algorithm
for two large scale power systems. The authors in [27] reduce the computation
time by using a simplified generator model for the coarse solver stage in the PRA
implementation. A 13% improvement in the execution time was observed be-
tween the simplified generator model and the detailed model for the Polish
power system. The overall algorithm speedup achieved was ~10× for the Polish
system. The communication overhead between the processors is neglected in the
speedup calculation.

The research in [28] shows that embedding the spatial decomposition into
PRA has better performance than using either one of them individually. Each
system is spatially divided into two sub-areas and is solved in parallel. Each
sub-area is solved using PRA to achieve time parallelism and reduction in execu-
tion time. The research demonstrated a ~33% improvement in the parallel fine
steps execution time between the hybrid method proposed and only PRA. A new
approach was proposed to perform TSA in [29], which is a spatially parallel hy-
brid approach combining the high-order Taylor series and the block bordered
diagonal form (BBDF) to reduce the computational burden of TSA. They pro-
pose using only the higher-order derivatives of generator voltages and currents
along with large integration time steps to perform TSA. Three systems are used
for testing the proposed approach. The speedup they demonstrate by using only
higher derivatives of the generators; the equations are decoupled from the power
network equation, leading to spatial and time-domain parallel decomposition
hybrid approach. A factor of ~2× is achieved with the proposed method com-
pared to other commercially available parallel integrators.

In the above investigations of the TSA using time-parallel approach, all of the
implementations have been on a single node or multi-node clusters based on the
Intel processors using MATLAB programming language for the algorithm im-

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 43 Journal of Computer and Communications

plementation. The speedup achieved does not include the communication over-
head between multiple cores on a single node and between the nodes in a cluster.
Furthermore, the research in all of the above investigations is on evaluating the
suitability of PRA for transient stability analysis. In this paper, we investigate the
performance of PRA to solve ODEs using heterogeneous computing architec-
ture, namely the use of massive parallel cores on the graphical processing units
(GPU) with compute unified device architecture (CUDA) [30]. The focus of the
investigation is to develop a reliable implementation of PRA on CUDA archi-
tecture to solve ODEs in temporal decomposition to reduce computational time
and which can be applied to achieve real-time or faster than real-time TSA with
a large number of GPUs.

This paper is organized as follows: In section 2, the PRA with the Predictor
Correction approach is discussed. Section 3 gives a brief overview of power sys-
tem modeling, in particular, the classical and fourth-order models of synchron-
ous generator. In section 4, we present the implementation of Parareal algorithm
on NVIDIA GPUs, and in section 5, the simulation results and analysis are pre-
sented. Section 6 presents the conclusion and future work.

2. Parareal Algorithm

The origin of PRA can be traced back to spatial domain decomposition tech-
nique. The PRA involves dividing the entire simulation time T into small
sub-intervals and solving these subintervals in parallel. Initial conditions are re-
quired to solve the small sub-intervals in parallel. The initial conditions are pro-
vided by a fast but less computationally expensive sequential numerical integra-
tor. The small sub-intervals are then solved in parallel to get more accurate solu-
tion of an ODE.

Consider a general nonlinear ODE with given initial condition, () 00u u= as
shown in Equation (1)

() [], , 0,u f u t t T= ∈
 (1)

The entire simulation time t is decomposed into N sub-intervals as

0 1 NT T T< < < with the step size of 1, 1n n nT T NT − ∀∆ ≤− <= .
Two numerical operators, namely, coarse and fine propagators are defined in

PRA. The coarse propagator denoted as GΔT, operates using the initial condition

()1 1n nu T U− −= is used to compute the approximate solution of Equation (1)
with time step ΔT at time Tn as shown in Figure 1. The approximate solution
computed by the coarse propagator is denoted as nU . The solution obtained
using coarse propagator is less accurate but is computationally inexpensive. The
coarse propagator is mathematically represented in Equation (2).

 () 0
1 1 0, , ,n T n nU G T U T U u∆ − −= ∆ = (2)

The fine propagator denoted as Fδt, also will use the initial condition

()1 1n nu T U− −= to compute approximate solution of Equation (1) with smaller
time step t Tδ ∆ at time Tn as shown in Figure 2.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 44 Journal of Computer and Communications

Figure 1. Decomposition of time into smaller sub-intervals.

Figure 2. Fine propagator computation using time step δt.

The solution computed from the fine propagator is denoted as nU . The solu-

tion obtained from the fine propagator is more accurate compared to coarse
propagator but it is computationally expensive. The fine propagator is mathe-
matically described in Equation (3)

 () 0
1 1 0, , ,n t n nU F T U t U uδ δ− −= = (3)

The flowchart of the implementation of PRA is shown in Figure 3.
The flow chart consists of the three steps of the PRA which are discussed below:
Step 1: The initial step of PRA is the computation of the initial conditions se-

quentially using the coarse propagator that is used for solving the sub-intervals
in parallel. The initial coarse propagator generates a fast but less accurate initial
conditions using Equation (4).

 ()0 0 0
1 , 1n n T nU U G U n N∆ −= = ∀ ≤ < (4)

where, the superscript “0” denotes the initial iteration.
This step is performed to initialize the PRA iterations.
Step 2: The fine propagator is used to propagate the fine solution in parallel

over each sub-interval []1,n nT Tt −∈ as

 ()1
1 , 1k k

n t nU F U n Nδ
−
−= ∀ ≤ < (5)

where, max1, 2, ,k k= is the iteration number.
Step 3: Once the fine solutions are obtained using the coarse solutions as ini-

tial conditions, the PRA corrects the sequential coarse predictions using pre-
dictor-corrector method. Predictor-Corrector method is used to correct the so-
lution difference obtained from coarse and fine propagators for the next itera-
tion. The predictor-corrector scheme is described in Equation (6).

 1, 1k k k k

n n n nU U U U n N−= + − ∀ ≤ < (6)

where,

 ()1
k k
n T nU G U∆ −= (7)

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 45 Journal of Computer and Communications

Figure 3. PRA flowchart.

The notation U represents the correct coarse solution which is used as the ini-

tial conditions for step 2 of the next iteration. At the end of 1st iteration, the
coarse value at time T1 gets corrected to the fine solution. Similarly, at the end of

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 46 Journal of Computer and Communications

the kth iteration, the coarse value at time Tk will get corrected to its respective
fine solution. The steps 2 and 3 of the algorithm is iterated until the difference
between the two successive coarse values meets the desired tolerance level shown
in Equation (8).

1 , 1k k
n nU U tol n N−− ≤ ∀ ≤ < (8)

The coarse solutions are generally less accurate and play an essential role in
the convergence of the algorithm [14]. The choice of the time step for coarse
propagator is usually bigger than that of fine propagator. However, choosing a
large time step for the coarse propagator results either in a large number of ite-
rations to converge, or not converging. Hence, the time step selection for the
coarse propagator influences the number of iterations required to compute the
solution.

3. Ordinary Differential Equations Representing
the Power System Dynamics

Power system dynamics are modeled as a set of Differential-Algebraic equations
(DAE) of the form

(), ,x f x y u= (9)

(), 0g x y = (10)

The set of differential Equation (9) describes the behavior of all dynamic ele-
ments of a power grid like generators, exciters, governors, turbines, etc. The set
of algebraic Equation (10) describes the power grid network connectivity, and all
the static elements, i.e., static load. The x represents the system dynamic state
variables of the power grid, and is dependent on the level of models of the dy-
namic elements [31]. For example, at the lowest model level, x represents only
the generator rotor angle and angular velocity, while at other levels it can
represent various generator voltages, exciter field voltages, governor frequency
control parameters. Depending on the level of modeling of the dynamic ele-
ments, the number of ODEs in the set (9) can vary from two to twenty-seven. In
this work, two levels of modeling namely the model 1.0 or more commonly
known as the classical model, and the model 1.1 or fourth-order generator mod-
el are considered. The solution of the ODEs during a fault present the dynamic
state of the power system and the analysis is known as TSA. The variable y
represents the algebraic variables such as bus voltage, bus angle, real and reactive
power, etc. and angle of the power system.

3.1. Classical Model of Synchronous Generators

The classical model primarily focuses on modeling the rotor angle and angular
velocity of the generator when subjected to a disturbance. When the power sys-
tem is subjected to a disturbance, the rotor of the synchronous generator will
accelerate or decelerate with respect to rotating magnetic field which causes rela-

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 47 Journal of Computer and Communications

tive motion. The relative motion of electromechanical oscillations of the syn-
chronous generator is represented as “Swing equation” [32]. Equation (11) is the
classical mathematical model representation of the swing equation as a second
order ODE.

2

2

d
d m e a

o

H P P P
f t

δ
= − =

π
 (11)

where,
H is the inertia constant (MJ/MVA).
Pm is the mechanical input power.

Pe is the electrical output power, where sine
E VP
X

δ
′

= .

E' is the internal EMF of the generator.
V is the terminal voltage.

d t lX X X X′= + +

dX ′ is the d axis transient reactance.

tX is the transformer reactance.

lX is the line reactance.
the difference, Pm − Pe is known as the accelerating power Pa.
fo is the nominal frequency.

2s ofω = π is the rated angular speed.
δ is the rotor angle.

d
dt
δω = is the relative speed or angular velocity with respect to the synchron-

ously revolving magnetic field (reference frame).
The variation of the two state variables δ and ω with respect to time due

to a disturbance is mathematically modeled by two first order ODEs shown be-
low:

d
d st
δ ω ω ω= − = ∆ (12)

0d
d

af P
t H
ω π∆
= . (13)

3.2. Detailed Model of Synchronous Generators

The detailed model of a synchronous generator addresses the direct and qua-
drature axis parameters of a synchronous generator taking into account the sa-
liency. A salient pole synchronous generator is represented with the steady state
and transient reactances on both direct and quadrature axis along with corres-
ponding voltages and currents. Four-time dependent ODEs [33], Equation (14)
through (17) model mathematically the dynamic behavior of the generator. The
four ODEs model is commonly referred as the fourth-order model of the syn-
chronous generator.

d
d st
δ ω ω ω= − = ∆ (14)

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 48 Journal of Computer and Communications

()0

d
d

q
qd d d fdd

E
T E X X i E

t
′

′ ′ ′= − − − + (15)

()0
d
d

d
q q qd q

E
T E X X i

t
′

′ ′ ′= − + − (16)

()d
d m e s

o

H T T D
f t

ω ω ω= − − −
π

 (17)

where,

dE′ and qE′ are the transient voltages along direct (d) and quadrature (q)
axis respectively of the generator.

di and qi are the stator currents of the d and q axis respectively.
D is the damping constant.

dX and qX are the d and q axis synchronous reactances respectively.

dX ′ and qX ′ are the d and q transient reactances respectively.

0dT ′ and 0qT ′ are the open-circuit transient time constants for d and q axes.

mT and eT are the mechanical and electrical torque, respectively.
The electrical torque eT is given by the Equation (18) below,

()e d qq qd d dqT E i E i X X i i′ ′ ′ ′= + + − (18)

To compute eT using Equation (18), two algebraic equations involving the
stator parameters of the generators have to be solved.

Therefore, the set of differential equations modeling the dynamics of the
power system with classical model of the synchronous generators will consist of
two first order ordinary differential equations, and with the detailed model will
consists of four first order ordinary differential equations along with three alge-
braic equations. The TSA of a power system due to a disturbance will involve
solving a set of first order ODEs of each generator in a power system using a
suitable numerical integration method. Since the generator ODEs are typically
stiff the time step used in the numerical integration method has to be small to
compute an accurate solution and not encounter numerical integration instability.

The number of ODEs modeling the dynamics of a generator depending on the
level of modeling can vary from two to twenty seven when all of the control de-
vices like exciter, governor, turbine, stabilizer, etc., are included. A typical power
grid having in excess of thousands of generators, the TSA involves computing
the numerical integration solution of in excess of ten thousands of ODEs to de-
termine the stability of the grid, necessitating the use of Parareal algorithm ex-
ecuting on GPUs.

4. Implementation
4.1. Numerical Method

The two state variables δ and ω variation in time due to a disturbance is deter-
mined by solving the Equations (12) and (13) in case of classical model and Eq-
uations (14) and (17) in case of detailed model using a suitable numerical inte-
gration method. The ODEs representing the classical and detailed models being

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 49 Journal of Computer and Communications

stiff requires the use of an explicit integration method like modified Euler’s me-
thod. The modified Euler’s method is used by both coarse and fine propagators.
The modified Euler’s method is also known as the predictor-corrector method.
The modified Euler’s method is a single-step method, which given the initial
values for an interval (tn−1, tn), the approximate solution at tn is obtained in two
steps:

Step 1: Predictor
In this step, the approximate solution p

ny is computed using the explicit Eu-
ler’s method with time step size h described by the Equation (19).

()1 1 1,p
n n n ny y hf x y− − −= + (19)

where ()1 1,n nhf x y− − is the slope of the tangent at point ()1 1,n nx y− − .
Step 2: Corrector
Using the predicted p

ny solution from step 1, the corrected solution ny is
computed using equation 20. The correction involves calculating the average of
the slopes at points ()1 1,n nx y− − and (), p

n nx y and adding it to the corrected
solution in the previous time step.

() (){ }1 1 1, ,
2

p
n n n n n n

hy y f x y f x y− − −= + + (20)

Therefore at each time step, an approximate solution is first computed and
then a corrector is applied to improve the approximate solution of the state va-
riables.

4.2. GPGPU Based Parareal Algorithm Implementation

General Purpose Computing on GPU (GPGPU) is a well-established paralleliza-
tion domain to accelerate scientific and engineering computations in a number
of fields. NVIDIA’s Compute Unified Device Architecture (CUDA) is the most
widely adopted programming model for GPGPU. In the research [34] [35], the
hardware features of a GPU, and the process of developing optimized CUDA
based code are discussed.

The pseudocode of the PRA implementation for GPGPU is shown in Figure
4. The first for loop implements the coarse propagator to compute the initial
conditions in a sequential manner since it is an inexpensive computational task.
These initial conditions computed by the coarse propagator are used in compu-
ting the fine solutions by the fine propagators executing in parallel. The first of
the two inner for loops represents the fine propagators. The second of the two
inner for loops represents the predictor-corrector to correct the coarse solution
in a sequential manner.

For the GPGPU implementation, the sequential steps of the PRA are executed
on the host (CPU) and the parallel step of the PRA executed on the device or
accelerator (GPU). First, the coarse solutions computed on the host are copied
from the host-to-device for use by the fine propagators. After the fine solutions
are computed on the device, the fine solutions are copied back from device-to-host

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 50 Journal of Computer and Communications

Figure 4. Pseudo code of PRA.

for the predictor-corrector step. The corrected coarse values on the host are
again copied to the device for the next iteration of the fine propagators. There-
fore, the memory transfers back and forth between host and device in each itera-
tion contributes to an increase of the computation time. The focus of this work at
this stage is on determining the suitability of PRA for solving ODEs on GPUs using
CUDA, optimization techniques to reduce latency due to memory transfers and use
of low latency shared and constant memories on the GPU are not addressed.

4.3. Test System

The performance of the PRA is demonstrated by studying the dynamics of a sin-
gle machine infinite bus system (SMIB) shown in Figure 5. Power system stu-
dies are performed by considering the generator of interest connected to an infi-
nite bus representing rest of the power grid. The dynamics of the generator in
consideration due to a disturbance is studied using its mathematical model while
the rest of the power grid is considered to be time-invariant to disturbances and
thus modeled as an infinite bus.

The generator in Figure 5 is assumed to be delivering a constant power to the
infinite bus, and a 3 phase to ground fault occurs in the middle of one of the

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 51 Journal of Computer and Communications

transmission lines connecting the generator bus-1 to the infinite bus-2. On fault
occurrence, the rotor angle and the angular frequency of the generator will start
changing with time and diverge from the infinite bus phase angle leading to in-
stability of the system. In order to maintain stability, the fault should be cleared
by isolating the faulted line from rest of the system within a short duration of
time. This short duration of time is known as the critical clearing time. If the
fault clearing time is less than the critical clearing time, the system will traverse
to a new stable state otherwise the system becomes unstable. In our study, for
both stable and unstable cases the generator ODEs solutions are computed using
PRA and then compared with modified Euler’s method to evaluate the perfor-
mance of PRA.

The coefficients of the equations 12 through 17 of classical and detailed ma-
thematical models of a generator are computed using the generator model pa-
rameters [33] [36] in Table 1 and Table 2, respectively.

In Figure 5, both of the transmission lines have a reactance of 0.3 pu while the
transformer reactance is 0.2 pu.

5. Results and Performance Analysis

The PRA is implemented on a server having a Intel Xeon CPU E5-2670 @2.30
GHz, interfaced through the PCIe bus to with NVIDIA Quadro RTX 6000 GPU
hosting 4608 computing cores with 24 GB GPU memory [37]. The C program-
ming language version of CUDA is used in implementing the PRA for execution
on GPUs.

TSA simulations using both classical and detailed generator models were per-
formed using both the sequential algorithm and PRA. First, the variation of rotor
angle of the generator with respect time due to a disturbance computed with

Figure 5. SMIB model.

Table 1. Generator parameters for classical model.

Parameter H dX ′

Numerical Values 5 MJ/MVA 0.3 pu

Table 2. Generator parameters for detailed model.

Parameter H dX ′
 qX ′

 dX
 qX

 doT ′
 qoT ′

Numerical Values 3.74 MJ/MVA 0.23 pu 0.5 pu 1.93 pu 1.77 pu 5.2 s 0.81 s

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 52 Journal of Computer and Communications

traditional sequential and Parareal algorithms are compared to analyze the ac-
curacy of PRA while satisfying a convergence tolerance of 0.01 radians or 0.57˚.
Next, the impact of the number of coarse propagators and fine propagators on
speedup is analyzed.

5.1. Simulations Using the Classical Generator Model

Classical generator model has only two state variables rotor angle δ and rotor
speed ω that result in two ODEs that need to be solved at every time step. A 3φ
to ground fault was simulated on one of the transmission lines of SMIB at time
0.5 secs and the fault is cleared at time 0.8 secs by isolating the faulted line from
the rest of the SMIBs system. Since the ODEs are derived from the classical ge-
nerator model, the TSA is performed to determine the first swing stability of the
SMIB after experiencing a disturbance or fault. In Figure 6(a), the variation of
the rotor angle with time under pre-fault, during-fault and post-fault conditions
are simulated using sequential and PRA are shown. The sequential simulation
was implemented with a time step of 0.1 msec while time steps of 10 msecs and
0.1 msecs were used with the PRA coarse and fine propagators respectively. The
maximum time step that could be used without the solution diverging for the
sequential simulation was found to be 98 msecs and therefore the maximum
coarse propagator stable time step is also 98 msecs. A three-phase to ground
fault occurs at 0.5 secs and the fault is cleared within 0.3 secs. The rotor angle
variation in Figure 6(a) approaches 90 degrees and then swings back indicating
the SMIB is first swing stable for this particular fault with a fault clearing time of
0.3 secs. In Figure 6(a), the rotor angles from PRA are the coarse propagator
computed values which closely follows the rotor angle computed using the se-
quential algorithm. In Figure 6(b), the absolute error between the rotor angles
computed from the sequential and the PRA are shown. It can be seen that the
maximum absolute rotor angle error is only 0.2˚ and the error has the same
contour of the rotor angle variation. The small maximum error and the same
contour demonstrate the accuracy of the PRA.

The second set of simulations was performed with a fault clearing time of 1.0
secs which is larger than the critical clearing time of 0.42 secs. Critical clearing
time is the time before which a fault has to be cleared for the power system to
transit to a stable steady state. Also, the critical clearing time is fault and system
steady state dependent. In Figure 7(a), the time domain solution of the rotor
angle with sequential and PRA are shown. As expected, the rotor angle keeps in-
creasing due to the system being unstable. The rotor angle computed using the
PRA follows the angle from the sequential algorithm demonstrating the suitabil-
ity of PRA even during the unstable system state. In Figure 7(b), the absolute
error between the sequential and PRA solution is presented. In Figure 7(b), the
magnitude of the error between the sequential and PRA is increasing while fol-
lowing the contour of the rotor angle variation. This is due to the numerical so-
lutions computed by the coarse propagator are numerically instable (increasing

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 53 Journal of Computer and Communications

Figure 6. Rotor Angle Variation using Sequential and PRA of Classical Generator Model. (a) Rotor Angle varia-
tion with Sequential and PRA Simulations; (b) Rotor Angle Variation Error with PRA Simulations.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 54 Journal of Computer and Communications

Figure 7. Time-domain simulation comparison of Rotor angle for unstable system. (a) Time-domain solution:
Sequential v/s PRA for unstable system; (b) Absolute error between sequential and PRA for unstable system.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 55 Journal of Computer and Communications

numerically). Furthermore, these numerically instable values are used as the ini-
tial conditions for fine propagators resulting in an amplification of the numeri-
cal instability. The numerical instability affects negatively the performance of the
predictor-corrector stage of the PRA resulting in an increasing error. This beha-
vior is expected as the system is unstable.

5.2. Simulations Using the Detailed Generator Model

The ODEs of the detailed model of a generator incorporating the saliency and
transient reactances are typically stiff compared to the ODEs of the classical
model. Due to the stiffness, the maximum time step that could be used without
the solution diverging for both the sequential simulation and the coarse-propagator
was found to be 70 msecs compared to 98 msecs for the classical model. There-
fore, the simulation parameters i.e., the coarse and fine propagators time steps,
the fault location and type, and the fault duration are identical to the simulations
using the classical model. The simulations with the detailed model are carried
out for a long period of time to study the effect of saliency and the damping.

In Figure 8(a), the rotor angle variations with sequential and PRA simula-
tions are presented. The rotor angle solutions computed using the PRA is similar
to the traditional sequential method. Also, it can be noticed that the rotor angle
swing is damped and settles to a new system steady-state. In Figure 8(b), the
rotor angle absolute error between the sequential and the PRA simulations is
presented. The rotor angle computation with the detailed model involves the
sequential solution of four ODEs at each time step and application of the pre-
dictor-corrector on all four ODEs at the end of each fine propagator iteration.
The numerical values of the solutions of the four ODEs during the initial phase
of fault are large. These numerical large values cascade through the four ODEs
within a fine propagator iteration and due to the cascading effect, the numerical
error is large initially as shown in Figure 8(b). After the clearing of the fault, and
due to damping the rotor angle swing reduces and correspondingly the numeri-
cal values resulting in smaller numerical error between the sequential and PRA
simulations.

In Figure 9(a), the rotor angle variation with time when the fault clearing
time is 1.3 secs is shown. The 1.3 secs are larger than the 0.77 secs critical clear-
ing time and therefore the system is unstable. The rotor angle variations com-
puted using the PRA follows that computed using the sequential algorithm. In
Figure 9(b), the absolute error between PRA solution and sequential solution is
shown. The absolute error has larger value due to the cascading of the error
through the four ODEs.

5.3. Performance Analysis

The performance of PRA is analyzed using the execution time speedup achieved
with respect to the traditional sequential algorithm. The speedup is given by
Equation (21).

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 56 Journal of Computer and Communications

Figure 8. Time-domain simulation comparison of rotor angle for detailed model. (a) Time-domain Solution: Se-
quential v/s PRA; (b) Absolute error between sequential and PRA.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 57 Journal of Computer and Communications

Figure 9. Time-domain simulation comparison of Rotor angle for unstable system. (a) Time-domain solution:
Sequential v/s PRA for unstable system; (b) Absolute error between sequential and PRA for unstable system.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 58 Journal of Computer and Communications

speedup

seq

PRA

T
T

= (21)

where,
 seqT is the computation time of the sequential algorithm.
 PRAT is the execution time of the PRA.
The PRAT is defined as the execution time since it is the sum of four-time

components as shown in Equation (22)

()1
Nc G f H pc

PRA H H G G HiT t t t t t
=

= + + + +∑ (22)

where,
c
Ht is the computation time of the coarse propagator on the host.
G
Ht is the memory transfer latency between the host and the GPU.
f

Gt is the computation time of the fine propagators on the GPU.
H
Gt is the memory transfer latency between the GPU and the host.
pc
Ht is the computation time of the predictor-corrector on the host.

N is the number of iterations.
The coarse propagator computation time is dependent on the coarse propa-

gator time step c
stept and the fixed interval of time T for which the ODEs are

solved. For a fixed T, the coarse propagator computational time will increase
with smaller c

stept . The memory transfer latencies G
Ht and H

Gt both are also
dependent on the coarse propagator time step c

stept . The number of fine propa-
gators fN corresponding to a coarse propagator time step c

stept and for a given
T is

f
c
step

TN
t

= (23)

By varying fN , the number of threads executing in parallel on the GPU cores
is varied and varying the fine propagator time step f

stept the computation load of
each thread is varied.

The speedup achieved using the PRA is demonstrated through a number of
simulations with varying c

stept or fN , and f
stept . In Table 3, the execution times

of both sequential algorithm and PRA computing the solutions of the ODEs of
the classical model along with the speedups are presented. The simulation time
T was set to 3.06 secs to account for the first swing stability with classical
model of the generator. The execution time of the PRA executing on the GPU
is significantly less compared to sequential algorithm computation time

Table 3. PRA execution time and speedup with classical model.

c
stept (msecs) f

stept (usecs) fN
Execution time (msecs)

Speedup
Sequential CUDA

20.0 200.0 128 1.778 0.183 9.7

10.0 100.0 256 3.594 0.242 15

5.0 50.0 512 7.105 0.283 25

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 59 Journal of Computer and Communications

resulting in a speedup of 25×. The PRA on GPU provides better performance
when the fine propagator computation load is large, i.e. smaller f

stept .
In Figure 10, the variation of speedup with fN is shown. Since the speedup

is increasing linearly, the parallel scalability of the PRA has strong scaling effi-
ciency. The strong scaling efficiency is due to the f

Gt being significantly large
compared to the sum of remaining four time components in Equation (22).

In Table 4, the execution times of both sequential algorithm and PRA compu-
ting the solutions of the ODEs of the detailed model along with the speedups are
presented. The simulation time T was set to 26.1 secs to account for the long
term dynamic stability with the detailed model of a generator. In Table 4, it can
be seen that the PRA execution time is significantly small compared to the se-
quential computational time resulting in a speedup of 31×. It is important to
emphasis that with the detailed model, the number of ODEs solved sequentially

Figure 10. Variation of Speedup with fN for Classical model.

Table 4. Execution time and speedup for detailed model.

c
stept (msecs) f

stept (usecs) fN
Execution time (msecs)

Speedup
Sequential CUDA

10.0 100.0 2560 40.786 1.875 21.7

5.0 50.0 5120 72.57 2.728 26.6

2.0 20.0 12800 159.665 5.043 31.7

1.0 10.0 25600 289.96 9.714 30.0

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 60 Journal of Computer and Communications

at each time step is twice that with the classical model.
In Figure 11, the variation of speedup with fN is shown. In Figure 11, it

can be seen that the speedup does not increase linearly and flattens with in-
creasing fN indicating the parallel scalability has a weak scaling efficiency. The
weak scaling is due to the sum of the coarse propagator computation time c

Ht
and the memory transfer latencies (G

Ht , H
Gt) being larger compared to the fine

propagators computation time f
Gt . The c

Ht is large due to four ODEs solved at
each time step and larger memory transfer latencies to transfer the larger coarse
propagator solutions from host to GPU and vice versa. The performance of the
PRA with the detailed model is memory bound.

Therefore, from Figure 11, it is evident that the performance of the PRA algo-
rithm decreases as higher level models with larger number of differential equa-
tions are implemented to study the dynamic stability. However, the execution
time of the PRA is still significantly small compared to the computational time
of the sequential algorithm demonstrating the suitability of PRA for near
real-time transient stability analysis.

6. Conclusion

TSA performed using the time-domain solution approach is a compute-intensive
problem and is typically conducted offline by the utilities. In this paper, the use
of PRA to solve the ODEs for two synchronous generators models of a SMIB test
system to perform TSA using GPUs has been demonstrated successfully. The

Figure 11. Variation of Speedup with fN for Detailed model.

https://doi.org/10.4236/jcc.2020.82004

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 61 Journal of Computer and Communications

PRA was evaluated for accuracy with both stable and unstable cases of the test
system. The absolute error between the ODE solutions by PRA and the sequen-
tial algorithm is very small demonstrating the accuracy of the PRA. The PRA
speedup achieved using GPUs demonstrated that the numerical integration
computational time can be significantly reduced in comparison to traditional
sequential numerical integration. However, PRA is an iterative algorithm that
can impact the performance due to significant amount of memory transfers be-
tween the host and device for systems with higher-order generator models. In
future work, various methods will be explored to mitigate the memory transfers
between the host and device, and the PRA algorithm will be tested for high-
er-order generator models for large power systems.

Acknowledgements

This work was supported in part by the Department of Energy under grant DE-
SC0012671.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Tylavsky, D., Bose, A., Alvarado, F., Betancourt, R., Clements, K., Heydt, G.T.,

Huang, G., Ilic, C., La Scala, M., Pai, M.A. and Pottle, C. (1992) Parallel Processing
in Power Systems Computation. IEEE Transactions on Power Systems, 7, 629-638.
https://doi.org/10.1109/59.141768

[2] La Scala, M., Bose, A., Tylavsky, D.J. and Chai, J.S. (1990) A Highly Parallel Method
for Transient Stability Analysis. IEEE Transactions on Power Systems, 5, 1439-1446.
https://doi.org/10.1109/59.99398

[3] La Scala, M., Sblendorio, G., Bose, A. and Wu, J.Q. (1996) Comparison of Algo-
rithms for Transient Stability Simulations on Shared and Distributed Memory Mul-
tiprocessors. IEEE Transactions on Power Systems, 11, 2045-2050.
https://doi.org/10.1109/59.544683

[4] Granelli, G.P., Montagna, M., La Scala, M. and Torelli, F. (1993) Relaxation-Newton
methods for Transient Stability Analysis on a Vector/Parallel Computer. Confe-
rence Proceedings Power Industry Computer Application Conference, Scottsdale,
AZ, 4-7 May 1993, 387-393. https://doi.org/10.1109/PICA.1993.290991

[5] Shu, J., Xue, W. and Zheng, W. (2005) A Parallel Transient Stability Simulation for
Power Systems. IEEE Transactions on Power Systems, 20, 1709-1717.
https://doi.org/10.1109/TPWRS.2005.857266

[6] Esmaeili, S. and Kouhsari, S.M. (2007) A Distributed Simulation Based Approach
for Detailed and Decentralized Power System Transient Stability Analysis. Electric
Power Systems Research, 77, 673-684.
https://doi.org/10.1016/j.epsr.2006.06.008

[7] Crow, M.L. and Ilic, M. (1990) The Parallel Implementation of the Waveform Re-
laxation Method for Transient Stability Simulations. IEEE Transactions on Power
Systems, 5, 922-932. https://doi.org/10.1109/59.65922

https://doi.org/10.4236/jcc.2020.82004
https://doi.org/10.1109/59.141768
https://doi.org/10.1109/59.99398
https://doi.org/10.1109/59.544683
https://doi.org/10.1109/PICA.1993.290991
https://doi.org/10.1109/TPWRS.2005.857266
https://doi.org/10.1016/j.epsr.2006.06.008
https://doi.org/10.1109/59.65922

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 62 Journal of Computer and Communications

[8] Morales, F., Rudnick, H. and Cipriano, A. (2001) Electromechanical Transients Si-
mulation on a Multicomputer via the VDHN-Maclaurin Method. IEEE Transac-
tions on Power Systems, 16, 418-426. https://doi.org/10.1109/59.932277

[9] Dufour, C., Jalili-Marandi, V., Bélanger, J. and Snider, L. (2012) Power System Si-
mulation Algorithms for Parallel Computer Architectures. 2012 IEEE Power and
Energy Society General Meeting, San Diego, CA, 22-26 July 2012, 1-6.
https://doi.org/10.1109/PESGM.2012.6344986

[10] Nievergelt, J. (1964) Parallel Methods for Integrating Ordinary Differential Equa-
tions. Communications of the ACM, 7, 731-733.
https://doi.org/10.1145/355588.365137

[11] Alvarado, F.L. (1979) Parallel Solution of Transient Problems by Trapezoidal Inte-
gration. IEEE Transactions on Power Apparatus and Systems, PAS-98, 1080-1090.
https://doi.org/10.1109/TPAS.1979.319271

[12] Chai, J.S. and Bose, A. (1993) Bottlenecks in Parallel Algorithms for Power System
Stability Analysis. IEEE Transactions on Power Systems, 8, 9-15.
https://doi.org/10.1109/59.221242

[13] Wang, F.Z. (1998) Parallel-in-Time Relaxed Newton Method for Transient Stability
Analysis. IEE Proceedings-Generation, Transmission and Distribution, 145, 155-159.
https://doi.org/10.1049/ip-gtd:19981836

[14] Nielsen, A.S. (2012) Feasibility Study of the Parareal Algorithm. Doctoral Disserta-
tion, Technical University of Denmark, Denmark.

[15] Maday, Y. (2008) The Parareal in Time Algorithm.
https://doi.org/10.1063/1.3241386

[16] Baffico, L., Bernard, S., Maday, Y., Turinici, G. and Zérah, G. (2002) Parallel-in-Time
Molecular-Dynamics Simulations. Physical Review E, 66, Article ID: 057701.
https://doi.org/10.1103/PhysRevE.66.057701

[17] Staff, G.A. and Rønquist, E.M. (2005) Stability of the Parareal Algorithm. In: Do-
main Decomposition Methods in Science and Engineering, Springer, Berlin, Hei-
delberg, 449-456. https://doi.org/10.1007/3-540-26825-1_46

[18] Gander, M.J. and Hairer, E. (2008) Nonlinear Convergence Analysis for the Parareal
Algorithm. In: Domain Decomposition Methods in Science and Engineering XVII,
Springer, Berlin, Heidelberg, 45-56.
https://doi.org/10.1007/978-3-540-75199-1_4

[19] Harden, C.R. (2008) Real Time Computing with the Parareal Algorithm. Doctoral
Dissertation, Florida State University, Tallahassee, FL.

[20] Ruprecht, D. and Krause, R. (2012) Explicit Parallel-in-Time Integration of a Linear
Acoustic-Advection System. Computers & Fluids, 59, 72-83.
https://doi.org/10.1016/j.compfluid.2012.02.015

[21] Minion, M. (2011) A Hybrid Parareal Spectral Deferred Corrections Method.
Communications in Applied Mathematics and Computational Science, 5, 265-301.
https://doi.org/10.2140/camcos.2010.5.265

[22] Berry, L.A., Elwasif, W., Reynolds-Barredo, J.M., Samaddar, D., Sanchez, R. and
Newman, D.E. (2012) Event-Based Parareal: A Data-Flow Based Implementation of
Parareal. Journal of Computational Physics, 231, 5945-5954.
https://doi.org/10.1016/j.jcp.2012.05.016

[23] Staff, G. (2003) Convergence and Stability of the Parareal Algorithm: A Numerical
and Theoretical Investigation.

[24] Bal, G. and Maday, Y. (2002) A “Parareal” Time Discretization for Non-Linear

https://doi.org/10.4236/jcc.2020.82004
https://doi.org/10.1109/59.932277
https://doi.org/10.1109/PESGM.2012.6344986
https://doi.org/10.1145/355588.365137
https://doi.org/10.1109/TPAS.1979.319271
https://doi.org/10.1109/59.221242
https://doi.org/10.1049/ip-gtd:19981836
https://doi.org/10.1063/1.3241386
https://doi.org/10.1103/PhysRevE.66.057701
https://doi.org/10.1007/3-540-26825-1_46
https://doi.org/10.1007/978-3-540-75199-1_4
https://doi.org/10.1016/j.compfluid.2012.02.015
https://doi.org/10.2140/camcos.2010.5.265
https://doi.org/10.1016/j.jcp.2012.05.016

S. Lakshmiranganatha, S. S. Muknahallipatna

DOI: 10.4236/jcc.2020.82004 63 Journal of Computer and Communications

PDE’s with Application to the Pricing of an American Put. In: Recent Develop-
ments in Domain Decomposition Methods, Springer, Berlin, Heidelberg, 189-202.
https://doi.org/10.1007/978-3-642-56118-4_12

[25] Maday, Y. and Turinici, G. (2003) Parallel in Time Algorithms for Quantum Con-
trol: Parareal Time Discretization Scheme. International Journal of Quantum Che-
mistry, 93, 223-228. https://doi.org/10.1002/qua.10554

[26] Gurrala, G., Dimitrovski, A., Pannala, S., Simunovic, S. and Starke, M. (2015) Para-
real in Time for Fast Power System Dynamic Simulations. IEEE Transactions on
Power Systems, 31, 1820-1830. https://doi.org/10.1109/TPWRS.2015.2434833

[27] Duan, N., Dimitrovski, A., Simunovic, S. and Sun, K. (2016) Applying Reduced
Generator Models in the Coarse Solver of Parareal in Time Parallel Power System
Simulation. 2016 IEEE PES Innovative Smart Grid Technologies Conference Eu-
rope, Ljubljana, Slovenia, 9-12 October 2016, 1-5.
https://doi.org/10.1109/ISGTEurope.2016.7856184

[28] Duan, N., Dimitrovski, A., Simunovic, S., Sun, K., Qi, J. and Wang, J. (2018) Febru-
ary. Embedding Spatial Decomposition in Parareal in Time Power System Simula-
tion. 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Con-
ference, Washington DC, 19-22 February 2018, 1-6.
https://doi.org/10.1109/ISGT.2018.8403389

[29] Xia, S., Bu, S., Hu, J., Hong, B., Guo, Z. and Zhang, D. (2018) Efficient Transient
Stability Analysis of Electrical Power System Based on a Spatially Paralleled Hybrid
Approach. IEEE Transactions on Industrial Informatics, 15, 1460-1473.
https://doi.org/10.1109/TII.2018.2844298

[30] Cheng, J., Grossman, M. and McKercher, T. (2014) Professional Cuda C Program-
ming. John Wiley & Sons, New York.

[31] Wang, B. and Sun, K. (2015) Power System Differential-Algebraic Equations. arXiv
Preprint arXiv:1512.05185.

[32] Kundur, P., Balu, N.J. and Lauby, M.G. (1994) Power System Stability and Control.
Volume 7, McGraw-Hill, New York.

[33] Padiyar, K.R. (1996) Power System Dynamics: Stability and Control. John Wiley,
New York.

[34] Kumar, R. Muknahallipatna, S. and McInroy, J. (2016) An Approach to Paralleliza-
tion of SIFT Algorithm on GPUs for Real-Time Applications. Journal of Computer
and Communications, 4, 18-50. https://doi.org/10.4236/jcc.2016.417002

[35] Ramakrishnaiah, V.B., Muknahallipatna, S. and Kubichek, R.F. (2017) Adaptive Re-
gion Construction for Efficient Use of Radio Propagation Maps. Journal of Com-
puter and Communications, 5, 21-51. https://doi.org/10.4236/jcc.2017.58003

[36] Tanwani, N.K., Memon, A.P., Adil, W.A. and Ansari, J.A. (2014) Simulation Tech-
niques of Electrical Power System Stability Studies Utilizing Matlab/Simulink. En-
gineer, 9, 18.

[37] Quadro RTX 6000 GPU.
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/

https://doi.org/10.4236/jcc.2020.82004
https://doi.org/10.1007/978-3-642-56118-4_12
https://doi.org/10.1002/qua.10554
https://doi.org/10.1109/TPWRS.2015.2434833
https://doi.org/10.1109/ISGTEurope.2016.7856184
https://doi.org/10.1109/ISGT.2018.8403389
https://doi.org/10.1109/TII.2018.2844298
https://doi.org/10.4236/jcc.2016.417002
https://doi.org/10.4236/jcc.2017.58003
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-6000/

	Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations
	Abstract
	Keywords
	1. Introduction
	2. Parareal Algorithm
	3. Ordinary Differential Equations Representing the Power System Dynamics
	3.1. Classical Model of Synchronous Generators
	3.2. Detailed Model of Synchronous Generators

	4. Implementation
	4.1. Numerical Method
	4.2. GPGPU Based Parareal Algorithm Implementation
	4.3. Test System

	5. Results and Performance Analysis
	5.1. Simulations Using the Classical Generator Model
	5.2. Simulations Using the Detailed Generator Model
	5.3. Performance Analysis

	6. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

