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Abstract 
As a highly contagious respiratory disease, influenza exhibits significant spa-
tiotemporal fluctuations in incidence, posing a persistent threat to public 
health and placing considerable strain on healthcare resource allocation and 
emergency response systems. Accurately grasping its epidemic characteristics 
is crucial for improving prevention and control efficiency. This study selects 
29 cities as the research subjects and employs K-means clustering to classify 
them based on three core indicators: administrative level, GDP, and influenza 
incidence rate. The optimal number of clusters is determined using the elbow 
method, and MATLAB is used for data processing and model computation. 
The findings reveal that cities with higher GDP and administrative level tend 
to have lower incidence rates, likely due to more abundant medical resources 
and robust prevention systems. In contrast, cities with lower GDP and admin-
istrative levels generally exhibit higher incidence rates due to limited resource 
allocation. The results provide a scientific basis for developing differentiated 
influenza prevention strategies and optimizing the allocation of public health 
resources. 
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1. Introduction 

As a seasonal epidemic, influenza imposes a substantial burden on global public 
health systems each year, particularly in densely populated urban regions. Its 
transmission is closely associated with factors such as population mobility, cli-
matic conditions, and socioeconomic dynamics. Therefore, a rigorous and scien-
tific analysis of the spatiotemporal distribution characteristics of influenza inci-
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dence is essential for enhancing the effectiveness of disease prevention and control 
strategies. 

In recent years, with the rapid development of data mining and machine learn-
ing technologies, the K-means algorithm—an unsupervised learning method—
has demonstrated considerable utility in multiple domains by categorizing data 
into clusters based on similarity. For instance, Han Xiaocui et al. [1] employed the 
algorithm for anomaly detection in human resources management, while Weng 
Ziyun [2] applied it to fault detection in DC power grid converters. In the field of 
public health, this algorithm likewise assists researchers in identifying regions 
with high incidence rates, analyzing potential risk factors, and optimizing the al-
location of public health resources. 

In the context of influenza incidence studies, scholars have attempted to explore 
its spatial distribution patterns using clustering methods. Bao Weina [3] proposed 
the application of the K-means++ algorithm to perform sequence clustering and 
labeling, offering new insights for the characterization of influenza viruses. Xia 
Hu et al. [4] employed the K-means clustering model to analyze the spatial aggre-
gation of cases and explored the integration of artificial intelligence into hospital-
based infectious disease early warning systems. Their findings demonstrated that 
combining clustering with LSTM prediction models can effectively forecast influ-
enza case numbers, providing critical support for the formulation of prevention 
strategies. 

Moreover, the fundamental principles and optimization of the K-means algo-
rithm have been extensively studied. Liu Fugang [5] pointed out that the algo-
rithm enables data mining through group analysis by ensuring intra-cluster simi-
larity while highlighting inter-cluster differences. To address the sensitivity of tra-
ditional K-means to initial cluster centers, Zhou Xiaodong et al. [6] proposed a 
geometry-based optimization approach to enhance clustering stability. 

Despite its demonstrated utility in analyzing influenza incidence, the K-means 
algorithm is not without limitations. For instance, it is sensitive to initial centroid 
selection, which can affect the stability of results [6]. Additionally, the determina-
tion of the optimal number of clusters requires methodological rigor; in this re-
gard, the improved method proposed by Wang Bingcan et al. [7] offers valuable 
guidance. Furthermore, influenza-related data are typically high-dimensional and 
exhibit strong spatiotemporal correlations, which raises additional challenges re-
garding the selection of appropriate features and distance metrics. Practical en-
hancements to the K-means algorithm in other fields, as exemplified by the work 
of He Meng [8] and Liu Chunyu [9], also offer valuable references for optimizing 
clustering performance in public health applications. 

In conclusion, the K-means clustering algorithm provides an effective tool for 
the spatial analysis of influenza incidence. Previous studies have affirmed its value 
in identifying high-risk regions and formulating optimized control strategies. 
Nevertheless, future research should prioritize algorithmic refinement and the in-
tegration of multidisciplinary data to further advance its applicability in the do-
main of public health. 
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2. Methodology and Modeling 
2.1. Principles of the K-Means Algorithm 

The K-means algorithm, a classical unsupervised machine learning method also 
known as K-average or K-means clustering, is widely used for partitioning da-
tasets into meaningful groups based on similarity. Its core principle is to iteratively 
partition n data samples into k clusters, ensuring high intra-cluster similarity and 
significant inter-cluster differentiation (Liu Fugang [5]). This is achieved by min-
imizing the sum of squared distances between each sample and the centroid of its 
assigned cluster, which ensures clusters are as compact and distinct as possible. 

The algorithm proceeds in four key steps: Randomly select k data points as in-
itial centroids, each representing the center of a cluster; assign each remaining 
data point to the cluster with the nearest centroid, typically using Euclidean dis-
tance as the similarity metric; recalculate the centroid of each cluster as the mean 
of all data points within that cluster; repeat the allocation and update steps until 
the objective function stabilizes (i.e., the difference in sum of squared errors be-
tween iterations is below a threshold or the maximum number of iterations is 
reached). 

As an unsupervised learning technique, K-means identifies latent natural group-
ings in data without relying on predefined labels, making it suitable for explora-
tory research. However, it has limitations: it requires predefining the number of 
clusters k, is sensitive to initial centroid selection (which may affect result stability 
[6]), and performs poorly with non-convex clusters, imbalanced cluster sizes, or 
noisy data. 

This algorithm’s emphasis on hierarchical structuring ensures rational classifi-
cation while preserving the internal consistency of each group, yielding stable 
clustering outcomes (Liu Fugang [5]). Its simplicity, speed, and scalability for 
large datasets make it a practical choice for analyzing patterns in complex data, 
such as the urban characteristics and influenza incidence data in this study. 

2.2. Determination of the Number of Clusters 

The elbow method is employed to determine the optimal number of clusters k. 
This method involves computing the sum of squared errors (SSE or E) for differ-
ent values of k, and plotting the k-E curve. The point at which the curve forms a 
distinct “elbow” is considered the optimal value of k. The specific steps are as fol-
lows: Run the K-means algorithm for k = 1, 2, 3, …, m (m is the preset maximum 
cluster number) respectively; 

Calculate the square error and E corresponding to each k; 
2

1 i

k

i
i x C

E x µ
= ∈

= −∑ ∑  

Select the slope in the curve from the large to the small turning point as the 
optimal k. 

In this experiment, combined with the characteristics of the data and the actual 
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needs, the value range of the preset k is 2 to 5, and the city is finally divided into 
3 categories through the elbow law (Figure 1). 

 

 
Figure 1. k-E curve. 

2.3. Experimental Methods and Processes 

1) Initialization: randomly select 3 city samples as the initial cluster center; 
2) Allocation of samples: calculate the distance from each city sample to the 

center of each cluster, and distribute it to the nearest cluster; 
3) Update the cluster center: for each cluster, calculate the average value of all 

urban samples assigned to the cluster as the new cluster center; 
4) Convergence judgment: Calculate the new square error and E. If the differ-

ence between E and the previous iteration is less than the preset threshold (or the 
number of iterations reaches the upper limit), the algorithm will be terminated; 
otherwise, return to step 2 to continue the iteration. 

3. Experimental Process 
3.1. Data Preparation 

The experimental data includes the urban line level, GDP and influenza incidence 
of 29 cities [1 Data source: China Statistical Yearbook and China Health Statistics 
Yearbook]. The data is as follows (Table 1): 

 
Table 1. Data tables of 29 cities. 

Urban-level GDP (billion yuan) Influenza incidence (/100,000) 

1 4283 0.05 

1 7450 0.11 

1 4116 6.25 

1 3423 6.25 

2 3450 0.49 
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Continued 

2 2932 0.14 

2 2665 10.71 

2 2515 8.04 

2 1910 4.00 

2 1956 0.26 

2 2186 14.41 

2 1901 0.02 

3 1535 0.02 

3 1680 0.05 

3 1096 2.87 

3 1619 0.17 

3 2164 0.17 

3 1134 1.51 

3 1548 1.91 

3 883 1.91 

3 770 3.49 

3 1555 0.17 

3 942 0.01 

3 589 17.72 

3 253 1.54 

4 189 0.51 

4 444 14.60 

4 175 4.26 

4 484 0.51 

3.2. Data Processing 

Use MATLAB software to process data. This experiment divides cities into three 
categories, uses the K-means function of MATLAB for cluster analysis, and then 
draws three-dimensional scatter plots to visually display the classification results. 

4. Experimental Results and Analysis 
4.1. Present Cluster Results through Visualization Technology 

Through the three-dimensional scatter plot drawn by MATLAB, cities are divided 
into three categories, which are represented by blue, black and yellow, respec-
tively. Each type of city shows different characteristics in terms of urban line level, 
GDP and influenza incidence (Figure 2). 
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Figure 2. Data clustering result chart. 
 
Through the three-dimensional scatter plot drawn by MATLAB, cities are di-

vided into three categories, which are represented by blue, black, and yellow, re-
spectively. 

Classification results: 
The cities represented by the yellow dots are “low incidence, high GDP and low-

level” cities. GDP is nearly 800 billion, the urban level is close to 1, and the inci-
dence of influenza is close to 0. 

Cities represented by black dots: urban groups with the core characteristics of 
“wide GDP range, low level and low incidence”, including areas with different 
economic scales, low urban level and stable public health performance. GDP is 
mostly in the range of 200 to 800 billion, concentrated in the urban line level from 
0 to 2, and the incidence of influenza is 0/10 to 4/100,000. 

The cities represented by the blue dot: covering urban groups with “high-level, 
wide GDP range and diverse incidence”, including areas with different economic 
scales but 2.5+ at the urban level, with large differences in public health perfor-
mance. The urban line level is mostly 2.5 to 4, the GDP span is large, and the 
incidence of influenza is 0/100,000 to 16/100,000. 

Inter-class and intra-class similarities and differences: 
1) Between categories (different colors) 
Similarities: They are all urban samples, based on the three-dimensional char-

acteristic classification of “GDP, urban line level and influenza incidence”, reflect-
ing the comprehensive performance of the city in economic, hierarchical and pub-
lic health. 

Differences: 
Distribution range: the yellow class is isolated, the black class is concentrated in 

the “low-level and broad GDP range”, and the blue class is concentrated in the 
“high-line and medium-low GDP”. 

2) In the class (similar colors) 
Similarities: 
Black class: “Low-line level, wide GDP and low incidence” characteristics over-
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lap, spatial distribution concentration. 
Blue class: “high line level” features are unified and gather around the line level. 
Differences: 
Black category: GDP fluctuates significantly, but the overall range is relatively 

narrow; the incidence rate is low, and there is no significant difference. 
Blue category: GDP span is very large, incidence varies greatly, and internal 

characteristics are discrete. 

4.2. Carry out an In-Depth Analysis of the Causes of the  
Phenomenon 

Urban level and GDP: Cities with lower urban levels have relatively low GDP; cit-
ies with higher urban levels have higher GDP. 

Urban and influenza incidence: cities with lower urban levels have a higher in-
cidence of influenza; cities with higher urban levels have a lower incidence of in-
fluenza. 

GDP and influenza incidence: Cities with relatively low GDP have a higher in-
cidence of influenza; cities with high GDP have a lower incidence of influenza. 

There is a correlation between the urban level, GDP and the incidence of influ-
enza. When the urban level is low, the GDP is often relatively low, and the inci-
dence of influenza is high; while when the urban level is high, the GDP is usually 
high, and the incidence of influenza is low. 

For cities in the “high-hierarchy, high-GDP, low-incidence” cluster (blue clus-
ter), these cities have a relatively sound medical resource base. The key is to main-
tain their existing advantages in prevention and control and, at the same time, 
leverage their regional radiating role. Some redundant resources (such as ad-
vanced detection equipment and professional prevention and control teams) can 
be allocated to surrounding low-hierarchy cities. Strengthen the construction of 
inter-regional joint prevention and control mechanisms, and drive the improve-
ment of prevention and control capabilities in surrounding areas through tech-
nology transfer and personnel training. 

For cities in the “low-hierarchy, wide-range GDP, low-incidence” cluster (black 
cluster), although the incidence rate in these cities is low, potential risks brought 
by economic differences need to be watched out for, and resource shortages that 
may lead to a rebound of the epidemic should be avoided. For cities with lower 
GDP, increase investment in basic medical facilities, such as building standardized 
community health service centers and stockpiling basic epidemic prevention ma-
terials. For cities with higher GDP, focus on improving the early warning system 
and use their economic advantages to establish a rapid response mechanism. 

For cities in the “low-hierarchy, low-GDP, high-incidence” cluster (high-inci-
dence groups outside the yellow cluster), these cities are weak links in prevention 
and control. Priority should be given to filling resource gaps to reduce the risk of 
epidemic spread. The central or provincial finance should increase the intensity 
of transfer payments and invest medical resources in a targeted manner, such as 
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increasing the number of infectious disease beds and equipping vaccine cold stor-
age equipment. Give priority to launching free influenza vaccination programs, 
covering key groups such as the elderly and children. Establish a counterpart sup-
port relationship with high-hierarchy cities and regularly dispatch medical teams 
to guide prevention and control work. 

5. Conclusions 
5.1. Discussion 

In view of the incidence of influenza in different cities, this article collected data 
on the urban level, GDP and influenza incidence of 29 cities, and used the elbow 
method to determine the best cluster number as 3. On this basis, the sample data 
of 29 cities was clustered and analyzed using the K-means method. The results 
showed the correlation between the urban line level, GDP and influenza incidence 
of 29 cities: the incidence of influenza in high-line and high-GDP cities is gener-
ally low, while the incidence of low-line and low-GDP cities The incidence rate is 
relatively high, and similar cities have similar characteristics in terms of economic 
level, administrative level and public health performance, while there are obvious 
differences between different types of cities. 

The essence of the urban line-level reflects the functional hierarchy of the city. 
High-level cities are usually regional medical centers with a high degree of con-
centration of resources, such as the concentration of three-A hospitals and a per-
fect disease control system, while low-level urban medical resources are scattered 
and have a weak foundation. Combined with the “negative correlation between 
line level and incidence” in the classification, one of the core intermediary factors 
that can be derived from this relationship is the distribution of medical resources—
the higher the line level, the more sufficient the resources, and the stronger the abil-
ity to prevent and control influenza. 

5.2. Causal Mechanisms 

1) Medical resource distribution 
High-level cities and those with robust GDP typically function as medical cen-

ters, characterized by concentrated resources such as tertiary hospitals, well-
funded disease control agencies, and specialized healthcare personnel. These re-
sources enable more effective surveillance, rapid response to outbreaks, and wide-
spread access to preventive measures. In contrast, low-level, low-GDP cities often 
suffer from fragmented healthcare systems, inadequate funding for epidemic pre-
paredness, and limited access to vaccines or antiviral treatments—factors that ex-
acerbate transmission risk. For instance, the yellow cluster (low incidence, high 
GDP, low level) may represent exceptions where local economic strength com-
pensates for administrative ranking, enabling investments in private healthcare or 
targeted public health programs. 

2) Urban infrastructure and socioeconomic conditions 
High-GDP cities generally boast superior infrastructure, including improved 
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sanitation, ventilation systems in public spaces, and efficient transportation net-
works that facilitate healthcare access. These features reduce virus transmission 
pathways and ensure timely medical intervention. Additionally, socioeconomic 
factors such as education levels and public health awareness—often correlated with 
GDP—may play a role: residents in wealthier cities may be more informed about 
preventive behaviors, further lowering incidence rates. 

5.3. Limitations of the Study 

1) Sample size and representativeness 
The analysis is based on 29 cities, a relatively small sample that may not capture 

the full diversity of urban contexts. This limits the ability to generalize conclusions 
to broader regional or national scales. A sample of this scale, when considered 
against the vast and varied landscape of urban environments-encompassing me-
tropolises, mid-sized cities, small towns, and even rural-urban hybrids that blur 
the line between urban and rural characteristics-struggles to encapsulate the full 
spectrum of contextual diversity. For instance, cities with unique climatic profiles, 
such as those in high-altitude regions with extreme temperature variations or 
coastal areas with high humidity, may exhibit distinct influenza transmission dy-
namics shaped by local weather patterns. A sample of 29 cities cannot adequately 
account for these nuances, potentially leading to an oversimplification of how in-
fluenza incidence interacts with local demographics. 

2) Algorithm limitations 
The application of the algorithm also has certain limitations. For example, the 

cluster number k must be given in advance before clustering, and the algorithm is 
sensitive to the initial value. Different initial values may lead to different results. 
It is not suitable for clusters with non-convex shapes or clusters with large differ-
ences in size. In particular, the K-means algorithm is sensitive to “noise” and iso-
lated point data. This prompts us to see that for particularly complex problems or 
data, we need to choose other clustering methods and algorithms for analysis. 

5.4. Directions for Future Research 

1) Expand sample size and scope 
Include a larger, more diverse set of cities and incorporate rural areas to com-

pare urban-rural dynamics. Longitudinal data would also help track how inci-
dence patterns evolve with changes in urban development or policy interventions. 

2) Refine analytical methods 
Use advanced clustering algorithms such as DBSCAN and hierarchical clus-

tering to handle non-convex or unevenly sized clusters, and apply causal infer-
ence techniques like instrumental variables to disentangle correlation from cau-
sation. 
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Appendix 

Experimental code 
% Define the data matrix 
a = [1 4283 0.05; 

1 7450 0.11; 
1 4116 6.25; 
1 3423 6.25; 
2 3450 0.49; 
2 2932 0.14; 
2 2665 10.71; 
2 2515 8.04; 
2 1910 4.00; 
2 1956 0.26; 
2 2186 14.41; 
2 1901 0.02; 
3 1535 0.02; 
3 1680 0.05; 
3 1096 2.87; 
3 1619 0.17; 
2 2164 0.17; 
3 1134 1.51; 
3 1548 1.91; 
3 883 1.91; 
3 770 3.49; 
3 1555 0.17; 
3 942 0.01; 
3 589 17.72; 
3 253 1.54; 
4 189 0.51; 
4 444 14.60; 
4 175 4.26; 
4 484 0.51]; 

% Use K-Means algorithm for clustering 
b=kmeans(a,3); 
% Draw a three-dimensional scatter plot 
[m n]=size(a); 
for ii=1:m 
  a(ii,4)=b(ii); 
  switch b(ii) 
    case 1 
      scatter3(a(ii,1),a(ii,2),a(ii,3),'b','filled') 
      hold on 
    case 2 
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      scatter3(a(ii,1),a(ii,2),a(ii,3),'k','filled') 
      hold on 
    case 3 
      scatter3(a(ii,1),a(ii,2),a(ii,3),'y','filled') 
      hold on 
  end 
end 
xlabel('City Line Level'); 
ylabel('GDP (billion yuan)'); 
zlabel('Influenza incidence (/100,000)'); 
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