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Abstract 
To address the issues of missed detection and false detection during the defect 
inspection process of the PCB, an improved YOLOv7-based algorithm for 
PCB defect detection is proposed. Firstly, the Bi-Former attention mechanism 
and CARAFE upsampling operator are introduced into the original YOLOv7 
backbone network to achieve more flexible computation allocation and con-
tent awareness, enabling the network to dynamically perceive sparsity in que-
ries. Secondly, a powerful feature pyramid network, CMPANet, is proposed to 
extract more shallow features, effectively improving the model’s detection per-
formance on small targets. Finally, the NWD loss function is introduced to 
optimize the regression loss function in combination with IoU, reducing sen-
sitivity to position deviations of small targets. Experimental results demon-
strate that the modified YOLOv7 achieves a mAP@0.5 value of 95.25%. Com-
pared to the original model, the mAP@0.5 and mAP@0.5:0.9 values are im-
proved by 3.32% and 2.86%, respectively, while the F1 score is enhanced by 
3.91%. The detection speed is 44.84 FPS. These improvements effectively en-
hance the accuracy of detecting small target defects on PCBs. Additionally, the 
performance on AI-TOD, Tiny-Person, and Wider-Person small target da-
tasets shows improvements over the original network. 
 

Keywords 
PCB Bare Board, YOLOv7, Small Object Detection, Loss Function,  
Attention Mechanism 

 

1. Introduction 

Owing to breakthroughs and innovations in semiconductor technology, a solid 
foundation has been provided for modern electronic products and the field of in-
formation technology. The densification and miniaturization of bare Printed Cir-
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cuit Boards (PCBs) represent key aspects of semiconductor technology develop-
ment, with their quality directly impacting the overall quality and performance of 
electronic products [1]. However, during the manufacturing process of bare PCBs, 
defects such as open circuits, short circuits, copper deficiency, and poor via pad 
placements often occur due to limitations in manufacturing techniques and ma-
terials. These defects can severely affect the quality and stability of the bare PCBs 
and may lead to substantial losses amounting to tens of thousands. Therefore, de-
fect inspection before the dispatch of finished printed circuit boards is an indis-
pensable quality control task. 

In recent years, Convolutional Neural Networks (CNNs) have achieved sub-
stantial breakthroughs in the field of computer vision. Detection algorithms based 
on CNNs have successfully performed in conventional object detection tasks, with 
the mainstream neural network object detection algorithms divided into one-
stage and two-stage detections. The one-stage algorithms are particularly advan-
tageous in terms of detection speed, which is critical for industrial applications [2] 
such as PCB bare board detection, making them highly suitable for such tasks. 
The YOLO series [3]-[6] predominantly represents these one-stage algorithms, 
and researchers have continually refined these models over the years. For instance, 
Li [7] et al. enhanced the YOLOX algorithm for PCB defect detection by integrat-
ing the ECANet attention mechanism, improving the feature extraction rate for 
PCB defects and achieving a 1.21% increase in the mean mAP compared to the 
original network, though at the cost of reduced detection speed. Su [8] et al. mod-
ified the YOLOv4 model by improving the PANet network structure and employ-
ing the H-swish activation function alongside an attention mechanism, which in-
creased the FPS by 2.24%. Wang [9] et al. proposed a lightweight YOLOv5 model, 
replacing YOLOv5’s backbone with EfficientNetV2 to reduce computational pa-
rameters, enhancing the FPS by 5.30%. Tuo [10] et al. developed a PCB defect 
detection algorithm based on YOLOX-WSC, adding the parameter-free attention 
mechanism SimAM and replacing the CSPLayer structure with CSPHB modules, 
resulting in a 2.88% improvement over YOLOX, although further enhancements 
in detection speed are needed. 

Although the aforementioned algorithms have improved performance to some 
extent, they still face several challenges, such as low accuracy in detecting small 
target defects on PCBs, high parameter counts, and slow detection speeds. PCB 
bare board defects are typically characterized by small size, low contrast, and high 
density, imposing greater demands on object detection algorithms and necessitat-
ing improvements in small target detection capability. To address these issues, this 
paper proposes four improvements to defect detection of small targets on PCB 
bare boards based on the YOLOv7 algorithm: 

1. Integration of Bi-Former, a sparse-sampling dual-channel attention mecha-
nism, onto the feature extraction network to enhance the efficiency of model 
training and inference, thereby obtaining more crucial information. 

2. The introduction of the lightweight upsampling operator CARAFE enables 
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the enhanced network model to aggregate contextual information within larger 
receptive fields, thereby improving the detection performance of the model on 
small target defects. 

3. A loss function named NWD, combined with Intersection over Union (IoU), 
has been introduced. This integration does not increase the additional parameters 
of the model, but reduces the sensitivity of small targets to the prediction bound-
ing boxes. It enhances the precision of small object detection and accelerates the 
model’s convergence speed, thereby improving overall detection performance. 

4. A powerful feature pyramid network, named CMPANet, based on the PANet 
architecture, has been proposed to extract more shallow features and enhance the 
feature fusion capability of the model. 

Based on the aforementioned improvements, the modified YOLO model in this 
study achieved a mAP@0.5 value of 95.25%. Compared to the original model, the 
mAP@0.5 value and mAP@0.5:0.9 value increased by 3.32% and 2.86% respec-
tively. Additionally, the F1 score improved by 3.91%, while maintaining a detec-
tion rate of 44.84 FPS. These results demonstrate the superiority of the improved 
algorithm in detecting small target defects on PCB boards. 

In Section 1, we reviewed related work. The details and improvements of TD-
YOLO are discussed in Sections 2 and 3. Experimental results and discussions are 
presented in Section 4. Finally, Section 5 provides a summary of this paper. 

2. BCN-YOLO Network Structure 

The YOLOv7 network model primarily comprises three components: the input 
layer (Input), the backbone network (Backbone), and the detection head layer 
(Neck & Head). Initially, the model extracts features from image data; subse-
quently, these features undergo fusion in the Neck module to produce features 
of three different scales: large, medium, and small. Finally, these fused features 
are fed into the detection head, which processes and outputs the detection re-
sults. 

Compared to previous YOLO architectures, the backbone network of YOLOv7 
introduces three new modules: E-ELAN (Extended-ELAN), MPConv, and SPPCSPC. 
The E-ELAN module enhances the network’s learning capabilities on the basis of 
the original ELAN module without disrupting the existing gradient paths, ena-
bling more effective learning and convergence. The MPConv module expands the 
receptive field of the feature layer through MaxPool operations and then fuses the 
expanded feature information with the normally convoluted feature information, 
improving the network’s generalization capabilities. The SPPCSPC module incor-
porates multiple MaxPool operations in parallel within a series of convolutions to 
avoid image distortion and other issues related to image processing operations. 
This module also addresses the issue of redundant feature extraction in convolu-
tional neural networks. This paper presents a PCB bare board defect detection 
model based on YOLOv7, named BCN-YOLO, with improvements highlighted in 
red. The structure of this model is shown in Figure 1. 
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Figure 1. BCN-YOLO network architecture. 

 
The enhancements include three key parts: Firstly, the feature extraction net-

work integrates a dual-channel attention mechanism based on sparse sampling, 
named Bi-Former, which improves both training and inference efficiency. Sec-
ondly, the upsampling module is replaced with CARAFE, which enables better 
prediction of PCB defects without introducing an excessive number of parame-
ters. Thirdly, to enhance the feature extraction capability for small targets, an en-
hanced PANet named CMPANet is designed on top of the original three-layer 
detection head to boost the extraction of shallow features of small targets. In ad-
dition, the commonly used IoU metric is replaced with NWD to reduce the sen-
sitivity of small targets to the prediction boxes without increasing the model’s ad-
ditional parameters. Detailed descriptions of these improvements are provided in 
subsequent sections. 

3. Methodology 
3.1. Introducing Attention Modules 

The Transformer [11] model leverages the self-attention mechanism to enhance 
its capability to capture long-range dependencies, making it widely applicable in 
the field of object detection. However, this structure inevitably presents two major 
challenges: substantial memory usage and high computational costs. To address 
these issues, researchers have introduced a variety of manually designed sparse 
attention patterns to reduce the model’s complexity. Although these methods al-
leviate computational pressure to some extent, they still have limitations in cap-
turing comprehensive long-range relationships. To overcome this, a dynamic 
sparse attention method called Bi-level Rounding Attention (BRA) has been in-
troduced. The architectural structure of the BRA model is depicted in Figure 2. 
This mechanism aims to balance computational efficiency with the ability to ef-
fectively capture long-distance interactions 
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Figure 2. BRA operation diagram. 

 
The core design principle of the BRA module lies in its utilization of coarse-

grained regional-level preselection to filter out irrelevant key-value pairs, fol-
lowed by the application of a refined token-to-token attention mechanism in the 
remaining candidate regions (i.e., routing areas). This strategy not only endows the 
model with adaptability but also significantly enhances computational efficiency 
and substantially reduces memory usage. In Figure 2, the given intermediate fea-
ture map H W CX × ×∈ serves as input and is divided into S S×  non-overlapping  

regions, each containing 2

HW

S
 feature vectors. The BRA module undergoes two  

sequential stages of attention inference: in the first stage, the feature map of the 
PCB for testing is divided into multiple coarse-grained blocks, and self-attention 
operations are conducted on these blocks. , ,Q K V  matrices are obtained through 

linear mapping. Then, based on the key-value pairs 
2

2,
HWS C
SQ K

× ×
∈ , the relevance 

between each pair of coarse-grained blocks is calculated, resulting in a coarse-
grained sparse matrix rA , which helps estimate the semantic association between 
the two regions. Subsequently, only the top k  most relevant adjacency matrices 
are retained, yielding the routing index matrix rI : 

( )r rI topkIndex A=                         (1.1) 

In the second stage, based on the routing index matrix 
2S k

rI ×∈  obtained 
from the first stage, further fine-grained self-attention is performed. Utilizing 
sparsity operations, computations of the least relevant areas are directly skipped 
to save on the number of parameters and computational resources, thereby en-
hancing the model’s detection speed for the input PCB feature map. Ultimately, 
to effectively extract the contour features of the detection targets and capture the 
main content of these targets, the attention is focused on the aggregated key-value 
pairs: 
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( ) ( ), ,g gO Attention Q K V LCE V= +                (1.2) 

In Eqation.2, 
2

2,
KHWS C

g g SK V R
× ×

∈  are clustered key-value pairs, and we intro 
duce a local context enhancement function, parameterized with deep convolu-
tions, to apply fine-grained T2T (token to token) attention. 

To address the issue of excessive model parameters, a Bi-Former attention 
mechanism centered around BRA was proposed [12]. The detailed structure is 
shown in Figure 3. The core module of each stage is Bi-Former block, and its 
standardized structure is 3 × 3 deep convolution (position encoding) → BRA mod-
ule (dynamic routing attention) → double-layer MLP (feature enhancement), 
which effectively reduces the number of model parameters and significantly im-
proves the lightweight performance. 

 

 
Figure 3. Bi-Former structure diagram. 

 

 
Figure 4. Bi-level routing attention mechanism. 

 
Figure 4 below shows the Bi-level Routing Attention Mechanism, The Bi-For-

mer attention mechanism achieves efficient spatial sparse attention computation 
through two-level routing. Firstly, the feature map is divided into non-overlap-
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ping regions (panel a), and the Top-K relevant source regions (green/red/purple) 
of each target region (blue) are dynamically screened through a lightweight rout-
ing network. Subsequently, a fine-grained token-level sparse attention computa-
tion (Panel c) is performed only within the range selected by the region-level rout-
ing (panel b), where query tokens (orange) within the target region only establish 
connections with tokens from the selected source region. This hierarchical sparse 
strategy reduces the computational complexity from O (N2) to O (N √ N) of 
traditional attention, and significantly improves the processing efficiency of high-
resolution images while maintaining the modeling ability. 

3.2. Introducing CARAFE Up-Sampling Operator 

Upsampling is a commonly used technique in image processing and computer 
vision that increases the resolution of an image or feature map, thereby enhancing 
the detail or feature representation capability of the image. The most widely used 
upsampling methods are bilinear interpolation and nearest neighbor interpola-
tion. However, these methods simply perform a weighted average of adjacent pix-
els or use the values of nearby pixels, without utilizing the semantic information 
of the feature map. Another method involves the use of transposed convolution, 
which expands the feature map by inserting zero elements into the convolutional 
kernel and applying convolution operations. However, larger convolution kernels 
can result in pixel values being influenced by input pixels far from the target loca-
tion, and the excessive number of parameters can waste computational resources. 
Therefore, under the premise of ensuring lightweight operation, the upsampling 
operator CARAFE [13] has been introduced. It possesses a larger receptive field 
and is able to effectively extract semantic information from the feature map. The 
network structure of the CARAFE upsampling operator is illustrated in Figure 5. 

 

 
Figure 5. CARAFE operation diagram. 

 
It consists of a prediction module and a feature reassembly module. For a fea-

ture map of size, the prediction module estimates the upsampling kernel, and the 
feature reassembly module completes the upsampling process to generate a fea-
ture map of size. In the prediction module, channel compression is achieved using 
1x1 convolutions to reduce computational costs. Subsequently, a convolutional 
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layer with a kernel size of is used to predict the upsampling kernel, and the up-
sampling kernel size is set to. Softmax operation is then applied to normalize the 
weights of the convolutional kernel to ensure a sum of 1. For each position in the 
output feature map, the feature reassembly module maps it back to the input fea-
ture map, extracts an region centered at that position, and performs dot product 
operations with the predicted upsampling kernel obtained at that position, yield-
ing the final output feature value. 

By replacing the original nearest neighbor interpolation upsampling in YOLOv7 
with the CARAFE upsampling operator, the network is able to better predict PCB 
defect targets while introducing only a small number of additional parameters. 

3.3. CMPANet for Feature Fusion 

Deep feature maps provide more semantic information, while shallow feature 
maps provide more spatial information, which is crucial for detecting small ob-
jects. Building upon the multi-scale detection algorithm of YOLOv7, the Neck 
layer network is further deepened to enhance the feature extraction capability for 
small objects. Reference [14] suggests that investing more computation into the 
feature fusion network helps address scale variance issues. However, previous 
works have only involved intra-level fusion [15] or fusion with the preceding level. 
CMPANet proposed in reference [16] is a novel cross-scale fusion method that 
integrates features from the same layer and adjacent layers. The optimized feature 
pyramid network structure is illustrated in Figure 6. 

 

 
Figure 6. The architecture of proposed CMPANet. 

 
Considering the complexity and scale of the model, this paper simplified the 

fusion strategy proposed in reference [15]. Building upon the original three-layer 
detection head network, only the additional features of P4 are concatenated with 
P3 responsible for small object output, and the additional features of P5 are con-
catenated with P4. Thus, the extra fusion for outputs P3’ and P4’ provides richer 
spatial information, aiding in better localization of small defects in the dataset and 
expanding the network’s field of view for detecting targets. Additionally, the in-
troduction of convolution and max-pooling operations has almost negligible im-
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pact on computational cost growth. Through the new feature fusion network, bet-
ter detection accuracy can be achieved without increasing computational cost and 
inference time, particularly for spur defects, including the smallest defects in the 
dataset. 

3.4. Introducing NWD Loss Function 

For small target defects on PCB bare boards, matching high-quality prior boxes 
to ground truth is particularly challenging. A simple approach is to lower the IoU 
threshold, which increases the number of positive samples for small targets but 
generally reduces overall quality. Current research aims to make label assignment 
more adaptive, such as Anchor-based and Anchor-free Detection via Adaptive 
Training Sample Selection (ATSS) [17], which automatically calculates thresh-
olds, and approaches like Probabilistic Anchor Assignment (PAA) [18] and OTA 
[19]. However, these methods are still based on improvements to IoU, which are 
not well-suited for small target defects on PCB bare boards. Consequently, the 
Normalized Wasserstein Distance (NWD) loss function is introduced to mitigate 
the issue of small targets being overly sensitive to IoU. Figure 7 illustrates a com-
parison between IoU deviation curves and NWD deviation curves for objects of 
different sizes. 

 

 
Figure 7. Comparison between IoU-Deviation Curve and NWD-Deviation Curve. 

 
A represents the ground truth box, and B represents the predicted box. The 

horizontal axis represents the pixel deviation between the center points of A and 
B, while the vertical axis represents the corresponding metric values. Without loss 
of generality, we discuss the changes in the metric values under the following two 
scenarios. In the first row of Figure 7, keeping the predicted box A and the pre-
dicted box B at the same scale and moving B along the diagonal of A, it can be 
observed that the four NWD curves completely overlap, indicating that NWD is 
insensitive to changes in the scale of the predicted box. Additionally, it can be 
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observed that setting the side length of B to half that of A results in a much 
smoother NWD curve compared to the IoU curve. Even when A B A∩ =  or 

0A B∩ = , the NWD curve consistently reflects the correlation between A and B. 
The NWD introduces a new metric to calculate the similarity between the pre-

dicted box and the ground truth box. Specifically, it models the predicted box as 
a Gaussian distribution and then uses the Wasserstein distance [16] to measure 
the similarity between these two distributions, replacing the IoU. The advantage 
of this approach is that it can measure similarity even when there is little to no 
overlap between the predicted box and the ground truth box. Additionally, NWD 
is insensitive to the scale of the targets, making it more stable for small targets. In 
Figure 7, for two 2D Gaussian distributions, their second-order Wasserstein dis-
tance, after normalization, can be simplified as: 

( )
2 ( , )

, exp a b
a b

W N N
NWD N N

C

 
 = −
 
 

              (1.3) 

In Equation 3, ,a bN N  represent the Gaussian distributions generated from the 
predicted box and the ground truth box, respectively. W  is the metric function  
of ( )

( )
( )

,
, inf ,

a b
a b N N

W N N x y d x y
π

π
×∈Γ

= −∫
 

, and C  is a constant closely re-

lated to the dataset. 
 

 
Figure 8. The mechanism and advantages of the NWD loss function. 
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Figure 8 presents a comprehensive schematic diagram illustrating the mecha-
nism and advantages of the normalized Wasserstein distance (NWD) loss func-
tion: Subfigure (a) demonstrates Gaussian distribution modeling of bounding 
boxes, quantifying positional and dimensional differences through elliptical con-
tour quantization (Euclidean distance between centers: 5.77, NWD similarity: 
0.36). Subfigure (b) reveals that the NWD loss (blue curve) maintains non-zero 
gradients and smooth response characteristics even for small targets (4 × 4 pixels), 
significantly outperforming the IoU loss (red curve) in addressing gradient disap-
pearance issues in non-overlapping regions. The 3D surface in subfigure (c) visu-
ally demonstrates the convex optimization properties of the NWD loss function, 
with its symmetrical and smooth topological structure providing stable conver-
gence paths for gradient descent algorithms. This visualization comprehensively 
validates the core value of NWD loss in solving gradient disappearance and en-
hancing localization accuracy for small object detection, from theoretical model-
ing to functional behavior. 

However, if the IoU loss function is entirely replaced with the NWD loss func-
tion, it would impact the convergence speed of the Loss  curve and reduce the 
performance of detecting medium and large targets. Therefore, a combined ap-
proach utilizing both NWD and IoU is adopted to optimize the loss function: 

( ) 1Loss ratio IoU ratio NWD= ∗ + − ∗                (1.4) 

In Equation 4, ratio  represents the weight ratio of the IoU loss function, and 
Loss  represents the loss function. 

4. Experiment and Analysis 
4.1. Introducing NWD Loss Function 

The experimental environment consists of the Windows 11 operating system, 
Torch architecture, Python development language, RTX3070 graphics card for 
training, and CUDA and CUDNN environments for GPU acceleration. Detailed 
training parameters are shown in Table 1 below. 

 
Table 1. Hardware environment and model parameters. 

Parameter Value Parameter Value 

Epochs 200 IoU_t 0.2 

Batch 4 Hsv_h 0.015 

Pixel size 640 Hsv_s 0.4 

Learning Rate 0.01 Hsv_v 0.2 

Momentum 0.937 Optimizer Adam 

Weight decay 0.0005   

4.2. Dataset and Image Augmentation 

The experiment employs a publicly available synthetic PCB dataset released by 
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Peking University, containing 1,386 images with a resolution of 640 × 640 pixels. 
The dataset simulates six types of defects (missing hole, mouse bite, open circuit, 
short circuit, spur, spurious copper) using a rendering procedure based on Pois-
son distribution layouts and procedural defect generation, including random 
placement and morphological operations to mimic real-world imperfections. 
Data augmentation techniques, such as horizontal and vertical flipping (probabil-
ity 0.5), skewing (angle range ±15˚), darkening (brightness reduction 0.1 - 0.3), 
adding Gaussian noise (standard deviation 0.01 - 0.05), and partial occlusion (ran-
dom patches covering 5% - 10% of the image), are applied to expand the dataset 
to 2,000 images. The dataset is split into training, validation, and test sets in an 
8:1:1 ratio (1,600 training, 200 validation, 200 test) using a fixed random seed of 
42 for reproducibility. Examples from the dataset are shown in Figure 9. 

 

 
Figure 9. Image enhancement dataset. 

4.3. Evaluation Indicators 

To evaluate the detection capabilities of the improved network model on different 
types of images, experiments were conducted to compare the performance of the 
network before and after the improvements. The comparison was made based on 
the following metrics: Precision-Recall (P-R) curves, Average Precision (AP), 
mean Average Precision (mAP), Frame Per Second (FPS), and the F1 (F-Measure) 
factor. The Equation 5、6、7、8 for calculating these metrics are as follows: 
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100%TPP
TP FP

= ×
+

                          (1.5) 

100%TPR
TP FN

= ×
+

                          (1.6) 

( )1

0
AP P R dR= ∫                             (1.7) 

( )
( )

2

2

1
a

a P R
F

a P B

+ × ×
=

+
                          (1.8) 

The above Equation are used to measure the detection performance of the 
model for PCB bare board defects. Higher values indicate better detection perfor-
mance. In object detection algorithms, FPS (Frames Per Second) is used to meas-
ure the detection speed of the algorithm, representing the number of images that 
can be processed per second. The calculation formula is shown in Equation 9: 

1000msFPS
PP Inference NMS

=
+ +

                     (1.9) 

In Equation 9, PP  represents the time for image preprocessing, which in-
cludes operations such as resizing images while maintaining aspect ratio and pad-
ding, channel transformation, and dimensionality expansion. Inference  repre-
sents the inference speed, indicating the time from inputting preprocessed images 
into the model to obtaining model output results. NMS  (Non-Maximum Sup-
pression) denotes the time taken for non-maximum suppression, which primarily 
involves post-processing to refine the model output results. Comparing FPS re-
quires conducting experiments under the same hardware conditions. 

4.4. Attention Mechanism Experiments 

To validate the effectiveness of the Bi-Former attention mechanism for small ob-
ject detection, ECA, SE, CBAM, and Bi-Former attention mechanisms were added 
to YOLOv7 and compared using the AI-TOD dataset. The experimental results 
are shown in Table 2. 

 
Table 2. Hardware environment and model parameters. 

Algorithm mAP@0.5 (%) mAP@0.5:0.9 (%) 

YOLOv7 40.02 19.63 

YOLOv7 + SE 41.95 19.91 

YOLOv7 + ECA 43.40 20.36 

YOLOv7 + CBAM 43.89 20.61 

YOLOv7 + Bi-Former 43.97 20.96 

 
After incorporating attention mechanisms, the detection accuracy of 

YOLOv7 generally increased. Compared to the original network, adding the Bi-
Former attention mechanism improved mAP@0.5 by 1.41% and mAP@0.5:0.9 
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by 3.95%. Compared to adding CBAM, mAP@0.5 increased by 0.35% with Bi-
Former while mAP@0.5:0.9 remained essentially unchanged, demonstrating the 
significant performance enhancement provided by Bi-Former. Additionally, the 
performance of the algorithm with Bi-Former outperformed other attention 
mechanisms. 

4.5. Loss Function Experiments 

To determine the optimal combination of NWD and IoU and to validate the ef-
fectiveness of NWD, comparative experiments were conducted with different ra-
tio values, as shown in Equation 4. The experimental results are detailed in Table 
3. 

 
Table 3. Effect of ratio value on detection accuracy. 

Ratio Weight mAP@0.5 mAP@0.5:0.9 

0 92.10 49.94 

0.2 92.27 50.19 

0.4 92.41 50.47 

0.6 92.58 50.64 

0.8 92.63 50.72 

1.0 91.93 49.89 

 
From Table 2, it can be observed that when 0ratio = , there is an increase of 

0.17% in mAP@0.5 and a 0.05% increase in mAP@0.5:0.9 compared to 1ratio =  , 
confirming the effectiveness of NWD. As ratio  increases, the mAP values also 
increase. When 0.8ratio = , the mAP value reaches its maximum, with a 0.7% 
increase in mAP@0.5 and a 0.83% increase in mAP@0.5:0.9 compared to 

1ratio = . These experiments demonstrate that introducing NWD and IoU to op-
timize the loss function can reduce sensitivity to small target position deviations 
and improve the detection of small PCB defects. For subsequent experiments, 

0.8ratio =  will be used for further improvements. 
IoU is more sensitive to large targets and targets with high overlap, and can 

better optimize the overlap of the overall frame. NWD is more sensitive to small 
targets and frame offsets, and can better optimize the positioning of small tar-
gets.0.8 not only ensures the optimization ability of IoU for large targets and over-
all frame overlap, but also allows NWD to play an auxiliary role in the positioning 
of small targets. This combination can take into account the detection accuracy of 
large and small targets. 

Actual tests found that 0.8 has the best effect, indicating that the proportion of 
small targets in the data set is not extremely high, but the improvement of small 
target detection accuracy has a significant help to the overall mAP. The perfor-
mance curves of different ratio values are shown in Figure 10 below. 
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Figure 10. Performance curves for different ratio values. 

4.6. Ablation Experiments 

Using the aforementioned experimental setup, training experiments were con-
ducted on the improved algorithm, and the convergence of various losses and ac-
curacies during the training process was recorded. The specific results are shown 
in Figure 11. 

 

 
Figure 11. Training loss and precision convergence curve. 

 
It can be observed that after approximately 50 epochs of iteration, the rates of 
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change in various losses and accuracies begin to slow down. After 100 epochs, the 
losses and accuracies tend to stabilize and no longer exhibit significant changes. 
Therefore, it can be determined that the model has converged, and it is advisable 
to save its weights to ensure the reproducibility of the model post-training and to 
facilitate predictions or further optimizations when needed. 

 
Table 4. Analysis of ablation results. 

Num Improvement module mAP@0.5 F1 Params FLOPs FPS 

 Bi-Former CARAFE P2 NWD (%) (%) (M) (G)  

1     91.93 91.17 36.9 105.1 52.17 

2 √    92.98 92.03 37.6 106.6 48.31 

3  √   92.79 92.45 37.4 105.3 48.02 

4   √  92.35 92.12 37.5 106.7 47.93 

5    √ 92.63 92.34 37.2 105.2 47.75 

6 √ √   93.36 93.15 37.5 106.3 46.83 

7 √  √  93.63 93.13 37.5 107.1 45.72 

8 √   √ 93.52 93.23 37.6 106.6 46.56 

9  √ √  93.61 93.28 37.8 107.5 46.65 

10  √  √ 93.93 93.62 37.4 106.4 46.88 

11   √ √ 94.21 93.76 37.5 106.3 46.12 

12 √ √ √ √ 95.25 95.08 38.1 107.6 44.84 

 
Several improvements were proposed targeting the original YOLOv7 algorithm 

by introducing enhancement modules. To validate the effectiveness of each en-
hancement module, 12 ablation experiments were designed. The effectiveness of 
the enhancement modules was evaluated using metrics such as mAP@0.5, param-
eter count (Params), computational complexity (FLOPs), frames per second 
(FPS), and the F1 score. The results of the ablation experiments showed significant 
improvements in the aforementioned variables, as detailed in Table 4. 

In Table 4, ‘√’ indicates the introduction of the respective module in that 
experimental group. Compared to the original network, in the second experi-
mental group, introducing the Bi-Former attention mechanism resulted in a 
slight increase in parameters and computational complexity, but it improved 
mAP@0.5 by 1.05%, demonstrating its ability to improve detection perfor-
mance while achieving more flexible content perception. In the third, fourth, 
and fifth experimental groups, replacing the CARAFE operator, NWD loss 
function, and introducing the P2 detection head respectively, the parameter 
count remained basically unchanged, while mAP@0.5 and the F1 score showed 
varying degrees of improvement. This indicates that these improvements effec-
tively enhance the detection accuracy without increasing model complexity. In 
the sixth, seventh, and eighth experimental groups, CARAFE operator, CMPANet, 

https://doi.org/10.4236/jcc.2025.138002


J. J. Liu et al. 
 

 

DOI: 10.4236/jcc.2025.138002 33 Journal of Computer and Communications 
 

and NWD loss function were respectively added on top of the Bi-Former at-
tention mechanism. Among these three groups, the seventh group showed the 
highest improvement, with a 1.7% increase compared to the first group. In the 
twelfth experimental group, the Bi-Former attention mechanism, CARAFE op-
erator, CMPANet, and NWD loss function were all simultaneously introduced. 
This resulted in a 3.32% improvement in mAP@0.5 and a 3.97% improvement 
in the F1 score, with only a slight increase in parameter count (1.2 M) and 
computational complexity (2.5 G). Moreover, the FPS reached 44.84, meeting 
the real-time testing requirement of over 30 FPS, thereby satisfying industrial 
production inspection needs. 

The detailed mAP results for various types of defect detection ablation experi-
ments are shown in Table 5. The improved algorithms all demonstrate enhanced 
detection capabilities for various types of defects on PCB bare boards, with the 
greatest improvement observed for scattered small target defects, showing a 9.3% 
increase. Since scattered defects are generally smaller and more challenging to 
identify compared to other types of defects, the significant improvement in defect 
recognition after improving the YOLOv7 network validates the effectiveness of 
the improved network for small target detection. 

 
Table 5. Results of various defects in ablation experiments. 

Defect Type Original mAP@0.5/% Improved mAP@0.5/% Improvement/% 

Mouse Bite 93.6 96.4 2.8 

Missing Hole 97.7 99.8 2.1 

Open Circuit 93.9 96.1 2.2 

Short 93.7 95.6 1.9 

Spur 76.3 85.6 9.3 

Spurious 
Copper 

94.7 95.9 1.2 

 

 
Figure 12. Comparison of various defect detection recall. 
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The significant increase in mAP@0.5 is primarily due to the notable improve-
ment in the recall rate R for small targets, as illustrated in Figure 12. 

Figure 12 illustrates the comparison of recall rates R for various PCB defects, 
where the average recall rate has increased from 88% in the original YOLOv7 to 
94%, representing a significant improvement of 6%. The BCN-YOLO algorithm 
maintains high precision while stabilizing parameter and computational require-
ments, and notably enhances the recall rate. Detailed results of defect detection 
for each category are depicted in Figure 13. 

Figure 13 displays the detection results of the original YOLOv7 algorithm and 
the BCN-YOLO on the PCB bare board defect dataset. The left side of the image 
showcases the detection results of the original YOLOv7 model, while the right side 
illustrates the results of the improved algorithm. 

 

 
Figure 13. Comparison of various defect detection results. 

 
Figure 13 displays the detection results of the original YOLOv7 algorithm and 

the BCN-YOLO on the PCB bare board defect dataset. The left side of the image 
showcases the detection results of the original YOLOv7 model, while the right side 
illustrates the results of the improved algorithm. Different colored bounding 
boxes represent detected defects of various types. By comparing the detection re-
sults of the two algorithms, it is evident that the improved algorithm enhances 
both precision and recall for detecting small PCB bare board defects. 

In summary, the superiority and effectiveness of the improved algorithm in 
PCB defect detection tasks have been further validated. It provides detection per-
sonnel with a more reliable and accurate method for identifying and categorizing 
small target defects on PCB bare boards. It is believed that the improved algorithm 
will play a practical role in the field of PCB defect detection, especially for detect-
ing small target defects. 

4.7. Comparative Experiments 

To verify the superiority of the BCN-YOLO detection performance, comparative 
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experiments were conducted against current mainstream single-stage and two-stage 
networks. The performance of YOLOv7 and BCN-YOLO on different datasets was 
compared to validate the robustness of the network. The experimental results are 
presented in Table 6 and Table 7. According to the data in Table 6, compared to 
the original YOLOv7 network, the improved algorithm achieved a 3.32% and 2.86% 
increase in mAP@0.5 and mAP@0.5:0.9, respectively. The precision increased by 
3.28%, and the recall rate improved by 6.18%, demonstrating the effectiveness of the 
improved algorithm. In the task of PCB bare board defect detection, the mAP@0.5 
value of the improved algorithm is comparable to that of YOLOX-WSC, but with 
significantly lower parameter and computational requirements compared to the lat-
ter network. In the 7 sets of comparative experiments, the recall rate and mAP@0.5 
value of the improved algorithm ranked first, and other parameters also showed 
significant advantages. Considering the comprehensive comparison of model com-
plexity, computational requirements, and application scenarios, the improved algo-
rithm is more suitable for PCB bare board defect detection tasks. 
 

Table 6. Analysis of experimental results. 

Algorithm Precision/% Recall/% mAP@0.5/% mAP@0.5:0.9/% Params/M FLOPs/G FPS 

YOLOv7 91.63 88.74 91.93 49.89 36.9 105.1 52.17 

YOLOv5-L 92.73 89.53 92.56 50.47 47.1 114.9 49.94 

YOLOX-L 94.03 90.24 93.79 50.60 54.2 155.6 51.74 

YOLOX-WSC 95.23 94.57 95.45 52.85 70.3 163.4 51.84 

Faster R-CNN 94.86 92.35 93.54 51.58 42.6 180.2 28.45 

YOLOv7-CA-SIoU 93.53 92.31 93.84 51.41 37.6 113.5 46.72 

YOLOv8-L 94.21 93.42 94.81 52.27 43.7 165.7 54.13 

BCN-YOLO 94.91 94.92 95.25 52.75 38.1 107.6 44.84 

 
The detailed detection results are illustrated in Figure 14, where the improved 

network shows significant enhancements in mAP@0.5 across three selected small 
target datasets compared to YOLOv7. Specifically, in the AI-TOD dataset, mAP@0.5 
and mAP@0.5:0.9 improved by 4.67% and 2% respectively; in the Tiny-Person 
dataset, they improved by 4.55% and 2.03% respectively; and in the Wide-Person 
dataset, they improved by 4.31% and 2.42% respectively. These results validate the 
effectiveness of the improved network for small target detection, its generalization 
capability across different input data, and its enhanced applicability for detecting 
defects on PCB bare boards. 

 
Table 7. YOLOV7 and BCN-YOLO are compared in different data sets. 

Dataset Algorithm Params/M mAP@0.5/% mAP@0.5:0.9/% FPS 

AI-TOD 
YOLOv7 84.3 40.02 19.63 23.21 

BCN-YOLO 90.4 44.69 21.13 15.25 
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Continued 

Tiny-Person 
YOLOv7 47.1 36.71 17.42 22.93 

BCN-YOLO 54.3 41.26 19.45 13.56 

Wider-Person 
YOLOv7 64.8 56.25 24.52 32.41 

BCN-YOLO 72.3 60.56 26.94 21.76 

 

 
Figure 14. Detailed response about the detection results. 

4.8. System Performance Evaluation Based on Real Production  
Images 

The previous content of this article verified the testing performance of the algo-
rithm on the open PCB dataset of Peking University. To further test its usability 
in actual production environments, a cooperation was established with Dalian Riji 
Electronics Company. The proposed BCN-YOLO algorithm was applied to the 
actual PCB board production line, and a comprehensive evaluation of the algo-
rithm was conducted by using real production inspection images. 

This study selected four representative types of PCB boards from Dalian Rijia 
Electronics Co., Ltd. for practical testing. These four PCB boards covered dif-
ferent production processes and complexities to ensure the comprehensiveness 
and representativeness of the experiment. The actual test results are shown in 
Figure 13. 

As shown in Figure 15, this study’s algorithm demonstrates the detection per-
formance comparison of BCN-YOLO on different PCB boards. The algorithm 
achieves ideal results when detecting six common defects. Based on actual test 
results, the improved BCN-YOLO basically meets the performance requirements 
for practical production. 
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Figure 15. Real production image inspection results. 

5. Conclusion and Future Work 

Addressing the issues of low accuracy, false positives, and missed detections in the 
detection of small target defects on PCB bare boards, an improved detection algo-
rithm based on YOLOv7 has been proposed. The improvements include the in-
troduction of a Bi-Former dynamic sparse attention mechanism based on BRA 
and the CARAFE operator to enhance detection accuracy. Additionally, a robust 
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feature pyramid network called CMPANet is incorporated to improve the capa-
bility of extracting shallow information from small targets. The combination of 
NWD and IoU loss functions is employed to detect more small targets and reduce 
false and missed detections during the process. Compared with other classic ob-
ject detection algorithms, experimental results demonstrate that the proposed al-
gorithm not only outperforms mainstream algorithms in terms of defect detection 
effectiveness but also shows better generalization capabilities. This makes it par-
ticularly valuable for industrial deployment in detecting small target defects on 
PCB bare boards. 

In this paper, we proposed an improved YOLOv7-based PCB bare board defect 
detection model, BCN-YOLO, which addresses the challenges of missed and false 
detections in small defect detection. The experimental results demonstrate that 
the BCN-YOLO model achieved significant improvements in detection accuracy 
compared to the baseline YOLOv7 model, particularly for small PCB defects. Fu-
ture work will focus on further optimizing the model architecture and exploring 
additional loss functions to improve detection performance on challenging PCB 
defect datasets. 
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