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Abstract 
Agriculture is essential for humanity’s survival, and productivity is crucial in 
agriculture. Owing to its multiple nutrients, cherry has become an important 
fruit for daily consumption; however, crop productivity is mainly reduced by 
powdery mildew. Hence, recognizing this disease is vital to farmers. We de-
veloped a deep convolutional neural network (DCNN)-based method to assess 
cherry tree health using leaf images. We constructed the DCNN model on 
Keras with TensorFlow, preprocessing the original images for convenience. 
We used a visualization method to analyze intermediate model layers, com-
paring features of healthy and diseased leaves. The model achieved 99.2% ac-
curacy after 10 training epochs. Misclassification occurred when leaf shadow 
edges were close to actual leaf edges, leading the model to mistake actual edges 
as features indicating disease, offering new insights for distinguishing the dis-
ease. Simulation results demonstrate that identifying plant disease via a DCNN-
based protocol is suitable and adaptable to other plants, providing high prac-
tical value. 
 

Keywords 
Disease Identification, Deep Learning, Convolutional Neural Network, 
Recognition 

 

1. Introduction 

Although most countries consider yearly economic growth, as indicated by measures 
such as the gross domestic product, food is unarguably the most important re-
source for the survival of humans and animals, especially in countries with large 
populations such as China and India [1] [2]. As a nation develops, more categories 
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of food, such as grains, rice, vegetables, fruits, and meat, are required daily. Thus, 
food productivity and quality are crucial. However, diseases are a key cause of low 
productivity and reduced quality. Food security is low in resource-poor countries 
[3], which directly affects human health and survival. Cherry is a fruit that is com-
mon in daily consumption. It contains many nutrients such as vitamins, minerals, 
and energy. It also contains important nutrients that can supply dietary elements 
lacking in rice and grains [4]. Hence, the diagnosis of diseases in cherry trees is 
vital. Unfortunately, few studies on this topic have been published. 

Rapidly recognizing the health of a cherry tree and classifying disease with high 
accuracy is a goal of many researchers. Some plant disease symptoms first appear 
on the leaves; thus, plant leaves can be studied to determine diseases [5]. Molecu-
lar techniques for disease identification are the foundation of this work. Over the 
decades, many plant researchers have constructed plant disease datasets. How-
ever, this method is only suitable for experts and small quantities of crops [6]. 
Fortunately, image-based techniques have been developed, and they can be com-
bined with machine learning to effectively identify powdery mildew on plants. 
Machine learning, which consists of over 10 algorithms, is actively used in crop 
disease identification [7]. Using machine learning to identify plant pests and dis-
eases is an efficient and precise method. By collecting images of plant leaves, 
stems, fruits, and other parts and combining environmental data such as temper-
ature, humidity, and soil conditions to label the images, the types and severity of 
pests and diseases can be identified, assisting farmers and agricultural experts in 
quickly diagnosing the health status of plants and taking corresponding preven-
tion and control measures [8] [9]. 

For example, Liu et al. proposed an Internet-of-Things-based method to di-
rectly perceive environmental conditions in crop fields [10]. This helps machine 
learning methods accurately predict the occurrence of plant diseases, with an ac-
curacy as high as 91%. Kumar et al. used soil sensors and satellites to collect real-
time data for in-depth analysis and a machine learning model to detect, evaluate, 
and predict plant diseases, with an average prediction accuracy above 98% [11]. 
To reduce the damage of white scale disease to date palm trees, an algorithm based 
on feature extraction and machine learning was proposed using support vector 
machine (SVM), K-nearest neighbors, and ensemble learning to analyze date palm 
tree leaf images, reaching an identification accuracy of 98.29% [12]. 

In practical applications, traditional machine learning is suitable for scenarios 
with limited resources or small data volumes, while convolutional neural net-
works (CNNs) are more suitable for large-scale high-precision plant pest and dis-
ease identification tasks and perform well in processing high-dimensional data, 
achieving superior recognition accuracy [13] [14]. Khattak et al. used a CNN to 
automatically detect citrus leaf diseases, with an accuracy of 94.55% [15]. Shruthi 
et al. proposed a CNN called TomSevNet for detecting tomato diseases and their 
severity, with a test accuracy of 96.91% [16]. In the past few years, deep learning 
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has developed at an astonishing speed and become a popular research topic. More-
over, the sudden outbreak of the coronavirus disease, COVID-19, has made food 
security even more important. Therefore, many studies have utilized deep learn-
ing techniques to identify plant diseases to maintain the quality of agricultural 
products and increase yields. Studies have proposed plant disease detection mod-
els based on optimized CNNs [17]-[20]. A hybrid deep learning model combining 
CNN and optimized recurrent neural network was developed for precise segmen-
tation and disease detection of rice spikelet sterility, achieving an accuracy of 
96.34% [17]. The EfficientNetV2 model was demonstrated to be capable of detect-
ing anthracnose and leaf spot diseases in cardamom plants, as well as black rot, 
esca, and isariopsis leaf spot in grapes, with a detection accuracy up to 98.26% 
[18], outperforming other CNN and EfficientNet models. In the identification and 
detection of tea plant diseases and pests, transfer learning and the freezing core 
strategy were employed, resulting in a detection accuracy of 98.231% [19]. For 
detection and classification of cherry maturity and disease status, a MobileNet_v2 
with SVM was adopted, achieving an identification accuracy of 98.3% [20]. The 
PlantDet model was proposed to enhance the robustness of disease detection in 
betel nut and rice leaves [21]. This model integrated multiple powerful models, 
achieving a detection accuracy of 98.53% and demonstrating the effectiveness of 
deep learning for plant disease prediction. The main drawback of deep learning is 
its high computational demand. Additionally, accuracy must be optimized; thus, 
the performance and computational load must be balanced [22]. 

In this study, we trained a deep CNN (DCNN) according to a dataset, optimized 
the hyperparameters, and classified the pixels of leaf images using the DCNN. This 
model performed well, and its computation was smaller than that of other meth-
ods, requiring only 72 s per epoch and 10 epochs to train. We analyzed the reasons 
for misclassifications of some leaves and present our conclusions. 

In brief, our major contributions are as follows: 
1) We built an improved DCNN model for cherry powdery mildew leaf diag-

nosis and classification and obtained a set of high-performing hyperparameters 
for our task. 

2) By conducting standardized preprocessing on the dataset (including image 
size normalization and key information retention algorithms), we achieved an op-
timal balance between the model training effect and computational efficiency, and 
proposed a solution that strikes a balance between recognition performance and 
computational consumption. 

3) We discovered that when the leaf shadow edge is close to the actual leaf edge, 
the DCNN model mistook the actual edge for a feature of disease during image 
processing. 

The remainder of this paper is organized as follows. Section 2 presents the CNN 
architectures. Section 3 describes the strategy for cherry disease identification, in-
cluding the model design and recognition algorithm. In Section 4, we present our 
experiments, including dataset preparation and processing as well as the simula-
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tion results. The discussion is presented in Section 5, and conclusions are drawn 
in Section 6. 

2. CNN Architectures 
2.1. CNNs 

Artificial neural networks were inspired by the seemingly inconceivable learning 
capability of the human brain. The human brain consists of billions of neurons in-
terconnected by synapses, and their relationship changes as learning proceeds. 
Therefore, similar to a human brain, artificial neural networks can learn any task 
in principle. To improve learning capabilities, in 1998, LeCun et al. proposed the 
CNN architecture focusing on recognition, which is especially useful in image 
identification [23]. 

CNNs use image input directly and use the image pixels to automatically obtain 
features by convolving the pixels with filters. Multiple layers of convolutions can 
be calculated, which are followed by several fully connected layers. A set of weights 
and biases can be obtained through learning, and after the model has been trained, 
it can perform classification. In general, a CNN used in supervised learning con-
tains an input layer, convolutional layer, pooling layer, flattening layer, and soft-
max layer, as illustrated in Figure 1. CNNs are applied in many areas such as 
handwriting recognition, traffic flow, automatic driving, face identification, and 
plant disease diagnosis. 

 

 
Figure 1. Architecture of DCNN. 

2.2. Design of CNN Model 

In this study, we designed the architecture of our DCNN based on our goal. The 
model consists of three dense layers, one max-pooling layer, two dropout layers, 
and one flattening layer. Furthermore, the dense layers contain two convolutional 
layers and one softmax output layer. The architecture of our DCNN is specified 
in Table 1. The total number of parameters is 420,738, but if we use an image 256 
× 256 pixels, the total number of parameters is 30,938,690. 

The convolutional layer computes the output of each tensor. Each computation 
is a dot product between the weights and a small region input covered by a kernel 
window of 5 × 5 pixels. Moreover, each computation extracts a feature map from 
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the input image. When the window finishes sliding over the image, a map of the 
main features is obtained, and the tensor output dimensionality is reduced. We 
design the pooling layer to subsample the features. The pooling kernel size is (4 × 
4), which also reduces the dimensionality of the tensor output and can decrease 
the probability of overfitting. We introduce two dropout layers to avoid overfit-
ting and improve the training speed. The final CNN model is the result of many 
experimental trials. 

 
Table 1. Architecture of proposed DCNN. 

Layer (type) Tensor output (shape) No. params. 

Dense_1 (conv2D) (None, 60, 60, 32) 832 

Maxpooling2D_1 (max pooling) (None, 57, 57, 32) 0 

Dropout_1 (dropout) (None, 57, 57, 32) 0 

Dense_2 (conv2D) (None, 52, 52, 64) 73,792 

Dropout_2 (dropout) (None, 52, 52, 64) 0 

Flatten_1 (flattening) (None, 173,056) 0 

Dense_3 (softmax) (None, 2) 346,114 

Total no. parameters 420,738  

3. Cherry Disease Recognition Strategy 
3.1. Design of Identification Architecture 

We used Python 3 as our design environment platform and the Keras deep learn-
ing application programming interface. Therefore, we must convert the raw im-
ages into the data type required by the dataset. Hence, we must first preprocess 
the data and then design the recognition architecture, as shown in Figure 2. This 
architecture contains two main parts, data preprocessing and the DCNN model, 
in which we embed the identification algorithm. Data preprocessing includes re-
ducing the number of pixels, creating the label set, and reshaping and creating the 
training and test sets. 

3.2. Recognition Algorithm 

Artificial neural networks can learn by adjusting the weights and bias to minimize 
the error between the true and predicted labels. In general, there are two common 
methods for describing errors, either as a loss function or as a cross-entropy func-
tion. Moreover, there are several methods (called optimizers) for finding the best 
weights, including stochastic gradient descent (SGD), RMSprop, and Adam. Fi-
nally, using an index to evaluate our model performance, we design an accuracy 
function. 

1) Loss function 
The loss function is an important part of machine learning. Treating it as the 
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standard of model learning, we use the loss function to measure the classification 
performance. It measures the error between the actual and predicted labels of an 
object. Many statistical measures can be used as a loss function, such as the mean 
squared error, mean absolute error, mean absolute percentage error, and mean 
squared logarithmic error. Cross-entropy, used in binary classification, allows to 
measure two probability distributions. Hence, we use the cross-entropy loss to 
increase the predicted probability as follows: 

( ) ( ) ( )
1

1 log 1 log 1
N

n n n n
n

E w y y y y
N =

 = − + − − ∑             (1) 

where ( )ReLUy w x b= ⋅ + , w is the weight vector of each x, b is the vector of the 
bias, ny  is the actual label, and ny  denotes the predicted value. 

 

 
Figure 2. Architecture of recognition method for diseased cherry leaves. 

 
2) SGD 
SGD is a fundamental optimization method that stochastically approximates 

gradient descent through iterative parameter updates, capable of achieving strong 
performance in specific tasks despite its simplicity. The DCNN uses SGD to change 
w to minimize the following objective function: 

( )
1i i

E w
w w

w
η−

∂
= −

∂
                          (2) 

where η  is the learning ratio, which is an important parameter. A smaller η  
easily improves the performance but increases the computation burden. If η  is 
large, the performance fluctuates. Hence, the best value per case must be deter-
mine experimentally. In addition, iw  is the current weight, and 1iw −  is the pre-
vious weight, which is the weight updated using the SGD algorithm and the one 
that minimizes ( )E w . 
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3) Softmax 
In the DCNN, the output of the last layer is the classification result, and hence 

in this layer, dense output numbers are based on the number of classes. We deter-
mine them according to the softmax function, which takes the maximum value as 
the classification result as follows: 

( )
1

soft max
i

j

x w b

i x w bN
j

ey c
e

⋅ +

⋅ +
=

= =
∑

                    (3) 

where N is the number of classes, y is the learning output, ic  is the thi  class, w 
is the set of weights, and ib  is the thi  bias. 

To evaluate our model, we tested the performance using the following accuracy 
calculation: 

( )Score T
i

T R

Pc
P P

=
+

                        (4) 

where ( )Score ic  denotes the accuracy of the thi  class, and TP  and RP  are 
the numbers of correctly classified and misclassified images, respectively. 

4. Experiments 
4.1. Dataset and Preprocessing 

We used the Python 3 platform, and the model was implemented using Keras, with 
TensorFlow being the backend. Our raw cherry leaf dataset contains 1906 leaf im-
ages, which includes 854 healthy leaf images and 1052 diseased leaf images. Each 
image is 256 × 256 pixels. We show four 256 × 256-pixel images from the healthy 
and diseased leaf datasets in Figure 3. 

Preprocessing raw data is necessary and involves many tasks, as shown in Fig-
ure 2. Before feeding an image into a model, we must substantially reduce its pixel 
size such that it drastically decreases the computation cost. In addition, we must 
create the image label set. Next, we convert its type into float32 and reshape the 
images into size (−1, x, y, 1). Therefore, we must convert each image of the train-
ing and test sets into x × y × 1, where x and y are the image width and height, 
respectively. Here, we convert images into 64 × 64-pixel images. The number of 
pixels in each image reduces from 65,535 to 4,096, a decrease be a factor of 16. 
Example 64 × 64-pixels images including their features are shown in Figure 4. 
Then, we create the label set of the dataset for supervised learning. First, we re-
shape the image size to (−1, 64, 64, 1) and divide the dataset into training and test 
sets in an 80% - 20% split, where all the sample images are randomly selected. 
Moreover, no cross-samples exist between the training and test sets. Therefore, 
the dimensions of the training and test sets are (1, 524, 64, 64, 1) and (382, 64, 64, 
1), respectively. 

Comparing the raw images in Figure 3 and Figure 4, although the number of 
pixels is reduced, Figure 4(a) and Figure 4(c) remain clear after conversion to 
float32 and reshaping into size (−1, 64, 64, 1). 
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Figure 3. Raw 256 × 256-pixel images of cherry leaves in our dataset. (a) Healthy leaves; 
(b) leaves with powdery mildew. 

 

 
Figure 4. Converted 64 × 64-pixel images of cherry leaves in our dataset. (a), (b) Healthy leaves. (c) (d) Leaves with pow-
dery mildew disease. (a) and (c) are reduced to 64 × 64 pixels. (b) and (d) are the final input images, which are reshaped 
and transformed into float32 images with dimension (−1, 64, 64, 1). 

4.2. DCNN Model Hyperparameters 

In deep learning, hyperparameters play a key role, and the model performance 
substantially differs under diverse hyperparameters for the same model, causing 
problems ranging from overfitting to nonconvergence. In our experiments, we 
used the hyperparameters listed in Table 2. 

 
Table 2. Hyperparameters of DCNN layers. 

Layer Parameter Values/specifications 

Dense 1 (conv2D) 
Filter 

Activation 
Kernel size = (5, 5), rides = (1,1) ReLU 

Max_pooling2d 1 
(max pooling) 

Pool pool size = (4,4), strides = (1,1) 

Dropout 1 (dropout) Dropout ratio 0.5 

Dense 2 (conv2D) 
Filter 

Activation 
Kernel size = (6,6), strides = (1,1) ReLU 
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Continued 

Dropout_2 (dropout) Dropout ratio 0.5 

Flatten_1 (flattening) None None 

Dense_3 (softmax) None None 

Batch size 16  

No. epochs 10  

Learning ratio 0.005  

4.3. Results 

The results from our experiments are shown in Figure 5 as loss and accuracy 
curves for both training and testing. The visual output from the intermediate lay-
ers 1 - 5 are shown in Figures 6-9. 

 

 
Figure 5. Results for training and testing regarding; (a) accuracy and (b) loss. 

 

 
Figure 6. Visual output of channel 1 for healthy leaf. 
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Figure 7. Visual output of channel 4 for healthy leaf. 

 

 
Figure 8. Visual output of channel 1 for diseased leaf. 

 
Figure 5(a) shows the change in accuracy. During both training (blue curve) 

and testing (red curve), the accuracy continues to increase, except for a fluctuation 
at epoch 3 on the red curve. Figure 5(b) shows the change in cross-entropy, which 
indicates that over the whole course of both training (blue curve) and testing (red 
curve), the curve decreases stably, except for a fluctuation at epoch 7 on the red 
curve. Table 3 lists the classification results, indicating an accuracy of 99.2%, pre-
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cision of both classes of 99%, and recall of class 1 (diseased) of 100%, indicating 
that all samples of class 1 diseased leaves are recognized correctly. Therefore, the 
training and testing results show that the model performs well. 

 

 
Figure 9. Visual output of channel 4 for diseased leaf. 

 
Table 3. Classification result for diseased cherry leaves. 

Class Precision Recall F1-score Support 

Class 0 0.99 0.99 0.99 152 

Class 1 0.99 1 0.99 230 

Avg./Total 0.99 0.99 0.99 382 

Test loss: 0.03 

Test accuracy: 0.992 

 
Figures 6-9 show output images from the intermediate layers. Figure 6 and 

Figure 7 show the outputs of healthy leaves for each layer from channels 1 and 4, 
respectively. Figure 8 and Figure 9 show the output for each layer of channels 1 
and 4 for diseased leaves, respectively. Figure 6 shows that the extracted features 
are different between layers. The dense 1 and pooling layers extract many large-
scale features. By contrast, the dense 2 layer extracts more detailed characteristics. 
These images also help understanding the dropout method, which not only pre-
vents overfitting but also retains feature information by comparing the outputs of 
the dense 2 and dropout layers. 

Comparing the outputs of channels 1 and 4, we can easily determine that chan-
nel 1 suitably represents the edge information of an object, and channel 4 includes 
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a large amount of feature information contained in the edge and inner regions. 
Hence, in deep learning, the channels of the tensor have different roles in feature 
detection. 

Further comparison between Figure 6 and Figure 7 and Figure 8 and Figure 9 
reveals that the characteristics of healthy leaves are mainly on the edge. However, 
the dominant information of diseased leaves is in the inner region of the object. 
Figure 8 clearly shows that the pooling layer can extract crucial features from the 
object. In addition, Figure 8 also shows that the DCNN model is efficient for our 
recognition goal. Thus, it is important to design the model architecture using sev-
eral methods, which is a key advantage of DCNNs. 

Table 4 lists the performance of our model, which includes accuracy, test loss, 
number of epochs, and training time per epoch. The accuracy is high, and training 
consumes only 72 s/epoch over 10 epochs. Regarding the other methods, Bhange 
et al. reported an accuracy of 82% using SVM classification, and Mousavi et al. 
proposed a classification method based on Gabor wavelet features and SVM, 
achieving an accuracy of 90.4%. Yang et al. [14] proposed an approach to identify 
rice disease using deep learning and achieved an accuracy of 95.48%. Ferentinos 
[23] used a deep learning model in 2018 to achieve 99.53% accuracy after training 
for 10,000 epochs over 5.5 days and testing over 67 epochs at 7,034 s each using a 
VGG. Obviously, our model provides a high performance and balance between 
accuracy and speed. 

 
Table 4. Performance comparison of proposed and existing models. (Not all metrics were 
reported for all methods). 

Model Accuracy Test loss 
No. 

epochs 
Training time 

(s/epoch) 

Proposed DCNN model 99.21% 0.03 10 72 

SVM classification 82.00% – – – 

GWF and SVM 90.40% – – – 

CNN model in [14] 95.48% – – – 

Model in [23] 99.53% 0.02 67 7,034 

5. Discussion 

DCNNs have shown excellent performance in many research domains, especially 
for processing images, achieving a classification efficiency of over 99% in a few 
published papers. In this section, we discuss objects misclassified by our model 
and analyze their characteristics to identify reasons that explain the misclassifica-
tions. This discussion will be valuable for further CNN development. 

The three images shown in Figure 10 were classified incorrectly. Figure 10(b) 
and Figure 10(c) have the same shadow endpoint and real leaf endpoint. Hence, 
we analyze the images shown in Figure 10(a) and Figure 10(c) because they have 
a large shadow as a similar feature. However, we obtain different results. The first 
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image label is diseased, but our model prediction is healthy, and the third image 
class is healthy. However, our classifier provides prediction diseased. To explain 
the prediction of our model, we highlight some features in the leaf images shown 
in Figure 11. The marked areas are used to analyze their effect on the DCNN 
ability to recognize powdery mildew. 

 

 
Figure 10. Misclassified leaves. (a) Diseased leaf classified as healthy and (b), (c) healthy 
leaves classified as diseased. 

 

 
Figure 11. Annotated misclassified leaves. The features in (a), (b), and (c) are indicated by 
the red shapes, and the diseased regions of the image in (a) are indicated by pink ellipses. 

 

 
Figure 12. Channel 4 output image of misclassified leaf in Figure 10(a). (a) Raw 64 × 
64-pixel leaf image and (b) outputs of intermediate layers. 

 
We show details from the intermediate layer outputs in Figure 12. In Figure 

12(a), a shadow is located along the leaf edge. In Figure 12(b), both edges are 
recognized. Diseased regions indicated by the pink ellipses are hidden in the 
shadow. Thus, the disease features are ignored, and the other shadows are incor-
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porated into another leaf. Therefore, our model misclassifies the disease. Making 
a correct inference by human visualization is difficult because the diseased leaf re-
gions are occluded. 

Because the leaf shown in Figure 10(b) has the same features as that shown in 
Figure 10(c), we input that leaf into our model and show the outputs of the layers 
in Figure 13. The shadow of Figure 13(a) is recognized as a leaf edge, and the 
actual leaf edge is misclassified as a diseased region, causing misclassification. 
Comparing the raw images with those shown in Figure 12, we observe that the 
shadow terminal vertex and edges in Figure 12 are far from the true leaf edge. 
However, in Figure 13, the endpoint of the shadow edge crosses the actual leaf 
edge. Therefore, in Figure 13, the shadow edge is mistaken for a leaf edge, and the 
real edge is mistaken as a diseased region. To address this issue, we will consider 
two methods in future work. The first method is training the model further to use 
the shadow characteristics of the object. The second method is creating an image 
dataset that avoids sampling under strong light and maximizes leaf flattening be-
fore capturing the images. 

 

 
Figure 13. Channel 4 output image of misclassified leaf in Figure 10(b). (a) Raw 64 × 64-
pixel leaf image and (b) outputs of intermediate layers. 

6. Conclusions 

We propose an approach based on a DCNN to recognize disease in cherry leaf 
images. In experiments, we obtained an accuracy of 99.2% after just 10 epochs. A 
comparison with other methods revealed that the proposed method has a high 
accuracy, but it also reduces the training time. A main drawback of deep learning 
is high computational cost. Hence, we devised a balance for the tradeoff between 
learning performance and computational consumption, which decreased the 
computation cost rapidly by reducing the size of the raw image to 64 × 64 pixels. 
By determining suitable hyperparameters, our method achieved high performance. 
Subsequently, we discussed the misclassification of our model for some instances. 
We interpret this case by considering that when the shadow edge is close to the 
actual leaf edge, the DCNN mistakes the edge for the diseased region. This hy-
pothesis needs further evaluation in other cases, but provides a new research di-
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rection. The methods used in this study have also been retrained and can be ap-
plied to other plants. 
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