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Abstract 
Drug repositioning aims to identify new therapeutic applications for existing 
drugs offering a faster and more cost-effective alternative to traditional drug 
discovery. Since approved drugs already have known safety profiles, this ap-
proach is especially valuable in urgent situations like pandemic. In this study, 
a computational method was explored for drug repositioning using both 
graph-based representation for Graph Neural Networks (GNN) and feature-
based representations for Machine Learning (ML) classifiers. Both models 
were trained separately, and their prediction scores were combined to form an 
integrated model named TwinNetDR. This combined approach achieved the 
best performance, with a precision of 95.92%, outperforming the individual 
GNN and ML models. The results demonstrate the benefit of combining graph 
and feature-based learning for reliable drug repositioning. 
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1. Introduction 

Developing new drugs remains a major challenge in the biomedical field, despite 
advances in understanding diseases and biological systems [1]. Although research 
in pharmacology, biology, and genomics has progressed significantly, the process 
from drug discovery to approval is still long, costly, and uncertain [2]-[6]. On av-
erage, this process can take over ten years and cost billions of dollars, with a high 
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failure rate, especially during early clinical trials due to unexpected side effects 
[7]-[10]. 

To deal with these problems, researchers have started focusing on drug reposi-
tioning as a useful approach. It focuses on finding new uses for already approved 
drugs, reducing both development time and cost [11] [12]. However, traditional 
repositioning still relies heavily on manual testing and analysis, which can take 
years. Computational drug repositioning addresses this limitation by using algo-
rithms to discover complex patterns in large-scale biological data that humans 
may miss or take longer to identify [13]-[15]. These approaches can speed up the 
repositioning process, reduce the need for costly trials, and increase the chances 
of success [16]. Moreover, they offer more accurate predictions, improving the 
efficiency of drug development overall [17]-[20]. 

Among computational techniques, Machine Learning (ML) has gained wide at-
tention for its ability to handle large and complex biological datasets and uncover 
useful patterns for drug discovery [21]. A common assumption in ML-based repo-
sitioning is that diseases with similar characteristics may respond to drugs that 
work in similar ways. This idea has been used to build models that predict un-
known drug effects, including herbal compounds [22]. ML-based methods gained 
more attention during the COVID-19 pandemic, as quick and low-cost treatments 
were urgently needed. For example, Aghdam et al. proposed an ML framework to 
identify drug repositioning options for COVID-19 [23]. Other studies used matrix 
factorization as part of ML models to uncover drug-disease links related to the vi-
rus [24], showing the real-world value of ML in biomedical research. 

Alongside ML, Graph Neural Networks (GNNs) have shown strong perfor-
mance in tasks involving graph data, such as node classification [25]-[27], link 
prediction [28]-[30], graph classification [31]-[33], community detection [34]-
[36], and anomaly detection [37]-[39]. Motivated by these successes, researchers 
have also explored GNNs for drug repositioning. For example, GDRnet ap-
proaches drug repositioning as a link prediction problem by using structural pat-
terns in biomedical graphs [40]. Sun et al. proposed AdaDR, which combines 
graph convolution with node-specific and topological features for better predic-
tions [41]. DRAGNN applies attention mechanisms in a heterogeneous graph to 
focus on important biomedical connections [42], and DTDGNN combines graph 
convolution and attention layers to improve the quality of learned features in bi-
ological networks [43]. 

Most of the existing works apply either ML or GNN individually for drug repo-
sitioning. However, an important question remains on whether combining both 
approaches can lead to better and more reliable predictions. From previous stud-
ies, it is evident that drug repositioning data can be represented in multiple forms: 
as structured, tabular data suitable for ML classifiers and as complex graph-based 
networks well-suited for GNN classifiers. Based on this, the study introduces 
TwinNetDR, a combined framework that brings both classifiers together to add a 
new framework for drug repositioning in drug research. First, a drug-disease fea-

https://doi.org/10.4236/jcc.2025.137007


S. Biswas et al. 
 

 

DOI: 10.4236/jcc.2025.137007 144 Journal of Computer and Communications 
 

ture vector (tabular) and association-network (graph) have been developed using 
protein association data. After that, a GNN is used to train from the graph struc-
ture, and an ML model is trained using tabular features from the same data. Dur-
ing evaluation their sigmoid prediction scores have been combined to make the 
final output more reliable. 

The main contributions of this study are as follows: 
1) This study combined ML and GNN models in a single framework for drug 

repositioning and proposed an integrated method referred to as TwinNetDR.  
2) The study analyzed how different threshold values impact the model’s per-

formance.  

2. Methodology 

The methodology section is comprised of three main parts. First, the associations 
between drugs and disease have been represented in two ways: as feature vectors 
in a tabular format and as a network (graph) built using protein interaction data 
linked to the drugs and diseases. In the second part, GraphSAGE, a GNN classifier, 
and Random Forest (RF), a ML classifier, have been employed to predict potential 
drug repositioning candidates. In the final component, the prediction scores from 
both classifiers have been integrated through a decision algorithm to generate the 
final prediction of the proposed TwinNetDR. 

2.1. Dataset 

The dataset used in this study sourced from [44], is provided in CSV format. It 
contains information about three types of entities: drugs, diseases, and proteins. 
In total, the dataset includes 1186 drugs from DrugBank, 451 diseases from OMIM, 
and 1467 proteins from UniProt. The dataset contains three major binary inter-
action matrices that capture the relationships among these entities: 

1) Drug-Protein Interaction Matrix (DP): A binary matrix of size 1186 × 1467, 
where each entry indicates whether a given drug interacts with a specific protein 
(1 for interaction, 0 for no interaction). 

2) Disease-Protein Interaction Matrix (XP): A binary matrix of size 451 × 
1467, representing the associations between diseases and proteins, indicating 
which proteins are linked to each disease. 

3) Drug-Disease Interaction Matrix (DX): A binary matrix of size 1186 × 451, 
showing known therapeutic relationships where a drug is used to treat a particular 
disease (1 indicates treatment, 0 indicates no known association).  

Dataset Splittings 
For both ML and GNN models, the dataset has been split into 80% training and 
20% testing sets. Output labels have been derived from the drug-disease associa-
tion matrix XD . 

2.2. Construction of Negative Samples 

In this study, negative samples are drug-disease pairs with no known association. 
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These are marked as 0 in the drug-disease matrix XD . On the other hand, positive 
samples are marked as 1. To keep the dataset balanced, a fixed ratio r  has been 
used. This means r  times of positive samples have been chosen as negative sam-
ples randomly from the dataset. The ratio is defined in (1). 

 Number of negative samples Number of positive samplesr= ×  (1) 

If 1r < , the model will learn to focus more on positive associations. If 1r > , 
it could become biased toward negative predictions due to the imbalance. In this 
work, a value of 1r =  has been used. 

2.3. Feature Vector Construction for ML Classifier 

For each drug-disease pair, a feature vector is constructed by combining the pro-
tein association profiles of both entities. The presence or absence of proteins as-
sociated with a drug-disease pair (i, j), where i is the drug index and j is the disease 
index, is encoded in the feature vector for each protein k as outlined in (2). 

 

0.0, if neither drug nor disease is associated with protein
0.3, if only drug is associated with protein

=
0.6, if only disease is associated with protein
1.0, if both drug and disease are associated with protein

ijk

i j k
i k

p
j k

i j k








 (2) 

The label for each drug-disease pair is obtained from the Drug-disease Interac-
tion matrix (DX) by converting the original two-dimensional structure into a one-
dimensional array, where each element denotes whether a known association ex-
ists (1) or not (0). This flattened array serves as the output label for the ML clas-
sifier. A small-scale example involving 3 drugs and 2 diseases is shown in Figure 
1 to illustrate this flattening process. 

 

 

Figure 1. Drug-Disease matrix flattening for ML classifiers. 

2.4. Graph Construction for GNN Classifier 

A graph has been constructed from the dataset to be used with a GNN classifier. 
In this graph, drugs and diseases have been represented as nodes. Each node has 
association with a binary feature vector that reflects its interactions with proteins. 
Let p be the total number of proteins in the dataset, where p = 1467. Accordingly, 
each drug and disease node has been associated with a binary vector of length 1467. 
These feature vectors have been derived from two binary association matrices de-
fined in the dataset: the Drug-Protein (DP) matrix and the Disease-Protein (XP) 
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matrix.  
The graph has been modeled as a bipartite structure consisting of two distinct 

types of nodes: drugs and diseases. Edges between them have been defined using 
the Drug-Disease interaction matrix (DX). An entry , 1i jDX =  means there is a 
known link between drug i and disease j, and results in an edge between the cor-
responding nodes. Entries where , 0i jDX =  are treated as negative edges. The 
total count of positive edges is represented as E+ , corresponds to the number of 
ones in the DX matrix. In this dataset, the number of known drug-disease associ-
ations is 1827E+ = . 

All nodes, regardless of type, share the same feature space. Each node iv  is 
associated with a binary feature vector ix  of dimension p . The total number of 
nodes in the graph is d xV n n= + , where dn  is the number of drugs and xn  is 
the number of diseases. To distinguish between the two node types, drugs have 
been assigned node IDs from 0 to 1dn − , and diseases from dn  to 1d xn n+ − . 
A simplified example of the graph construction process involving three drugs, two 
diseases, and six proteins has been presented in Figure 2. 

 

 

Figure 2. Graph construction process from dataset. 

2.5. Drug Repositioning Using ML 

For using an ML classifier in drug repositioning, the task is set up as a binary classi-
fication problem. The goal is to predict if a specific drug-disease pair shows a valid 
therapeutic connection (label 1) or not (label 0). Each entity in the dataset has been 
represented by a feature vector of length 1467, corresponding to the total number 
of proteins. Due to this high dimensionality, the Random Forest classifier has been 
chosen for its ability to efficiently handle high-dimensional data in this study. 

The implementation workflow has been illustrated in Figure 3. It has started 
with the preparation of feature vectors for each drug-disease pair using infor-
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mation extracted from the dataset. These feature vectors have been used to train 
the Random Forest classifier, which has learned to distinguish between valid and 
invalid treatment associations. Later, the model has been evaluated using standard 
performance metrics. Afterwards, drug-disease pairs predicted as valid treatments 
but absent in the original dataset have been identified as potential candidates for 
drug repositioning. 

 

 

Figure 3. Implementation pipeline for identifying repurposed drugs using random forest. 
 

The key hyperparameters of the Random Forest classifier used in our experi-
ments are summarized in Table 1. 

 
Table 1. Hyperparameters for the random forest model. 

Parameter Value 

n_estimators 100 

max_depth 20 

class_weight balanced 

max_features sqrt 

random_state 42 

2.6. Drug Repositioning Using GNN 

In this study, drug repositioning has been treated as a link prediction problem. 
The goal is to predict if a connection (or edge) exists between a drug and a disease, 
indicating if the drug can potentially treat the disease. To solve this, a Graph Neu-
ral Network (GNN) model, GraphSAGE has been used. GraphSAGE is suitable 
for this task because, unlike some traditional GNNs that need the full graph dur-
ing training, it learns from a node’s neighbors by sampling and combining their 
features. This makes it useful for large biological networks, where new drugs or 
diseases might appear later, and the model can still make predictions for them. 

The implementation has been done in several steps. First, a graph has been con-
structed using the dataset, where drugs and diseases are nodes, and edges show 
known links between them. Then, GraphSAGE layers have been applied to gener-
ate embeddings for each node by collecting information from nearby nodes. Fi-
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nally, a decoder has been used that takes the embeddings of a drug and a disease 
and predicts whether a link exists between them. The complete workflow has been 
shown in Figure 4, and the core components involved in this process are ex-
plained in 2.6.1 and 2.6.2.  

 

 

Figure 4. Implementation pipeline for identifying repurposed drugs using GraphSAGE. 
 

Table 2 shows the selected hyperparameters used for the GraphSAGE model, 
and later the core components involved in this process are explained in 2.6.1 and 
2.6.2. 

 
Table 2. Key hyperparameters used for the GraphSAGE model. 

Parameter Value 

Layers 2 

Aggregator mean 

Hidden size 128 

Learning rate 0.01 

Epochs 200 

Dropout 0.5 

Optimizer Adam 

Loss function Binary cross-entropy 

Seed 42 

2.6.1. Encoder for Generating the Node Embeddings 
The encoder in GraphSAGE transforms the high-dimensional protein association 
features of each node into compact and meaningful vector representations called 
embeddings. These embeddings include information not only about the node it-
self but also about its nearby nodes. By capturing information about neighbors, 
the model learns to recognize drugs and diseases that are similar based on their 
protein associations. This helps the model recommend similar drugs for similar 
diseases during evaluation. Later, using this strategy, repurposed drugs can be 
identified. The encoding process follows the steps below: 
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1) The encoder takes two inputs: a feature matrix and an edge index. Each node 
representing a drug or a disease starts with a feature vector of 1467 values, based 
on protein interaction profiles. The edge index defines the connections between 
nodes in the graph.  

2) After input, the encoder uses GraphSAGE layers to transform the original 
features into lower-dimensional embeddings. In each layer, node features are mul-
tiplied by trainable weight matrices. Then, each node updates its features by com-
bining its own transformed values with information received from neighboring 
nodes. This process allows the model to understand the structure of the graph as 
well as from node-level data. As the data passes through the layers, the feature 
dimensions change from 1467 to 128 in the initial layer, and then to 32 at the next 
layer. 

3) Afterwards, the training of the model uses the Binary Cross-Entropy (BCE) 
loss function. This loss helps guide the learning process by measuring how well 
the predicted outputs match the actual labels. Minimizing this loss leads to more 
accurate and meaningful node embeddings  

2.6.2. Decoder for Link Prediction 
Once the Encoder produces the node embeddings, the Decoder predicts whether 
an edge exists between a drug and a disease. The decoding process works as fol-
lows: 

1) First, at first, the model is trained using the Encoder on both existing drug-
disease links (positive edges) and absent links (negative edges) from the dataset. 
The purpose is to learn the model to predict whether a connection exists between 
a given drug and disease.  

2) After the encoding, each drug and disease has its own embedding vector gen-
erated by the encoder. These vectors are low-dimensional representations that 
capture important features of each node. The decoder then calculates the similar-
ity between a drug and a disease by taking the dot product of their embedding 
vectors. A higher similarity indicates a more significant link between the drug and 
the disease.  

3) The dot product output undergoes a nonlinear activation function, the sig-
moid function in this study to map the predicted value into a probabilistic range 
[0, 1]. This probability is then compared against a predefined threshold τ . If the 
probability exceeds τ , the model infers the presence of an edge, otherwise, it in-
fers its absence as explained in (3) where H denotes the embedding of nodes. 

 ( )drug disease1, if .
=

0, otherwise

H H
y

σ τ >



 (3) 

2.7. TwinNetDR: Integrating GNN and ML 

TwinNetDR improves drug repositioning predictions by combining GraphSAGE 
and Random Forest outputs. Both models are trained on the same drug-disease 
pairs for consistent evaluation. During testing, each model independently predicts 
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associations, and TwinNetDR merges these predictions for the final decision. The 
workflow is shown in Figure 5. The following subsections explain how Twin-
NetDR handles rare repositioning cases and its decision-making strategy. 

 

 

Figure 5. Workflow of TwinNetDR. 

2.7.1. Handling Repurposed Drugs 
Identifying new purposes for existing drugs is not common because true reposi-
tioning cases are not frequent. When our system predicts a drug could treat a dis-
ease that it’s not currently known to help, this could mean one of two things. First, 
it might be a mistake—what we call a false positive. Second, it might actually be a 
valuable new discovery that hasn’t been documented yet. This uncertainty is ex-
actly why we developed TwinNetDR. TwinNetDR works smarter by using two 
different methods together. It combines Random Forest, which analyzes the data 
in table format, with GraphSAGE, which examines how drugs and diseases con-
nect in a network. This dual approach gives us much more reliable results. When 
one method might make an error, the other can often catch and correct it. More 
importantly, when both methods agree on a potential new use that isn’t in our 
original data, we can be more confident it’s worth further investigation rather than 
just being a computer error. This way, we reduce simple mistakes while still find-
ing promising new treatment possibilities. 

2.7.2. Decision Making Process in TwinNetDR 
Since repositioning cases are rare, most false positives are likely errors. Twin-
NetDR prioritizes high-confidence predictions: it favors negative predictions (0) 
to minimize false positives. A drug-disease pair is flagged only if:  

1) Both models agree: If GraphSAGE and Random Forest both predict an asso-
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ciation ( SAGE 1P =  and RF 1P = ), the association is confirmed. 
2) Models disagree: If one predicts an association and the other does not, Twin-

NetDR first calculates the average confidence score as described in (4). 

 SAGE RF
avg 2

P PP +
=  (4) 

• If avgP  exceeds a threshold (τ ), the association is accepted (y = 1).  
• • Otherwise, it is rejected (y = 0).  

The decision-making process is explained in Algorithm 1, where ( )SAGE iP X  
and ( )RF iP X  represent the sigmoid scores produced for the thi  drug-disease 
pair iX  by the GraphSAGE and Random Forest models, respectively, during 
evaluation. 

 

 

3. Findings and Result Analysis 

This section presents the performance analysis of Random Forest and 
GraphSAGE individually. Following that, the results of the combined model, 
TwinNet-DR, are reported. Finally, the factors influencing performance differ-
ences among the three models are discussed, along with an explanation of how 
TwinNet-DR achieves improved outcomes. 

3.1. Evaluation Metrices 

After applying the classifiers, the performance of Random Forest, GraphSAGE, 
and TwinNetDR has been evaluated using standard classification metrics, includ-
ing accuracy, recall, precision, and F1-score. These metrics provide a quantitative 
understanding of how well each model identifies valid drug-disease associations. 
The formulas used for calculating these metrics are provided in expressions (5) to 
(8). 

 
TP TNAccuracy

TP FN TN FP
+

=
+ + +

 (5) 
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TPRecall

TP FN
=

+
 (6) 

 
TPPrecision

TP FP
=

+
 (7) 

 
2 Precision RecallF1-Score

Precision Recall
× ×

=
+

 (8) 

• TP (True Positives): TP denotes the number of true positives, meaning the 
model correctly predicts a positive case. In this study, TP means the model 
correctly predicts a drug-disease pair that is indeed a valid treatment. 

• TN (True Negatives): TN stands for the number of true negatives, meaning 
the model correctly predicts a negative case. In this study, TN means the model 
correctly predicts that a drug-disease pair is not associated, so the drug cannot 
be used to repurpose for that disease. 

• FP (False Positives): FP is the count of false positives, meaning the model 
predicts a positive case, but the actual case is negative. For drug repositioning, 
FP means the model predicts a drug-disease pair as associated (repurposed 
candidate), even though no such association exists in the dataset. These pre-
dicted pairs can represent potential new repurposing candidates suggested by 
the model. 

• FN (False Negatives): FN denotes the number of false negatives, meaning the 
model predicts a negative case, but the actual case is positive. In this study, FN 
means the model fails to identify a drug-disease pair that truly has a valid treat-
ment association, missing a possible repurposing opportunity. It is denoted as 
a misclassification by the model.  

3.2. Result Analysis 

The performance of Random Forest, GraphSAGE, and TwinNet-DR in identify-
ing repurposed drugs has been evaluated. To compare them, several metrics have 
been calculated, such as accuracy, precision, recall, F1-score, and AUC (Area Un-
der the Curve). The results are shown in Table 3. Among the three models, 
GraphSAGE performs better than Random Forest in all the metrics. For example, 
the AUC score of GraphSAGE is 95.17%, while Random Forest gets 93.90%. 
GraphSAGE also scores higher in accuracy, precision, recall, and F1-score. The 
most noticeable improvement is in recall, which shows how well the model finds 
true drug-disease associations. This improvement happens because GraphSAGE 
uses graph structure to learn from the data. Random Forest treats every drug-dis-
ease pair separately and does not consider how drugs and diseases are connected. 
On the other hand, GraphSAGE looks at the links between them. For example, if 
Drug-1 is connected to Disease-1 and Drug-2 is also connected to Disease-1, then 
in a graph, both drugs are neighbors of the same disease. GraphSAGE can learn 
this connection and understand that Drug-1 and Drug-2 might be similar. When 
it builds the feature for Disease-1, it combines information from both drugs. This 
kind of learning is not possible with Random Forest, which only sees each pair on 
its own. 

https://doi.org/10.4236/jcc.2025.137007


S. Biswas et al. 
 

 

DOI: 10.4236/jcc.2025.137007 153 Journal of Computer and Communications 
 

Table 3. Comparison of the performance of various models. 

Model Accuracy Precision Recall F1-score AUC 

Random Forest 84.15% 84.15% 84.15% 84.15% 93.90% 

GraphSAGE 90.71% 87.44% 95.08% 91.10% 95.17% 

TwinNet-DR 90.20% 95.92% 94.61% 95.26% 97.53% 

 
TwinNet-DR performs even better. It achieves the highest AUC score of 97.53 

percent, which is better than both GraphSAGE and Random Forest. Its accuracy is 
slightly lower than GraphSAGE, but it gives a much higher precision of 95.92 per-
cent. In drug repositioning, high precision is very important because it means fewer 
false positives. If a model predicts fewer wrong drug-disease associations, its results 
are more trustworthy. So, TwinNet-DR provides more reliable suggestions for re-
purposed drugs with fewer errors. In addition, Figure 6 presents the combined ROC 
curves of all three models. The curve for TwinNet-DR lies closest to the top-left 
corner, clearly indicating superior overall performance compared to the others. 

 

 

Figure 6. The ROC curves of GraphSAGE, Random Forest and TwinnetDR for Drug 
Repositioning. 

3.3. Impact of Threshold on Performance of TwinNetDR 

In this study, selecting an appropriate threshold is crucial. If the threshold is set 
too low, the model produces a large number of false positives. This leads to con-
fusion between true repurposed candidates and incorrect ones, as many negative 
samples are mistakenly predicted as positive. Conversely, if the threshold is too 
high, the model becomes overly conservative, predicting most samples as negative. 
This drastically reduces the chance of identifying true repurposed drug-disease 
pairs, rendering the model ineffective. Even a midpoint threshold of 0.5 may not 
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be ideal. Although it offers a balanced outcome, it lacks the necessary bias toward 
predicting negatives in this study’s context. 

The model was tested using different decision thresholds. For each threshold, 
precision, recall, and F1-score were calculated. The precision-recall curve in Fig-
ure 7 shows how performance changed with varying thresholds. The best perfor-
mance was observed at threshold 0.6, where the model achieved an F1-score of 
95.26%, with precision 95.92% and recall 94.61%. This threshold also gave the 
highest accuracy of 90.20%. Based on these results, threshold 0.6 was selected as 
the final decision point.  

 

 

Figure 7. Impact of Threshold on the performance of TwinNetDR. 
 

 

Figure 8. Impact of Threshold on the performance of TwinNetDR. 
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Figure 8 further illustrates how the performance metrics vary with changes in 
the threshold. As the threshold increases, accuracy, recall, and F1-score show a 
rising trend up to a certain point. Notably, at a threshold of 0.6, most of these 
metrics reach their highest values, indicating that this point offers the best balance 
between identifying true positives and minimizing false positives for this study. 

In summary, extremely low or high thresholds reduce model effectiveness. A 
threshold of 0.6 provides the best balance, providing the best accuracy while main-
taining a good balance between precision and recall. 

3.4. Top Prediction by TwinNetDR 

The highest ranked drug-disease association predicted by the proposed Twin-
NetDR is between Amoxapine, with DrugBank ID DB00543 and Drug ID 922 in 
the dataset, and Diabetes Mellitus, with OMIM ID 125853 and Disease ID 42 in 
the dataset. This association received a sigmoid score of 91.3% from TwinNet-DR. 
The same association scored 88.5% using the Random Forest model and 94.1% 
using the GraphSAGE model. This pair was not part of the known positive sam-
ples. This prediction is also supported by the study of Li et al. [43], which reported 
Amoxapine as a candidate for diabetes treatment using a drug–target–disease 
graph neural network. 

4. Conclusions 

In this study, both traditional machine learning and graph neural network models 
have been explored to address the problem of drug repurposing. A dataset con-
taining known and unknown drug-disease associations was used to evaluate and 
compare the performance of Random Forest, GraphSAGE, and TwinNet-DR. 
Several evaluation metrics such as accuracy, precision, recall, F1-score, and AUC 
have been used to assess the models. Among all, TwinNet-DR has shown the best 
performance with the highest precision of 95.92%, followed by GraphSAGE and 
Random Forest. The experimental results have confirmed that learning from 
neighborhood relationships from graph based representation of drug-disease as-
sociation network can enhance model performance. Furthermore, a threshold-
based analysis has been conducted to understand the sensitivity of the model and 
to select the optimal threshold for balancing precision and recall. A threshold of 
0.6 has been identified as the most suitable choice. 

Although the proposed approach has demonstrated promising results, there are 
certain limitations that create opportunities for future improvements. This study 
has used one graph neural network model and one machine learning model to 
explore drug repurposing. In the future, other graph-based models such as Graph 
Convolutional Network (GCN) and Graph Attention Network (GAT) can be ap-
plied to observe how they perform in this task. From traditional machine learning, 
models like Support Vector Machine (SVM) and Logistic Regression (LR) can also 
be considered to compare results. Moreover, the current system has been tested 
only on the dataset used during training. It can be improved to handle new or 
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unseen data in future studies. Using more diverse and larger datasets can also help 
to make the system more useful for real-world applications. 
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