
Journal of Computer and Communications, 2025, 13(7), 171-203
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2025.137009 Jul. 23, 2025 171 Journal of Computer and Communications

Methodological Framework for Developing an
Adaptive Intrusion Detection System (IDS)
Incorporating Sustainability Factors

Yaya Gadjama Soureya1, Justin Moskolai Ngossaha1, Eric Michel Deussom Djomadji2,
Ngoumou Amougou3, Samuel Bowong Tsakou1, Marcel Fouda Ndjodo3

1Department of Mathematics and Computer Science, University of Douala, Douala, Cameroon
2Department of Electrical and Electronic Engineering, College of Technology, University of Buea, Buea, Cameroon
3Department of Mathematics and Computer Science, University of Yaounde, Yaounde, Cameroon

Abstract
Cybersecurity has emerged as a global concern, amplified by the rapid expan-
sion of IoT devices and the growing digitization of systems. In this context,
traditional security solutions such as firewalls and static signature-based IDS
prove increasingly ineffective in detecting evolving and sophisticated cyber
threats. This issue is particularly critical in Africa, where limited resources,
technological dependency, and outdated infrastructures exacerbate vulnera-
bilities. Next-generation firewalls (NGFWs), though powerful, are often finan-
cially and operationally inaccessible in these regions. To address these limita-
tions, this paper advocates for the development of low-cost, adaptive security
solutions that integrate core principles from software engineering specifically,
Lehman’s laws of software evolution. We propose a novel methodological
framework for designing an intelligent Intrusion Detection System (IDS),
grounded in three pillars: reinforcement learning for dynamic threat response,
the application of Lehman’s laws to ensure long-term adaptability, and soft-
ware product line engineering to allow context-specific customization. The re-
sulting system was implemented within a core network environment and
achieved a detection accuracy of 99.99%, validating the effectiveness of this
approach. Beyond this implementation, future extensions include deploying
the system in IoT and critical infrastructure environments, and incorporating
advanced AI methods such as federated learning and generative models. The
findings of this study highlight the potential of combining adaptive AI with
sustainable design principles to overcome the shortcomings of conventional
cybersecurity models. The proposed IDS offers a scalable, robust, and locally
applicable alternative particularly for regions facing structural and technolog-

How to cite this paper: Soureya, Y.G.,
Ngossaha, J.M., Djomadji, E.M.D.,
Amougou, N., Tsakou, S.B. and Ndjodo,
M.F. (2025) Methodological Framework for
Developing an Adaptive Intrusion Detec-
tion System (IDS) Incorporating Sustaina-
bility Factors. Journal of Computer and
Communications, 13, 171-203.
https://doi.org/10.4236/jcc.2025.137009

Received: May 31, 2025
Accepted: July 20, 2025
Published: July 23, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2025.137009
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jcc.2025.137009
http://creativecommons.org/licenses/by-nc/4.0/

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 172 Journal of Computer and Communications

ical constraints.

Keywords
Adaptive Intrusion Detection System, Lehman’s Laws, Reinforcement
Learning, Cybersecurity in Africa

1. Introduction

Cybersecurity has become a global priority, exacerbated by the proliferation of
connected devices (Internet of Things, IoT) and the increasing digitization of pro-
cesses [1]. In this context, Intrusion Detection Systems (IDS) have emerged as a
critical tool for protecting information systems against cyberattacks [2]. Tradi-
tional security systems, such as firewalls, are widely used to monitor and control
network traffic. However, these solutions rely on static signature databases, which
become outdated over time and are unable to detect new threats [3]. This issue is
particularly relevant in complex and dynamic networks, where technologies
evolve rapidly and threats are increasingly sophisticated. Consequently, tradi-
tional security systems, which are mainly based on predefined rules, are limited in
their ability to respond to unknown attacks, particularly those involving obfusca-
tion techniques or targeted assaults [4]. This highlights the need for continuous
updates to databases and algorithms in order to maintain the effectiveness of se-
curity systems, as suggested by Lehman’s software evolution laws [5].

This observation underscores a critical challenge in environments where infra-
structures are already vulnerable. This is especially true in Africa, where digital
transformation is advancing rapidly. Indeed, Internet penetration across the con-
tinent has increased significantly, accompanied by expanding connectivity [6],
which is fueling a rapid development of information and communication tech-
nologies (ICT). However, this dynamic brings with it major cybersecurity chal-
lenges. Many African countries lack adequate security infrastructure, making
them particularly vulnerable to cyberattacks [7] [8]. This vulnerability is further
exacerbated by the complexity of networks, especially those involving critical sys-
tems such as banking, healthcare, or energy. Moreover, the firewalls used by Af-
rican enterprises often rely on static signature databases that are not dynamically
updated, rendering them ineffective against emerging forms of cyberattacks [1].
The lack of resources and technical expertise to maintain these systems further
worsens the situation [8]. The increasing introduction of poorly secured IoT de-
vices adds another layer of complexity, as these devices often serve as attack vec-
tors that are difficult to detect with traditional security systems [4]. In light of this
reality, it becomes crucial to thoroughly rethink the design of intrusion detection
systems.

Next-generation firewalls (NGFWs) are currently regarded as an advanced cy-
bersecurity solution, combining deep packet inspection, intrusion detection and

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 173 Journal of Computer and Communications

prevention (IDS/IPS), and behavioral traffic analysis [9] [10]. However, their high
cost and operational complexity pose significant barriers for small organizations
or developing countries particularly in Africa, where technical expertise is often
limited and financial resources scarce [11]. Additionally, NGFWs are generally
proprietary systems developed by companies such as Cisco, Fortinet, or Huawei,
which reinforces a problematic technological dependency [12].

Despite growing interest in intelligent and adaptive IDSs, a review of the scien-
tific literature reveals several concerning gaps. No author explicitly addresses the
application of Lehman’s laws in cybersecurity management, nor establishes a clear
connection between these laws and adaptive IDSs. Yet any lasting modification of
a system, including cybersecurity, fundamentally stems from the principles artic-
ulated by Lehman. In reality, most proposed solutions in the literature still heavily
rely on human expertise a resource that remains scarce or even inaccessible in
many African countries [6] [8]. In other words, although researchers are moving
toward more dynamic systems, their designs remain disconnected from a struc-
tured theoretical framework that ensures long-term scalability and maintainabil-
ity. This study seeks to fill this gap by integrating Lehman’s laws into the design
phase of adaptive IDSs.

From this perspective, a relevant solution would involve embedding Lehman’s
laws at the core of the adaptive IDS design process. A promising approach lies in
the use of reinforcement learning (RL), a branch of artificial intelligence that en-
ables systems to adjust their behavior in real-time based on detected threats [2]
[3]. Combined with a continuous evolution framework based on Lehman’s laws,
this technology could lead to the creation of IDSs capable not only of detecting
unknown anomalies but also of updating themselves automatically without con-
stant human intervention [1]. This would enable a more proactive, sustainable,
and context-aware response to sophisticated attacks, while accounting for local
constraints. It is therefore imperative to evolve the information security paradigm
by recognizing that, like all software, it must necessarily integrate Lehman’s laws
to remain relevant and operational over time.

Accordingly, this study introduces an original conceptual framework for devel-
oping intelligent and scalable firewalls tailored to low resource environments.

In this perspective, this research revolves around three main pillars: 1) the in-
tegration of artificial intelligence to enhance threat detection and reduce false pos-
itives a recurring problem in IDSs [13]; 2) the incorporation of Lehman’s laws of
software evolution to ensure long-term adaptability [14]; and 3) the use of Soft-
ware Product Lines (SPL) to generate customizable firewall variants adapted to
specific usage contexts [15].

This framework is built on a synergy between reinforcement learning, Leh-
man’s laws, and software product line engineering. Applied to a centralized net-
work architecture, it achieves a 99.99% threat detection rate while maintaining
low deployment costs, technical accessibility, and long-term maintainability. It
therefore aims to foster digital autonomy and technological sovereignty by ena-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 174 Journal of Computer and Communications

bling the design of robust yet accessible security solutions, particularly in African
contexts where the needs are urgent and growing.

To better understand the theoretical foundations and key issues addressed by
this work, we first present a comprehensive review of the existing literature. This
also allows us to clearly position our contribution within the current scientific
landscape.

So the article will be structured as follows: Section 2 presents a literature review,
followed in Section 3 by the positioning of our approach and the statement of
objectives. Section 4 details the proposed methodological framework, while Sec-
tion 5 links it to Lehman’s laws and the principles of software product line devel-
opment. Section 6 illustrates the framework’s application through a case study in-
volving a smart home. Finally, Sections 7 and 8 present the results and a critical
discussion, before concluding with the perspectives opened by this work.

2. Literature Review
2.1. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) play a central role in cybersecurity by provid-
ing proactive monitoring of computer networks and detecting potentially mali-
cious behavior before it compromises the integrity, confidentiality, or availability
of systems. Their effectiveness lies in their ability to identify often complex and
constantly evolving threats in real time.

Traditionally, IDS are categorized into three main types: signature-based sys-
tems, anomaly-based systems, and hybrid systems [16]. Signature-based IDS com-
pare network traffic against a database of known attacks, enabling fast and accu-
rate detection of listed threats. However, they fall short when facing new or poly-
morphic attacks that use advanced evasion techniques [17] [18]. On the other
hand, anomaly-based IDS build a model of normal network behavior to identify
suspicious deviations. This approach is better suited to detecting zero-day or pre-
viously unknown attacks [19]. Nevertheless, it is prone to high false positive rates,
which can trigger alerts for legitimate activities and overwhelm security teams’
analytical capabilities.

In critical environments such as the banking sector, where transactions are con-
tinuous and data flows are particularly sensitive and voluminous, these challenges
are heightened. The need for increased adaptability of IDS becomes a strategic
requirement to ensure sustainable cybersecurity that can evolve at the same pace
as emerging threats. However, a critical shortcoming in most current approaches
is the lack of consideration for the evolutionary sustainability of these systems.
Few studies address the methodical management of software evolution, which is
essential in the long term. In this context, Lehman’s laws on software system evo-
lution [20] offer a relevant framework for designing IDS that can not only detect
threats but also continuously adapt to changing environments, new technologies,
and emerging behaviors.

Integrating these laws such as the law of continuing change or the law of in-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 175 Journal of Computer and Communications

creasing complexity into IDS design would help shift from a reactive paradigm to
a more proactive and adaptive one. It would encourage the development of self-
learning systems capable of revising their rules and behavioral models based on
their operational history. This framework would also enable partial automation of
software maintenance and reduce dependency on human expertise, which is a
critical issue in resource-limited contexts, such as many Sub-Saharan African
countries. Thus, the major challenge is no longer limited to intrusion detection
alone, but extends to the IDS’s ability to autonomously adapt and remain resilient,
ensuring sustainable cybersecurity aligned with the needs of an ever-evolving dig-
ital ecosystem.

2.2. Decision Support Systems (DSS) and Their Application in
Cybersecurity

It is clear that Intrusion Detection Systems (IDS) are essential in cybersecurity by
identifying malicious activities within computer networks. However, their effec-
tiveness can be compromised by a high number of false positives, which burden
analysts and may obscure real threats. False positives when legitimate activities
are mistakenly flagged as malicious remain frequent and problematic. For in-
stance, a study showed that high false positive rates could reduce analyst accuracy
by 47% and increase alert processing time by 40% [21]. Additionally, according to
Orca Security [22], 20% of cloud security alerts are classified as false positives,
contributing to analyst fatigue and decreased vigilance towards real threats [23].

To address this overload, integrating Decision Support Systems (DSS) into cy-
bersecurity infrastructures has been proposed. These systems are designed to help
analysts make quicker and more accurate decisions by leveraging predictive mod-
els and intelligent algorithms. When coupled with an IDS, a DSS acts as an addi-
tional intelligent layer that filters, corrects, or prioritizes alerts based on relevance.
However, traditional DSS can be rigid. If poorly calibrated, they may worsen the
problem they aim to solve, including generating incorrect alerts themselves. A
study [24] revealed that if more than 50% of alerts generated by a system are false
positives, administrators may begin to ignore all alerts, compromising overall se-
curity.

The integration of Artificial Intelligence (AI) into DSS helps address this issue.
In particular, machine learning techniques allow for dynamic adjustment of de-
tection rules and automatic validation of alerts with reduced error rates. For ex-
ample, the SmartValidator solution uses machine learning to verify alert relevance
in real time, reducing reliance on human expertise [25].

In reality, the combination of IDS with AI-enhanced DSS represents a signifi-
cant step toward more sustainable cybersecurity. However, to cope with an ever-
changing environment, these systems must evolve continuously. It is in this con-
text that integrating Lehman’s laws of software system evolution becomes essen-
tial for designing intelligent IDS capable of gradual adaptation while ensuring
long-term alert management optimization.

In summary, to improve the effectiveness of adaptive IDS and DSS, it is essential

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 176 Journal of Computer and Communications

to develop mechanisms that reduce false positives. This includes precise system
configuration, the use of machine learning techniques to refine detections, and
ongoing analyst training to correctly interpret alerts. These measures can
strengthen cybersecurity by reducing team workload while enhancing the detec-
tion of real threats. Moreover, DSS must become more adaptive so they can adjust
to evolving threats and improve their ability to process alerts effectively, while
avoiding excessive false positives that could compromise network security [25].

2.3. Existing Solutions for AI-Based Adaptive IDS

Recent research on adaptive Intrusion Detection Systems (IDS) based on artificial
intelligence and reinforcement learning has led to innovative approaches that aim
to overcome the limitations of traditional IDS, particularly regarding false positive
management. Classical systems, often rigid, struggle to distinguish legitimate be-
havior from emerging threats in constantly changing environments [26] [27].

Chavez et al. [28] highlighted that aging IDS, which have not received regular
updates, lose their ability to adjust to new configurations, leading to a significant
increase in false positives. This deficiency is largely due to their inability to recog-
nize new variants of attacks or correctly interpret novel user behaviors.

Continuing this analysis, Gonzalez et al. [29] emphasize that the dynamics of
false positives are closely tied to IDS complexity management. When this com-
plexity is not properly controlled, it results in a proliferation of errors a finding
consistent with Lehman’s law of increasing complexity, which states that a sys-
tem’s evolution inevitably leads to greater complexity unless specific efforts are
made to simplify it.

In this perspective, Shao et al. [30] recommend explicitly integrating Lehman’s
laws into the evolutionary management of IDS. According to them, this would not
only maintain detection relevance and effectiveness but also reduce false positives
by ensuring IDS continue adapting to changes in network environments and user
behaviors.

However, Xu et al. [31] caution against excessive reliance on adaptive architec-
tures. They note that even in advanced systems, issues can arise if continuous evo-
lution and regular model updates are not guaranteed an alert consistent with Leh-
man’s law of continuing change, which asserts that software systems must evolve
continuously to remain useful and effective.

Among these studies, the work of Miloud et al. [32] stands out for its in-depth
analysis of optimization methods applied to instance selection for improving clas-
sifier accuracy, particularly K-Nearest Neighbors (KNN). The authors proposed
three distinct methodologies: an approach based on Ant Colony Optimization
(ACO), a second based on a memetic algorithm combining genetic algorithms and
local search, and a third leveraging active learning to dynamically adapt the model
to new threats.

The first approach, Ant-IS, uses ACO to select the most relevant instances, and
Clust Ant-IS, a variant integrating DBSCAN clustering, improves dataset struc-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 177 Journal of Computer and Communications

ture. This method achieves a high detection rate (99.38%) but remains sensitive
to initial parameters (number of ants, pheromone evaporation rate), which affects
its long-term stability. The second method, GIS and later MCLS, relies on me-
metic algorithms and further improves accuracy (99.87%), but at the cost of sig-
nificant computational overhead, making it less practical in rapidly evolving en-
vironments. Finally, the ALAIS approach, based on active learning, stands out for
its self-adjustment capabilities. It does not require fixed initial parameters and
continuously adapts to new intrusions, making it a promising solution for IDS
resilience against evolving threats.

However, despite clear advances in accuracy and adaptability, these works have
a major shortcoming: the lack of explicit integration of Lehman’s laws on software
system evolution, particularly in designing long-term adaptation mechanisms.
One of Lehman and Ramil’s [14] core laws the law of conservation of familiarity
states that system changes must be controlled to preserve the overall understand-
ing of the system by its users and maintainers. In this light, only the ALAIS ap-
proach partially meets this requirement by gradually adapting without the need
for constant manual recalibration. In contrast, the ACO and memetic methods,
while effective in the short term, require frequent manual adjustments, which vi-
olates this law and undermines their ability to ensure sustainable scalability. Fur-
thermore, the non-integration of Lehman’s laws in current detection strategies
limits their relevance in environments where systems must co-evolve with their
digital ecosystems. Without explicit modeling of software aging, IDS risk becom-
ing obsolete or even vulnerable in the face of increasingly sophisticated emerging
threats. Integrating these laws would enable the design of truly resilient IDS, ca-
pable not only of detecting threats but of evolving intelligently with their environ-
ments, considering maintainability, stability, and knowledge preservation.

Thus, the analysis of the work by Miloud et al. [32] highlights the value of a
more systemic and sustainable approach to IDS by incorporating software evolu-
tion laws. A summary of the approaches discussed is presented in Table 1.

In a perspective firmly focused on innovation, Ahmadi [33] explores the impact
of digital transformation on cybersecurity, emphasizing that traditional firewalls
are gradually becoming obsolete in the face of increasingly sophisticated threats.
To overcome these limitations, the author highlights the integration of artificial
intelligence (AI) in next-generation firewalls (NGFWs), which is presented as a
promising solution, particularly due to their real-time detection capabilities and
increased adaptability. However, Ahmadi [33] stresses the variability of the effec-
tiveness of these systems depending on the approaches used, justifying the need
for a rigorous comparative analysis. In his literature review, he examines various
methods based on machine learning and deep learning, highlighting the proposed
solutions and the challenges they raise. He identifies, for example, supervised
learning as effective for detecting known threats but limited when it comes to new
attacks. In contrast, unsupervised learning is better suited to identify anomalies,
though it generates more false positives. Additionally, deep architectures (CNN,

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 178 Journal of Computer and Communications

RNN) offer high precision but come with high computational requirements, mak-
ing them ill-suited for resource-limited environments. Hybrid models appear to
be the most promising, combining the benefits of multiple techniques for opti-
mized detection. To evaluate these approaches, Ahmadi [33] uses several key met-
rics: accuracy, false positive rate, robustness to adversarial attacks, and computa-
tional efficiency. However, beyond these technical advances, the author highlights
several structural limitations of AI-based NGFWs. He mentions the lack of in-
teroperability in certain models, referred to as “black boxes,” the concept drift
phenomenon that quickly renders static models obsolete, and the difficulties re-
lated to scalability in complex environments. Vulnerabilities to adversarial attacks
are also pointed out. To address these challenges, Ahmadi [33] suggests several
avenues: enhancing model explainability, promoting continuous learning for dy-
namic adaptation to new threats, optimizing algorithms for better scalability, and
strengthening resilience to adversarial attacks through robust training techniques.

Table 1. Summary of the methods by Miloud et al. [32].

Approach Mode of Operation Forces Weakness
Link with Lehman’s Laws

(Scalability)
Accuracy Rate

Ant Colony
Optimization

(ACO)
(Ant-IS,
Ant-IS

Cluster)

Uses artificial ants to
explore the search

space and select the
most relevant

instances. Integrates
DBSCAN for better

clustering.

- Effectively reduces
false positives. - Less

resource intensive than
the memetic approach.

- Strongly depends
on the initial settings

(number of ants,
evaporation rate). -

Less efficient on very
large data sets.

Not very scalable because it
requires manual

recalibration of parameters
to adapt to new threats.

Does not respect the law of
conservation of familiarity.

99.38%
(Ant-IS
Cluster)
98.64%

(Ant-IS)

Memetic
Algorithm

(GIS + MCLS)

Combines genetic
algorithms (GA) and

local search to
optimize instance

selection and improve
KNN classification.

- Provides high accuracy
by detecting intrusions

more effectively. -
Optimized convergence

with MCLS.

- High computation
time due to the

many generations
required. - Requires
regular updating to

adapt to new threats.

Takes into account the
evolution of IDS, but

requires frequent updating
of training data to maintain
its effectiveness. Compatible

with Lehman’s law of
increasing complexity.

99.87%
(MCLS)

98.02% (GIS)

Active
Learning +

KNN (ALAIS -
Active

Learning Ant
Instance

Selection)

Uses Active Learning
to dynamically select

the most relevant
instances and

progressively refine
the model.

- Most scalable
approach: automatically

adjusts its model. -
Optimal reduction of
false positives without

requiring manual
recalibration.

- Sensitive to noisy
input data. -

Depends on the
quality of the initial

data.

Most scalable approach,
because it dynamically
adapts to new threats.

Compatible with Lehman’s
law of conservation of

familiarity.

99.87%

Although not explicitly mentioned, this analysis is actually perfectly aligned

with Lehman’s laws of software evolution. The law of increasing complexity is
clearly manifested in the evolution of NGFWs, which are becoming so sophisti-
cated that their maintenance becomes challenging. The law of conservation of fa-
miliarity is also implicated, as the adoption of these technologies disrupts estab-
lished practices and requires significant adaptation from network administrators.
Finally, the law of continuous feedback is well taken into account by Ahmadi [33]

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 179 Journal of Computer and Communications

through the integration of continuous learning mechanisms, allowing firewalls to
automatically adjust to a constantly changing environment. These observations
highlight the strategic value of formally integrating Lehman’s laws in the design
and evaluation of NGFWs to enhance their robustness, maintainability, and resil-
ience over time.

Ultimately, this study offers valuable insights into the potential and limitations
of intelligent firewalls, while highlighting the conditions necessary for their long-
term success. Ahmadi [33] concludes that hybrid models and continuous learning
are particularly promising paths to improve cybersecurity in an ever-evolving dig-
ital context. A summary of the filtering types studied by the author is presented
in Table 2.

Table 2. Comparative table of filtering according to Ahmadi [33].

Solution Forces Weaknesses

Simple packet filtering
(stateless)

Fast and resource-efficient
Limited security, vulnerable

to advanced attacks

Stateful Filtering
Better security than simple

filtering, connection management
Higher resource

consumption

Application filtering
(proxy)

Highly secure, application content
control

Impacts performance,
configuration complexity

Graph theory based
approach

Optimizes firewall installation,
reduces costs, improves fault

tolerance

Algorithmic complexity,
need for continuous

updating

Bilal et al. [34] focus on the optimized management of firewalls in the Internet
of Things (IoT), a field where the rapid proliferation of connected devices signif-
icantly complicates the management of network traffic and the security of data
flows. To address these challenges, they propose an innovative approach based on
graph theory, aimed at optimizing the deployment of firewalls, reducing opera-
tional costs, and ensuring increased fault tolerance. Their solution relies on a min-
imum coverage algorithm that allows for an efficient load distribution among fire-
walls while ensuring optimal network protection. By modeling IoT architectures
as graphs, they seek to minimize the number of firewalls required without com-
promising security coverage, thereby improving the overall resilience of the sys-
tem.

The authors highlight that the IoT architecture is based on several layers, such
as sensors/actuators, gateways, and cloud platforms, which makes securing com-
munications particularly complex. In this context, traditional firewalls remain in-
dispensable. Each filtering method discussed in their study presents advantages
and limitations in terms of latency, resource consumption, and security level, as
summarized in their comparative table. This analysis leads them to assert that dy-
namic firewall management becomes crucial in dense IoT environments, such as
smart cities, where connected devices play a role in managing transportation,
home automation, and urban infrastructures. The proposed graph-based ap-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 180 Journal of Computer and Communications

proach takes into account latency, connection redundancy, and flow diversity in
order to provide a robust, scalable solution adapted to the growing complexity of
these ecosystems.

To evaluate the relevance of their solution, the authors rely on algorithmic
modeling accompanied by simulations, the results of which reveal a notable re-
duction in the number of deployed firewalls while maintaining a high level of se-
curity. In the event of a failure, the system ensures automatic traffic rebalancing,
preventing interruptions to critical services. However, when examining this pro-
posal in light of Lehman’s software aging laws [20], some limitations emerge. The
law of increasing complexity, which states that any evolving system becomes more
complex over time, seems somewhat underestimated here: dynamic management
introduces additional interdependencies between network nodes, making future
maintenance more challenging. Similarly, the law of conservation of familiarity is
affected, as the transition to a graph-based management approach deviates from
classical methods, requiring network administrators to make significant adjust-
ments. Without proper methodological support, this shift could lead to resistance
and even compromise system stability.

On the other hand, the law of continuous feedback is relatively well integrated:
the proposed algorithm allows for the gradual adaptation of configurations in re-
sponse to network changes, thus ensuring a form of dynamic stability. However,
other major Lehman laws remain underappreciated. The law of continuous
growth, which states that a system must evolve functionally to remain relevant, is
only partially respected: the model focuses primarily on structural optimization
without explicitly incorporating functional enhancement. The law of self-regula-
tion, which emphasizes the system’s ability to manage its evolution autonomously,
is absent, as is the law of organizational inertia, which highlights the difficulty
organizations face in adapting to changes.

Thus, although the solution proposed by Bilal et al. [34] represents a significant
advancement in managing security in IoT environments, it would benefit from
a more explicit consideration of the fundamental laws of software evolution. By
integrating these laws into a coherent methodological framework, it would be
possible to move from simple local optimization to a true long-term adaptive
management strategy. Such an evolution would promote the system’s sustainabil-
ity, maintainability, and scalability. Furthermore, the future integration of artifi-
cial intelligence techniques could further enhance the system’s self-configuration
and adaptation capabilities in response to emerging threats and increasing con-
textual constraints. A comparative study of existing methods is highlighted in Ta-
ble 3.

The literature review shows that Intrusion Detection Systems (IDS), integrated
with Decision Support Systems (DSS) to enhance security, can be improved
through artificial intelligence (AI). However, their sustainable evolution requires
a thorough consideration of Lehman’s laws, particularly continuous growth, in-
creasing complexity, and continuous feedback.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 181 Journal of Computer and Communications

Table 3. Comparative study of filtering [34].

Solution Forces Weaknesses

Simple packet filtering
(stateless)

Fast and resource-efficient
Limited security, vulnerable

to advanced attacks

Stateful Filtering
Better security than simple filtering,

connection management
Higher resource

consumption

Application filtering
(proxy)

Highly secure, application content
control

Impacts performance,
configuration complexity

Graph theory based
approach

Optimizes firewall installation,
reduces costs, improves fault

tolerance

Algorithmic complexity,
need for continuous

updating

Based on this review, the general structure of an IDS, taking into account Leh-

man’s laws, can be highlighted as shown in Figure 1.

Figure 1. Structure derived from an adaptive IDS considering Lehman’s Laws.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 182 Journal of Computer and Communications

Figure 1 illustrates an adaptive software architecture composed of intercon-
nected modules, each reflecting one or more of Lehman’s laws regarding software
evolution. It highlights the necessary mechanisms for sustainable adaptation,
guided by observation, learning, and continuous reassessment.

The process begins with the data collection and analysis module, which is re-
sponsible for real-time observation of the external environment and the internal
behavior of the system. This module embodies Lehman’s Law of Continuous
Change, which states that a software system used in a real-world environment
must evolve continuously, or it will become progressively less satisfactory. There-
fore, the ability to collect and analyze data determines the relevance of future ad-
aptations.

The information extracted then feeds into a reinforcement learning module,
enabling the system to autonomously adapt based on feedback from its actions.
This process illustrates the Law of Continuous Growth, which states that a system
must be enriched with new functionalities to maintain user interest. The use of
learning also strengthens the system’s evolutionary autonomy, which is essential
in dynamic environments.

As the system learns and adapts, its structure becomes more complex. The dy-
namic decision-making module addresses this challenge by steering the system’s
choices based on current conditions. It reflects the Law of Increasing Complexity,
which asserts that, in the absence of active efforts, the evolution of a software sys-
tem inevitably increases its complexity, making maintenance more costly. This
module aims to manage this complexity by introducing intelligent decision rules.
At the heart of the architecture is the reward engine and model base, which allows
the system to evaluate the effectiveness of past decisions. This engine triggers ad-
justments based on feedback, in a process of continuous reassessment. This func-
tion illustrates the Law of Feedback Systems, emphasizing the importance of in-
ternal regulation mechanisms to effectively manage software evolution.

Finally, the real-time update module enables the rapid application of learned de-
cisions and adjustments, without interrupting service. This module reflects the Law
of Gradual Decline, which states that a system that does not evolve actively tends
to deteriorate. By integrating continuous updates, this module helps prevent obso-
lescence and ensures system stability in the face of change. Thus, each component
in the figure contributes to the concrete implementation of Lehman’s laws, sup-
porting a progressive, controlled, and sustainable evolution of the software system.

2.4. Efficient Security Management through Software Product
Lines

Software Product Lines (SPL) are now an essential strategic approach for manag-
ing variability and the evolution of complex systems, especially in critical areas
such as cybersecurity. By allowing the development of families of software with a
shared core functionality, while adapting to specific requirements, SPL offers a
modular architecture conducive to adaptability. This capability is particularly cru-
cial in unstable and evolving contexts, where threats, especially in security, are

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 183 Journal of Computer and Communications

constantly changing.
In this context, Lehman’s laws, which describe the fundamental mechanisms of

software evolution, find a natural application. SPL, with their variation-controlled
structure, contributes to the progressive and controlled implementation of these
laws. As Dhungana et al. (2008) emphasize, the fragmentation of variability mod-
els within SPL facilitates long-term change management, enhances traceability,
and minimizes the risks of regressions.

In a complementary perspective, Soureya et al. [35] propose a conceptual
framework that integrates artificial intelligence and SPL to better incorporate Leh-
man’s laws into software evolution processes. However, the authors clarify that
this is not a comprehensive operational framework, but rather a methodological
guide offering initial insights into how such integration could be formalized. This
limitation highlights a significant scientific gap: there is currently no explicit,
structured, and reproducible framework dedicated to the design of adaptive In-
trusion Detection Systems (IDS) based on SPL. This gap is critical. In the field of
cybersecurity, where attacks constantly evolve, the ability of an IDS to self-adjust
proactively becomes an imperative. Lehman clearly stated that any useful system
must evolve continuously, or it will decline. Ignoring this reality, as noted by God-
frey and German [36], inevitably leads to excessive complexity and premature ob-
solescence.

In this light, the use of SPL combined with machine learning mechanisms pre-
sents a promising path for designing intelligent, scalable, and resilient IDS. How-
ever, for this approach to be deployed effectively, a formal, security-specific meth-
odological framework still needs to be established. This framework should con-
cretely translate Lehman’s laws into an adaptive threat detection context, integrat-
ing the principles of variation, feedback, and real-time learning. Thus, far from
being limited to classical software management, SPL can play a leading role in the
engineering of evolving software security, provided we move beyond intentions
and develop structured models that guide the development of truly autonomous
and adaptive security solutions.

3. Positioning and Primary Objective of the Article

Existing solutions for developing adaptive Intrusion Detection Systems (IDS) re-
main fragmented and imprecise, rarely showing an explicit connection with the
structured steps of software development or agile methods, and even less with the
design steps of Software Product Lines (SPL). Indeed, they generally fail to ac-
count for the evolutionary nature of software systems or place them in a dynamic
aligned with the software evolution laws formulated by Lehman.

Moreover, these approaches often neglect the integration of artificial intelli-
gence as a lever for continuous adaptation to changing user needs and the growing
complexity of threats [37]. The use of artificial intelligence techniques, however,
enables dynamic adaptation of security systems to contextual evolutions [38].

In response to these limitations, we propose a structured methodological
framework combining Software Product Line (SPL) engineering, agile develop-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 184 Journal of Computer and Communications

ment practices [39], and Lehman’s laws. This framework is designed to integrate
these dimensions continuously at each specific phase of the software lifecycle,
from requirements analysis to maintenance, ensuring the development of IDS that
is reusable, adaptive, and sustainable.

Thus, our approach establishes a concrete link between the theoretical require-
ments of software evolution and their operational application, aligning design
strategies with real-time adaptation capabilities in constantly evolving cybersecu-
rity contexts. There are a few rare works, such as Soureya et al. [35], that propose
a methodological framework integrating SPL, AI, and Lehman’s laws; however,
their proposal remains subject to personal interpretation and mainly describes the
application of AI without clearly anchoring it in classical or agile software devel-
opment cycles like Scrum.

Our framework extends these approaches by precisely contextualizing them in
the known stages of software design, whether it’s a waterfall or agile cycle, which
significantly enhances methodological clarity and operational applicability thus
addressing our primary positioning: strategic alignment between agility, software
scalability, and the intelligent adaptation of IDS [40].

4. Proposed Methodological Framework

The proposed methodological framework is highlighted in Figure 2.

Figure 2. Proposed methodological framework.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 185 Journal of Computer and Communications

We first consider that the domain should be designed according to the classic
stages of software design, taking into account all previously identified influencing
factors. These stages include: needs analysis, specification, and domain design.

In the context of these three main phases, we propose a structured software
design process that includes:

1) Determining the characteristics of the domain at time t, integrating prior
knowledge and learned characteristics.

2) Formulating the specific needs of the domain, considering its evolution
and operational context.

3) Identifying the components of the software product line (SPL), as well as
their mutual relationships.

4) Defining the domain architecture, which logically results from the struc-
turing of the software product line elements.

This approach aims to ensure coherence between software design and the dy-
namic, reusable, and evolutionary dimensions expected in the development of an
intelligent IDS.

Regarding application engineering, it deserves to be treated as a distinct phase
of the development process. In other words, although the domain is already de-
signed at this stage, it is still essential to conduct an analysis of the specific appli-
cation needs, followed by specification, before proceeding with the classic stages
of software development: development, implementation, testing, and validation.
During these stages, and according to the logic of software product line engineer-
ing, the real needs of the user at time t will be determined based on the usage
context, as well as the prior knowledge accumulated about the user. This will allow
for deriving a personalized application, adapted to the user’s current situation.

Then, by observing the application’s operation and its actual usage, it will be
possible to reassess the real needs of the user more precisely. This feedback will
then help refine the application’s personalization, ensuring optimal alignment
with the user’s specific expectations and behaviors. Simply put, the steps in Figure
2 and their relationships can be highlighted in the following Table 4.

Table 4. Presentation of the steps in the proposed framework, highlighting the relationship between software development stages,
Scrum development phases, software product line stages, and Lehman’s Laws.

Classic software
development

steps
Scrum Phases Stages of the SPL SPL level

Associated Lehman
Laws

Main objective

1. Needs analysis
Creation of the

Product
Backlog

-Determination of the domain
context by taking the characteristics

of the domain at t + those at t − 1

Domain
Engineering

Law 1 (Continuous
Change), Law 2

(Increasing
Complexity)

Collect user needs,
constraints, technology

and market.

2. Specification
Backlog

Refinement

-Determination of domain needs,
software product line elements and

their relationship
-Determination of the domain

architecture

Domain
Engineering

Law 2 (increasing
complexity), Law 6
(declining quality)

Define domain needs,
relationships between
components, product

line context.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 186 Journal of Computer and Communications

Continued

3. Design
Sprint

Planning

-Specification of the domain
architecture and the domain needs

at time t

Domain
Engineering

Law 3 (Self-
regulation),

Law 4 (Familiarity)

Design the SPL
architecture adapted to
evolutions and reuse.

4. Development/
Implementation

Sprint
Execution

(Development)

-Specification of user needs at time t
-Specification of the environmental

context
- Derivation of the application

according to the context

Application
Engineering

Law 5 (Continuous
Growth), Law 4

(Familiarity)

Develop specific
products from the SPL
base according to user

needs.

5. Tests Tests in sprints -User study and adjustment
Application
Engineering

Law 6 (Quality
Decline), Law 7

(Return)

Functional verification
of derivations;

contextual adaptations.

6. User validation Sprint Review
-Validation of knowledge learned

about the user
Application
Engineering

Law 8 (progressive
evolution), Law 3
(self-regulation)

Study user preferences
and skills, adapt the

application.

7. Deployment/
Maintenance

Continuous
Delivery +

Retrospective
-Update of knowledge learned

Application
Engineering

Law 5 (continuous
growth), Law 7
(Return), Law 8

(progressive
evolution),

Reuse of past
knowledge,

maintaining application
suitability over time

5. Case Study: Application of the Methodological Framework
to a Smart Home

Building on the proposed methodological framework for designing an adaptive
Intrusion Detection System (IDS), this section illustrates its application through
a case study of a smart home, a representative environment for cybersecurity chal-
lenges in the Internet of Things (IoT).

The considered smart home integrates several smart devices: a connected TV,
security cameras, thermostats, electronic locks, voice-controlled speakers, and a
smart refrigerator. While these devices bring comfort and efficiency, they also in-
troduce numerous attack surfaces, exposing the home network to various risks.

The firewall serves as the first line of defense, filtering network traffic to block
unauthorized connections. The proposed approach aims to dynamically enhance
this firewall by integrating an adaptive IDS based on reinforcement learning. This
system considers Lehman’s Laws of software evolution to enable continuous ad-
aptation to new threats and technological advancements.

Following the framework, we have:
Phase: Domain Engineering
1) Domain Needs Analysis
In connected home environments, security needs are transversal and shared

across multiple households. Typical threats include:
- External intrusions aimed at accessing connected cameras or microphones.
- Hacking attempts on smart locks through unsecured connections.
- Unauthorized surveillance or exploitation of voice assistants.
- Local network saturation through internal DDoS attacks (from compromised

devices).
2) Domain Specification

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 187 Journal of Computer and Communications

The IDS must meet the following functional specifications:
- Real-time network data collection.
- Identification of abnormal behaviors based on adaptive models.
- Automatic updating of detection rules.
- Interface for visualizing alerts and events.

And the following non-functional specifications:
- Low resource consumption to adapt to limited capacity environments.
- High reusability to allow deployment across various types of home networks.
- Compatibility with standard protocols.

3) Domain Design
o Domain Characteristics:
 Heterogeneous connected devices.
 A dynamic system, often with a changing topology.
 Non-expert users with high expectations for passive security and privacy.

o Recurring Needs Identified:
 Detection of unauthorized connections.
 Detection of deviant behaviors compared to usual routines.
 Adaptability to frequent updates from connected devices.

o Software Product Line (SPL) Elements:
 Data collection module (reusable across various devices).
 AI-based behavioral analysis engine.
 Rule management module (customizable for each household type).
 User configuration interface.
 Database of known attack signatures.

o Relationships Between SPL Elements:
 The analysis engine consumes data from the collection module.
 Results feed into the learning database to adjust rules.
 The interface allows the user to activate/deactivate profiles depending on

context (presence, travel, children, etc.).
o Domain Architecture:
 Layered architecture:
 Sensor layer (collection),
 AI processing layer (analysis),
 Decision layer (alert/action),
 Interface layer (user).

 Microservices-oriented architecture for modular deployment based on
available resources.

Phase: Application Engineering
This phase adapts the solution to a specific user or environment context. It is

here that AI-specific steps come into play, in line with the stages of software de-
velopment:

1) Data Acquisition
This critical step involves collecting the data necessary for our machine learning

model, sourced from network traffic. This step includes both data collection and

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 188 Journal of Computer and Communications

exploratory analysis of the dataset.
a) Data Collection
We have chosen the Kaggle platform for our data because it is a globally recog-

nized platform that hosts data science competitions and offers diverse, high-qual-
ity datasets.

b) Exploratory Dataset Analysis
The dataset used in this study contains 65,532 observations spread across 12

columns. Each row represents a network traffic flow analyzed within the frame-
work of a security system. These flows were identified as either legitimate or po-
tentially malicious based on defined criteria, making this dataset a relevant foun-
dation for training intrusion detection models.

Dataset Column Details:
i) Source Port: The source port of the network request.
ii) Destination Port: The destination port of the request.
iii) NAT Source Port: The source port after Network Address Translation

(NAT).
iv) NAT Destination Port: The destination port after NAT.
v) Action: The decision made by the security system, with two possible values:
o “Allow”: request was authorized,
o “Deny”: request was blocked (suspicious activity suspected).

vi) Bytes: Total number of bits exchanged (sent and received).
vii) Bytes Sent: Volume of data (in bits) sent by the source.
viii) Bytes Received: Volume of data (in bits) received by the destination.
ix) Packets: Total number of packets exchanged.
x) Elapsed Time (sec): Processing time of the flow (in seconds).
xi) Pkts Sent: Number of packets sent.
xii) Pkts Received: Number of packets received.
This dataset reflects traffic observed on real-world network security equipment.

It was used as a training base for several intrusion classification models, including
the Deep Q-Network (DQN) model applied in this study.

The dataset used is available in a log2.csv file online via the link
https://github.com/yayasoureya/dataset

The dataset contains twelve classes, representing the columns of the dataset,
including ten technical variables describing each network flow in detail, and two
target classes: “Allow” and “Deny.” These classes result from a combined analysis
of ten key technical indicators of network behavior. From this data, it is possible
to explore various aspects such as suspected intrusions, authorized traffic, attack
types, and traffic profiles. However, our study will focus on explicit intrusion de-
tection through a binary classification: “Deny” indicates a suspected intrusion,
“Allow” corresponds to authorized traffic.

2) Data Preprocessing
In this project, preprocessing involves several sub-steps: visualization, cleaning,

transformation, and validation of the data.
a) Visualization:

https://doi.org/10.4236/jcc.2025.137009
https://github.com/yayasoureya/dataset

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 189 Journal of Computer and Communications

• Distribution of the Action Variable
Among the 65,532 observations in our dataset, the “Action” variable is divided

into two categories: “Allow” and “Deny.” The “Allow” category, representing au-
thorized traffic, includes 64,222 observations, or 98.85% of the total. On the other
hand, the “Deny” category, which corresponds to potentially intrusion-related sus-
picious cases, contains only 1310 observations, or 1.15% of the total, as highlighted
in Figure 3. This indicates a significant imbalance in favor of authorized traffic.

Figure 3. Distribution of the action variable.

• Distribution of the Elapsed Time (Sec) Variable
The “Elapsed Time (Sec)” variable ranges from a minimum of 0 to a maximum

of 10,824 seconds. Analyzing its distribution, we observe that the majority of val-
ues (95.33%) fall within the 0 - 500 second interval, as shown in Figure 4. Fur-
thermore, the density curve of the histogram indicates that the distribution does
not follow a Gaussian distribution.

Figure 4. Distribution of the elapsed time (sec) variable.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 190 Journal of Computer and Communications

• Distribution of the pkts_sent Variable
As shown in Figure 5, the “pkts_sent” variable ranges from a minimum of 1 to

a maximum of 747,520. Analyzing its distribution shows that the majority of the
values (93%) fall within the range of 0 - 100. Additionally, observing the density
curve of the histogram reveals that the distribution of the data does not follow a
Gaussian distribution, indicating skewness or a strong concentration of values in
a narrow range.

Figure 5. Distribution of the “pkts_sent” variable.

• Distribution of the pkts_received Variable

Figure 6. Analysis of the “pkts_received” variable.

The “pkts_received” variable ranges from a minimum of 0 to a maximum of

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 191 Journal of Computer and Communications

327,208. According to Figure 6, we see that the range with the highest concentra-
tion of values is 0 - 100, representing 91% of the total values for this variable in
our dataset. Based on the density curve of the histogram, we can conclude that the
data cannot be approximated by a Gaussian distribution.
• Distribution of the “Bytes_sent” Variable

The “Bytes sent” variable ranges from a minimum of 60 to a maximum of
948,477,220. Observing Figure 7, we see that the range with the highest concen-
tration of values is 0 - 6000, representing 85% of the total values for this variable
in our dataset. Based on the density curve of the histogram, we can conclude that
the data cannot be approximated by a Gaussian distribution.

Figure 7. Analysis of the “Bytes_sent” variable.

• Distribution of the “Bytes_Received” Variable
The “Bytes_Received” variable ranges from a minimum of 0 to a maximum of

320,881,795. Observing Figure 8 we see that the range with the highest concen-
tration of values is 0 - 3000, representing 50% of the total values for this variable
in our dataset. Based on the density curve of the histogram, we can conclude that
the data cannot be approximated by a Gaussian distribution.

b) Data Cleaning and Action Corrections:
• Removal of Missing Values: Out of the 65,532 observations in the dataset, no

missing values were observed. This step ensures that each sample contains all
the necessary information for optimal analysis.

• Elimination of Duplicates: Out of the 65,532 rows, 8370 duplicate rows were
found and removed to prevent any sample from disproportionately influenc-
ing the model’s results during training.

• Data Type Correction: The “Action” variable, which initially contained qual-
itative data (Allow and Deny), was transformed into an integer type (“0” for
Deny and “1” for Allow) using the Label Encoding function for better analysis.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 192 Journal of Computer and Communications

Figure 8. Analysis of the “Byte_Received” variable.

3) Data Transformation:
To ensure that the detection model could efficiently interpret the data, several

transformations were necessary:
• Standardization: Quantitative variables were standardized using Standard-

Scaler, which applies centering and reduction (subtraction of the mean and
division by the standard deviation). This step reduces the scale of the variables
and facilitates model convergence.

• Class Rebalancing: Given the imbalance between the classes (Allow and
Deny) in the Action variable, the SMOTE (Synthetic Minority Over-sampling
Technique) method was applied to prevent the majority class (Allow, repre-
senting normal requests) from dominating the minority class (Deny, repre-
senting detected intrusions). After applying class balancing to the “Action”
variable, where we had 1% of “0” values and 99% of “1” values, the result of
this method is shown in Figure 9 below.

4) Data Validation
Finally, to verify the consistency of the transformed data, tests were performed

to analyze the normality and distribution of the data between the classes. These
two tests led to the rejection of the hypotheses suggesting that the examined vari-
ables do not follow a Gaussian distribution.

The correlation matrix below in Figure 10 highlights the relationships between
the various variables in our dataset.

In summary, this analysis demonstrates that data volumes and packet quantities
are closely related, while the elapsed time has little impact on these relationships.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 193 Journal of Computer and Communications

This finding may guide future investigations or optimizations toward aspects
other than the duration of transactions.

Figure 9. Result of data balancing using the SMOTE method.

Figure 10. Resulting correlation matrix.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 194 Journal of Computer and Communications

5) Modélisation
The model we have chosen to use is a DQN (Deep Q-Learning) model, based

on the principles of reinforcement learning.
Q-learning can be considered a model-free approach that updates the Q-value

estimates based on experience samples at each time step, as shown in the following
Equation (1):

 () () () (), , , ,s a s a r s a s a′ ′← + + − (1)

where α is the learning rate, Q(s, a) is the current estimate, r represents the reward
function, and γ ∈ [0, 1] indicates the discount factor.

 () ()()()()2 11y x F f F f F F x= = − (2)

where x is the input, Fᵢ is a transformation function, and f represents the total
number of computational layers, which can include both hidden layers and the
output layer in the neural network. The outputs of the previous layers are passed
through each perceptron by applying a nonlinear activation function.

The primary role of the activation function in our model is to transform an
input unit of a neural network into an output unit. We chose the ReLU (Rectified
Linear Unit) activation function due to its well-known efficiency.

 ()
0, 0

ReLu
1, 0

x
x

x
<

= ≥

We define here the key concepts related to DQN based on the environment in
which the dataset from our KAGGLE dataset is used for intrusion detection tasks
in networks.

Environment:
The environment of this study is the one in which the preprocessed and nor-

malized dataset from KAGGLE is used. The columns (features) of the KAGGLE
dataset represent the states of the DQN. There are 6 features in KAGGLE, and we
use 5 features (“Pkts_sent”, “Pkts_received”, “Byte_sent”, “Byte_received”,
“Elapsed_Time”) as states. The first feature (“Action”) is the label used to compute
the attribution vectors based on the model’s prediction.

Agent:
Our agent explores the action space by applying an epsilon-greedy exploration

policy. Exploration helps the agent choose either a random action with a proba-
bility of ε, or an action based on the value function with the highest value, with a
probability of 1 − ε.

States:
States describe the data provided by the environment to an agent so that it can

act. In our environment where the KAGGLE dataset is used, the features of the
dataset are used as state parameters for DQN. We use these 5 features as inputs to
the DQN, so that Si = Fi for learning and prediction using DQN.

Actions:
An action is considered the decision made by the agent after processing the

environment during a given time window. The DQN agent generates a list of ac-

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 195 Journal of Computer and Communications

tions in the form of an action vector based on the input data of the neural network
and the input features. The final Q-values are used to determine whether an attack
has been successfully detected.

In our case, we have two possible actions for the agent, determining the classi-
fication of traffic:
• Action 0: Normal traffic.
• Action 1: Intrusion detected.

Reward:
The reward function of our model is written as indicated in the equation below

 () ()
()

1 if is correct
, 1 if is False Negative Intrusion Detected

0.5 if false positive normal traffic classified as intrusion

a
R s a a

a

+

= −
−

Action Optimization (Adam):
The optimizer is the algorithm used to minimize the prediction error of the Q-

values during training. Specifically, it updates the neural network weights to re-
duce the gap between the predicted Q-value for a given action and the target Q-
value calculated using the Bellman equation. Thanks to this optimizer, the model
effectively adapts to gradients, allowing it to converge more efficiently toward an
optimal solution.

6) Model Implementation and Training
The DQN model is trained over a series of episodes, with each episode repre-

senting a sequence of decisions. The feature values from the KAGGLE dataset
(Pkts_sent, Pkts_received, Byte_sent, Byte_received, Elapsed_Time) serve as the
DQN’s state variables. It is important to note that the batch size for the DQN pro-
cess is set to 300. This means that for each state, 300 records from the KAGGLE
dataset are retrieved from memory and used as input for the learning process.

7) Model Testing
A confusion matrix was generated for each model to observe the number of

correct detections (true positives) and errors (false positives and false negatives).
The results are classified into four categories:
• True Positive (TP): The prediction and the actual value are both positive.
• True Negative (TN): The prediction and the actual value are both negative.
• False Positive (FP): The prediction is positive, but the actual value is negative.
• False Negative (FN): The prediction is negative, but the actual value is posi-

tive.
In this work, we focused specifically on precision. Our objective was to empha-

size the importance of minimizing certain types of errors over others. In our case,
allowing a malicious intrusion on the network has a far greater impact than block-
ing legitimate traffic. Therefore, reducing false negatives was given priority.

8) Application and Deployment
The model is initially deployed in a testing environment using Postman, allow-

ing real-time alerts to be triggered in response to anomaly detection thus proac-
tively reinforcing network security against cyberthreats.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 196 Journal of Computer and Communications

For deployment, we used Postman, a tool that enables the execution of HTTP
calls directly through a graphical interface. This involves selecting the URL, the
HTTP method (most often GET, POST, PUT, PATCH, or DELETE) in our case,
POST as well as setting the headers, query parameters, and, where necessary, the
request body.

6. Results and Discussion

We tested several algorithms for designing our intrusion analysis and prediction
tool, namely Decision Tree, K-Nearest Neighbors, Random Forest, and finally, the
Deep Q-Network. For each algorithm, we evaluated the model on the test dataset
to determine its performance level and select the most suitable one for our appli-
cation. To do this, we used a dataset containing 24,543 records for training and
18,059 records for testing our learning model. To evaluate the performance of our
predictive model, we chose precision as the evaluation metric. Precision measures
the proportion of correctly predicted positive instances. It is given by the follow-
ing mathematical formula:

True positivesPrecision
False positives True positives

=
+

The table below (Table 5) presents the results of the machine learning algo-
rithms used to test our model with the available dataset. The test results for Ran-
dom Forest and K-Nearest Neighbors (KNN) are nearly identical to those of the
Decision Tree.

Table 5. Test results with KNN, decision tree, and random forest.

Model Metric Result

Arbre de décission

Precision 96%

Accuracy 92%

Recall 96%

F1-Score 94%

KNN

Precision 96%

Accuracy 92%

Recall 95%

F1-Score 90%

Random Forest

Précision 96%

Accuracy 93%

Recall 94%

F1-Score 93%

These results show the evolution of accuracy in relation to the reward to be

achieved. They indicate that the accuracy of each model decreases progressively
as it attempts to make better predictions, ranging from a maximum of 96.048% to
a minimum of 96.032%. This is problematic because, in a real-world environment

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 197 Journal of Computer and Communications

with several thousands of data points, the regression in accuracy would be even
more significant, which would hinder our main objective: reducing the false pos-
itive rate.

The tests results with DQN are presented in Table 6 as follows:

Table 6. DQN model test results.

 Métrics Results

DQN

Precision 99.96%

Accuray 99.92%

Recall 99.96%

AUC 99.72%

The confusion matrix that can be derived is as follows in Figure 11.
This matrix shows that 188 events are intrusions, and this is indeed the case,

while 17,856 events are normal, which is also accurate. It also shows that 7 events
are intrusions, but they are actually normal events, and that 8 events are normal,
though they are actually intrusions.

From all these results, we notice that the Deep Q-Network algorithm has the
best score and makes better predictions with minimal bias. This is why we chose
it for the design of our intrusion detection system.

The number of false positives that results from our model is therefore:

() False positivesFPR False positive rate
False positives True negatives

=
+

Figure 11. Resulting confusion matrix.

The false positive rate (FPR) is about 0.0392%, which is very low so your model
makes very few mistakes in falsely detecting intrusions when they are normal

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 198 Journal of Computer and Communications

events.
A summary of the different results is shown in Figure 12, as follows:

Figure 12. Comparison of the results of different algorithms.

The tests showed that the DQN model is the most effective for detecting attacks
in computer networks. The model has an accuracy of 99.92%, meaning it accu-
rately detects 99.92% of intrusions. The model is also less biased than the other
models, meaning it is less likely to incorrectly classify non-attack data as attacks.

Figure 13 shows the results of the evolution of the test accuracy of the DQN
model compared to its training accuracy, depending on the number of Epochs in
the training dataset. It demonstrates that our model learned at an arithmetic rate
and was highly accurate during testing, yielding exponential results, as it success-
fully applied what it had learned during training.

Figure 13. History of accuracy based on the number of epochs.

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 199 Journal of Computer and Communications

Figure 14. Loss of the DQN based on the number of epochs.

As for Figure 14, it represents the evolution of the loss of the DQN model dur-
ing testing compared to the training loss based on the number of Epochs on the
dataset. It shows that from the first Epoch, the tests on the model experienced no
loss, which indicates that our model is capable of making correct predictions with-
out any losses.

It is worth noting that other authors before us have proposed solutions to ad-
dress false positive security issues through artificial intelligence.

The comparison of our solution using the proposed methodological framework
is highlighted in the following Table 7:

Table 7. The comparison of our solution with existing.

Methods Datasets
Number of

classes
Precision Lehman’s Law

Kikissagbe et al.
[41]

638,533 63 98.28%
No consideration of the evolution of models over time, Absence of feed-
back loop, Static model, not adaptable to the evolving context of the IoT

Sharma et al. [42] 125,973 41 99.49% No consideration of evolution,

Rahman et al. [43] 403,299 7 99.9%
The article does not mention user feedback mechanisms or online

learning, lack of continuous adaptation to the dynamic context of IoT

We 65,532 12 99.99%
There is a quasi-total consideration of Lehman’s laws and this is done

continuously

https://doi.org/10.4236/jcc.2025.137009

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 200 Journal of Computer and Communications

7. Conclusions

At the end of this study, several major contributions can be highlighted. We have
designed a structured methodological framework for the development of an adap-
tive intrusion detection system (IDS), incorporating sustainability factors, Leh-
man’s laws, software product lines, and the classic stages of software development.
This innovative approach has led to the development of an IDS based on rein-
forcement learning, specifically applied to the core network (CCR). The system
designed has demonstrated remarkable accuracy of 99.99%, providing tangible
evidence that the method followed produces solutions that are not only effective
but also align with the precision and timeliness requirements of the cybersecurity
field.

In this dynamic, several avenues for future evolution naturally emerge. On one
hand, deploying the system in other network environments, particularly IoT net-
works, critical infrastructures, or industrial systems, represents a promising ex-
tension. On the other hand, integrating more advanced artificial intelligence tech-
niques, such as federated learning, deep neural networks, or specialized generative
models, would further optimize the performance and adaptability of the system
in the face of emerging cyber threats. These avenues open up a rich research field
in adaptive cybersecurity, where the sustainability of solutions must go hand in
hand with their ability to evolve in dynamic contexts.

Finally, the practical implications of this research are particularly significant.
The proposed system, with its adaptive, intelligent, and methodologically grounded
nature, represents a concrete lever for strengthening the cybersecurity of modern
networks. It addresses the growing need to design solutions that can adjust in real-
time to malicious behaviors, in a context where attacks are becoming increasingly
sophisticated and context-specific. In this sense, this study shows that by structur-
ing the development of an IDS around proven principles and well-integrated AI,
it is possible to go beyond the limitations of traditional approaches and propose
defense mechanisms that are robust, scalable, and sustainable.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Singh, N., Jaiswar, S., Jha, P., Tiwari, V.K. and Saket, P.K. (2024) Adaptive Intrusion

Detection Using Deep Reinforcement Learning: A Novel Approach. International
Journal of Advanced Research in Engineering and Science Management, 12, 4158-
4164.

[2] Yang, W., Acuto, A., Zhou, Y. and Wojtczak, D. (2024) A Survey for Deep Reinforce-
ment Learning Based Network Intrusion Detection.

[3] Tellache, A., Mokhtari, A., Korba, A.A. and Ghamri-Doudane, Y. (2024) Multi-Agent
Reinforcement Learning-Based Network Intrusion Detection System. NOMS 2024-
2024 IEEE Network Operations and Management Symposium, Seoul, 6-10 May 2024,
1-9. https://doi.org/10.1109/noms59830.2024.10575541

https://doi.org/10.4236/jcc.2025.137009
https://doi.org/10.1109/noms59830.2024.10575541

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 201 Journal of Computer and Communications

[4] Gueriani, A., Kheddar, H. and Mazari, A.C. (2023) Deep Reinforcement Learning for
Intrusion Detection in IoT: A Survey. 2023 2nd International Conference on Elec-
tronics, Energy and Measurement (IC2EM), Medea, 28-29 November 2023, 1-7.
https://doi.org/10.1109/ic2em59347.2023.10419560

[5] Lehman, M.M. and Ramil, J.F. (2006) The Evolution of Software Systems: Insights
from Lehman’s Laws. IEEE Software, 23, 45-53.

[6] Amako, N.G. (2024) Securing Africa’s Digital Future: A Conversation with a Cyber-
security Expert. Africa Renewal. United Nations.
https://africarenewal.un.org/en/magazine/securing-africas-digital-future-conversa-
tion-cybersecurity-expert

[7] Dark Reading (2024) Africa’s Economies Feel Pain of Cybersecurity Deficit.
https://www.darkreading.com/cyber-risk/africa-s-economies-feel-pain-of-cyberse-
curity-deficit

[8] Kearney (2023) Cybersecurity in Africa—A Call to Action.
https://www.kearney.com/documents/291362523/296371292/Cybersecu-
rity%2Bin%2BAfrica-a%2Bcall%2Bto%2Baction.pdf

[9] Kumar, S., et al. (2022) Evolutionary Approaches to Intrusion Detection Systems:
Overcoming Limitations of Signature-Based Methods. Journal of Cybersecurity and
Privacy, 4, 112-129.

[10] Kumar, S., Meena, K. and Malathi, D. (2022) Intrusion Detection Systems and Their
Challenges: A Comprehensive Review. International Journal of Computer Applica-
tions, 175, 5-13.

[11] International Telecommunication Union (ITU) (2023) Measuring Digital Develop-
ment: ICT Development Index 2023. ITU-D.
https://www.itu.int/itu-d/reports/statistics/idi2023/

[12] Organisation for Economic Co-Operation and Development (2019) Harnessing Dig-
ital Transition for Sustainable Development (Ministerial Council Meeting Chair’s
Statement, C/MIN[2019]16). OECD Publishing.

[13] Sommer, R. and Paxson, V. (2010) Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection. 2010 IEEE Symposium on Security and
Privacy, Oakland, 16-19 May 2010, 305-316. https://doi.org/10.1109/sp.2010.25

[14] Lehman, M.M. and Ramil, J.F. (2001) Rules and Tools for Software Evolution Plan-
ning and Management. Annals of Software Engineering, 11, 15-44.
https://doi.org/10.1023/a:1012535017876

[15] Clements, P.C. and Northrop, L.M. (2002) Software Product Lines: Practices and Pat-
terns. Addison-Wesley.

[16] Khraisat, A., Gondal, I., Vamplew, P. and Kamruzzaman, J. (2019) Survey of Intru-
sion Detection Systems: Techniques, Datasets and Challenges. Cybersecurity, 2, Ar-
ticle No. 20. https://doi.org/10.1186/s42400-019-0038-7

[17] Chen, X., Zhang, L. and Li, Y. (2021) Network Security and Intrusion Detection Sys-
tems: Challenges and Strategies in the IoT Era. Cybersecurity, 7, 1-19.

[18] Chen, Y. (2021) Challenges of Intrusion Detection Systems in Dynamic Network En-
vironments. International Journal of Computer Applications, 178, 45-55.

[19] Yin, C.L., Zhu, Y.F., Fei, J.L. and He, X.Z. (2017) A Deep Learning Approach for
Intrusion Detection Using Recurrent Neural Networks. IEEE Access, 5, 21954-21961.

[20] Lehman, M.M. (1980) Programs, Life Cycles, and Laws of Software Evolution. Pro-
ceedings of the IEEE, 68, 1060-1076. https://doi.org/10.1109/proc.1980.11805

https://doi.org/10.4236/jcc.2025.137009
https://doi.org/10.1109/ic2em59347.2023.10419560
https://africarenewal.un.org/en/magazine/securing-africas-digital-future-conversation-cybersecurity-expert
https://africarenewal.un.org/en/magazine/securing-africas-digital-future-conversation-cybersecurity-expert
https://www.darkreading.com/cyber-risk/africa-s-economies-feel-pain-of-cybersecurity-deficit
https://www.darkreading.com/cyber-risk/africa-s-economies-feel-pain-of-cybersecurity-deficit
https://www.kearney.com/documents/291362523/296371292/Cybersecurity%2Bin%2BAfrica-a%2Bcall%2Bto%2Baction.pdf
https://www.kearney.com/documents/291362523/296371292/Cybersecurity%2Bin%2BAfrica-a%2Bcall%2Bto%2Baction.pdf
https://www.itu.int/itu-d/reports/statistics/idi2023/
https://doi.org/10.1109/sp.2010.25
https://doi.org/10.1023/a:1012535017876
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1109/proc.1980.11805

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 202 Journal of Computer and Communications

[21] Layman, L. and Roden, W. (2023) A Controlled Experiment on the Impact of Intru-
sion Detection False Alarm Rate on Analyst Performance. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 67, 220-225.
https://doi.org/10.1177/21695067231192573

[22] Orca Security (2022) Orca Security 2022 Alert Fatigue Report. Orca Security.
https://orca.security/wp-content/uploads/2024/02/Orca_Security_2022_Alert_Fa-
tigue_Report.pdf

[23] GuardRails (2023) False Positives and False Negatives in Information Security.
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-
security/

[24] SANS Institute (2020) Managing Alert Fatigue in SOC Environments.

[25] Islam, C., Babar, M.A., Croft, R. and Janicke, H. (2022) SmartValidator: A Framework
for Automatic Identification and Classification of Cyber Threat Data. Journal of Net-
work and Computer Applications, 202, Article ID: 103370.
https://doi.org/10.1016/j.jnca.2022.103370

[26] López, M., et al. (2022) A Study on the Aging of Intrusion Detection Systems and
Their Performance Decay. Journal of Information Security, 46, 211-228.

[27] Kim, Y., et al. (2023) On the Impact of System Evolution on Intrusion Detection Per-
formance. Computers & Security, 105, 102-119.

[28] Chavez, D., et al. (2021) Managing False Positives in Intrusion Detection Systems: A
Survey and Perspectives. Journal of Network and Computer Applications, 150, 29-
45.

[29] Gonzalez, J., et al. (2024) Complexity Management in Intrusion Detection: The Role
of System Evolution. International Journal of Cybersecurity, 5, 12-23.

[30] Shao, Y., et al. (2023) The Evolution of Intrusion Detection Systems: Aligning with
Lehman’s Laws for Better Performance. Proceedings of the IEEE International Con-
ference on Cybersecurity, 2023, 178-189.

[31] Xu, T., et al. (2024) Reinforcement Learning for Adaptive Intrusion Detection: Bal-
ancing Performance and False Positives. IEEE Transactions on Neural Networks and
Learning Systems, 35, 448-461.

[32] Miloud Aouidate, A. and Baba Ali, A.R. (2013) IDS False Alarm Reduction Using an
Instance Selection KNN Memetic Algorithm. International Journal of Metaheuristics,
2, No. 4. https://doi.org/10.1504/IJMHEUR.2013.058473

[33] Ahmadi, S. (2023) Next Generation AI-Based Firewalls: A Comparative Study. Inter-
national Journal of Computer, 49, 245-262. https://hal.science/hal-04456265v1

[34] Bilal, B. and Dounia, L. (2021) A Solution for Managing Firewalls in the INTERNET
of Things. Doctoral Dissertation, University Center of Abdalhafid Boussouf-Mila.
http://dspace.centre-univ-mila.dz/jspui/handle/123456789/1389

[35] Soureya, Y.G., Amougou, N., Ngossaha, J.M., Bowong, S. and Ndjodo, M.F. (2025)
Adaptive Software Development: A Comprehensive Framework Integrating Artificial
Intelligence for Sustainable Evolution. The International Arab Journal of Information
Technology, 22, 248-261. https://doi.org/10.34028/iajit/22/2/4

[36] Godfrey, M.W. and German, D.M. (2008) The Past, Present, and Future of Software
Evolution. 2008 Frontiers of Software Maintenance, Beijing, 28 September-4 October
2008, 129-138. https://doi.org/10.1109/fosm.2008.4659256

[37] Lee, W., Stolfo, S.J. and Mok, K.W. (2000) Adaptive Intrusion Detection: A Data Min-
ing Approach. Artificial Intelligence Review, 14, 533-567.
https://doi.org/10.1023/a:1006624031083

https://doi.org/10.4236/jcc.2025.137009
https://doi.org/10.1177/21695067231192573
https://orca.security/wp-content/uploads/2024/02/Orca_Security_2022_Alert_Fatigue_Report.pdf
https://orca.security/wp-content/uploads/2024/02/Orca_Security_2022_Alert_Fatigue_Report.pdf
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://www.guardrails.io/blog/false-positives-and-false-negatives-in-information-security/
https://doi.org/10.1016/j.jnca.2022.103370
https://doi.org/10.1504/IJMHEUR.2013.058473
https://hal.science/hal-04456265v1
http://dspace.centre-univ-mila.dz/jspui/handle/123456789/1389
https://doi.org/10.34028/iajit/22/2/4
https://doi.org/10.1109/fosm.2008.4659256
https://doi.org/10.1023/a:1006624031083

Y. G. Soureya et al.

DOI: 10.4236/jcc.2025.137009 203 Journal of Computer and Communications

[38] Acampora, G. (2012) Exploiting Timed Automata Based Fuzzy Controllers for De-
signing Adaptive Intrusion Detection Systems. Soft Computing, 16, 1183-1196.
https://doi.org/10.1007/s00500-011-0791-3

[39] Meso, P. and Jain, R. (2006) Agile Software Development: Adaptive Systems Princi-
ples and Best Practices. Information Systems Management, 23, 19-30.
https://doi.org/10.1201/1078.10580530/46108.23.3.20060601/93704.3

[40] Lee, J.S, Chen, Y.C, Chew, C.J., Chen, C.L., Huynh, T.N. and Kuo, C.W. (2022) Conn-
ids: Intrusion Detection System Based on Collaborative Neural Networks and Agile
Training. Computers & Security, 122, Article 102908.
https://doi.org/10.1016/j.cose.2022.102908

[41] Kikissagbe, B.R. (2024) Apprentissage automatique pour la détection des attaques
DoS dans les systèmes IoT. Mémoire de maîtrise, Université du Québec à Rimouski.
https://semaphore.uqar.ca/id/eprint/3208/1/Brunel_Rolack_Kikissagbe_novem-
bre2024.pdf

[42] Sharma, S., Kumar, V. and Dutta, K. (2024) Multi-Objective Optimization Algo-
rithms for Intrusion Detection in IoT Networks: A Systematic Review. Internet of
Things and Cyber-Physical Systems, 4, 258-267.
https://doi.org/10.1016/j.iotcps.2024.01.003

[43] Rahman, M.M., Shakil, S.A. and Mustakim, M.R. (2025) A Survey on Intrusion De-
tection System in IoT Networks. Cyber Security and Applications, 3, Article 100082.
https://doi.org/10.1016/j.csa.2024.100082

https://doi.org/10.4236/jcc.2025.137009
https://doi.org/10.1007/s00500-011-0791-3
https://doi.org/10.1201/1078.10580530/46108.23.3.20060601/93704.3
https://doi.org/10.1016/j.cose.2022.102908
https://semaphore.uqar.ca/id/eprint/3208/1/Brunel_Rolack_Kikissagbe_novembre2024.pdf
https://semaphore.uqar.ca/id/eprint/3208/1/Brunel_Rolack_Kikissagbe_novembre2024.pdf
https://doi.org/10.1016/j.iotcps.2024.01.003
https://doi.org/10.1016/j.csa.2024.100082

	Methodological Framework for Developing an Adaptive Intrusion Detection System (IDS) Incorporating Sustainability Factors
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	2.1. Intrusion Detection Systems (IDS)
	2.2. Decision Support Systems (DSS) and Their Application in Cybersecurity
	2.3. Existing Solutions for AI-Based Adaptive IDS
	2.4. Efficient Security Management through Software Product Lines

	3. Positioning and Primary Objective of the Article
	4. Proposed Methodological Framework
	5. Case Study: Application of the Methodological Framework to a Smart Home
	6. Results and Discussion
	7. Conclusions
	Conflicts of Interest
	References

