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Abstract 
With the advancement of technology and the growth of human demand, pe-
destrian re-identification is a key technology of intelligent systems and plays 
an important role in daily life. Traditional vision methods have certain limita-
tions, but the millimeter-wave-vision fusion system, which complements the 
advantages of cameras and millimeter-wave radars, plays a greater role and is 
attracting widespread attention. This paper first introduces the effects of vi-
sion camera and millimeter-wave radar camera on human re-identification in 
a single mode, and then discusses the detailed processing required to fuse the 
data of the two modes, including the key technologies of sensor settings, data 
synchronization and sensor calibration. We also review the classification and 
evolution of millimeter-wave radar and visual fusion pedestrian re-identifica-
tion methods, including data-level, feature-level and decision-level methods, and 
review the previous research methods, which will provide great inspiration for 
future research. Finally, this paper discusses the typical applications of millime-
ter-wave vision fusion systems, as well as the key technologies and potential chal-
lenges of fusing millimeter-wave radar and visual data, and looks forward to fu-
ture research directions. 
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1. Introduction 

Pedestrian re-identification (ReID) is a fundamental computer vision task that in-
volves matching images or video sequences of the same person captured by dif-
ferent cameras at different times and locations [1]. With a wide range of promis-
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ing prospects, it plays a crucial role in various applications, including intelligent 
surveillance systems for public safety, human-robot interaction, autonomous driv-
ing perception, and retail analytics [2]. 

Traditionally, ReID research has focused on visual data captured by RGB cam-
eras [3]. Significant advancements have been made leveraging deep learning tech-
niques, leading to impressive performance on benchmark datasets under ideal con-
ditions [4]. However, visual ReID methods face inherent limitations in real-world 
scenarios. Their performance drastically degrades under challenging environmental 
conditions, such as: illumination variations, occlusion, viewpoint changes, low res-
olution, adverse weather, etc. 

To overcome these limitations, researchers have increasingly explored multi-
modal approaches, integrating information from sensors beyond the visible spec-
trum [5]. Among various sensor modalities, millimeter-wave (mmWave) radar has 
emerged as a particularly promising candidate for enhancing pedestrian ReID ro-
bustness [6]. mmWave radar operates in the 30 - 300 GHz frequency range, offer-
ing unique advantages: robustness to environmental conditions, range and veloc-
ity information, penetration capability, privacy preservation, etc. 

However, mmWave radar also has limitations, primarily its low spatial resolu-
tion compared to cameras and the sparsity of its point cloud data, which lacks rich 
texture and color information essential for appearance-based matching. This inher-
ent complementarity between visual cameras and mmWave radar motivates their 
fusion for pedestrian ReID. By combining the strengths of both modalities, fused 
systems aim to achieve more reliable and robust performance across a wider range 
of operating conditions than is possible with either sensor alone [7]. Figure 1 illus-
trates the conceptual framework of mmWave-visual fusion for enhanced pedestrian 
ReID. 

 

 

Figure 1. Conceptual diagram of mmWave radar and visual fusion for pedestrian re-identification. 
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The system integrates data from cameras (capturing appearance) and mmWave 
radar (capturing range, velocity, and operating in adverse conditions) to achieve 
more robust ReID performance compared to single-modality systems. 

This review provides a comprehensive survey of the research landscape in 
mmWave-visual fused pedestrian ReID. The main contributions are: 

1) A clear explanation of the fundamental concepts and the motivation behind 
fusing mmWave radar and visual data for ReID. 

2) A detailed discussion and comparison of techniques for data acquisition, syn-
chronization, calibration, and pre-processing specific to this multi-modal setup. 

3) A systematic classification and critical analysis of existing fusion methods, 
highlighting their evolution and comparative performance. 

4) An identification of key challenges and a discussion of promising future research 
directions. 

This review aims to serve as a valuable resource for researchers entering the 
field and to stimulate further advancements in robust multi-modal perception sys-
tems. The subsequent sections delve into the fundamental theories (Section 2), data 
acquisition and processing (Section 3), fusion methodologies (Section 4), typical 
applications (Section 5), challenges and future directions (Section 6), and finally 
conclude the review (Section 7). 

2. Fundamental Theories about Pedestrian Re-Identification 

This section establishes the theoretical foundation necessary to understand 
mmWave-visual pedestrian ReID. We define pedestrian ReID and multi-modal 
ReID, followed by an analysis of the characteristics of visual and mmWave modali-
ties and the rationale underpinning their fusion. 

2.1. Pedestrian Re-Identification (ReID) 

Pedestrian Re-identification is the task of associating observations of the same in-
dividual across a network of non-overlapping camera views [1]. Given a query 
image of a person of interest captured in one camera view, the objective is to re-
trieve all instances of the same person from a gallery set containing images from 
other camera views. It is fundamentally a matching problem, aiming to determine 
if two observations correspond to the same physical person despite variations in 
viewpoint, pose, illumination, occlusion, and background clutter. Early methods 
relied on hand-crafted features [8], while modern approaches predominantly uti-
lize deep learning to learn discriminative feature representations directly from 
data [3] [4]. 

2.2. Multi-Modal Pedestrian ReID 

Multi-Modal Pedestrian ReID extends the traditional ReID paradigm by leverag-
ing information from multiple sensing modalities to improve matching accuracy 
and robustness [5]. While visual data (RGB) is the most common modality, it can 
be limited under challenging conditions. Integrating complementary sensor data, 
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such as depth maps (RGB-D), thermal imagery (RGB-T), or radio frequency signals 
(like mmWave radar), can provide additional cues to overcome the shortcomings 
of visual sensors alone. The core idea is that different modalities capture distinct 
aspects of a person or the environment, and their fusion can lead to a more com-
prehensive and resilient representation for matching [9]. 

2.3. Characteristics of Visual and mmWave Modalities 

Understanding the individual strengths and weaknesses of visual cameras and 
mmWave radar is crucial for effective fusion. 
 Visual Modality (Cameras): Cameras capture reflected light in the visible spec-

trum, providing rich information about the appearance of objects, including 
color, texture, and fine-grained shape details. This makes them highly effective 
for distinguishing individuals based on clothing, accessories, and general appear-
ance under good conditions. However, they lack direct depth or velocity meas-
urements and their performance is highly susceptible to environmental factors 
like illumination changes, shadows, glare, fog, rain, and occlusions. 

 Millimeter-Wave (mmWave) Radar: mmWave radar emits radio waves and an-
alyzes the reflected signals. Key characteristics include: 

 Direct Range, Velocity Measurement and Angular Information: Provides pre-
cise measurements of the distance and radial velocity of detected points, offer-
ing valuable geometric and motion information. It also presents measures the 
angle of arrival of the reflected signals. 

 Environmental Robustness: Largely unaffected by ambient light, weather con-
ditions, or airborne particles. 

 Susceptibility to Multipath Reflections: Radar signals can bounce off multiple 
surfaces, potentially creating ghost detections or inaccurate measurements in 
cluttered environments. 

 Limited Resolution: Compared to cameras, radar offers lower spatial resolution, 
resulting in sparse point clouds that lack detailed shape or texture information. 
Distinguishing individuals based solely on radar data is challenging. 

2.4. Necessity for Fusion 

The complementary nature of visual and mmWave data forms the core rationale 
for their fusion in pedestrian ReID. Cameras excel at capturing appearance details 
crucial for identification in good conditions, while mmWave radar, which persists 
even when visual data is degraded, provides robust geometric and velocity infor-
mation. 

Fusion aims to leverage these complementary strengths: 
 Enhanced Robustness: Radar data can compensate for visual failures caused by 

poor lighting, adverse weather, or occlusions. For instance, radar can still detect 
and track a pedestrian obscured by fog or rain where a camera would fail. 

 Improved Discrimination: Combining appearance features with motion patterns 
and gait information can lead to more discriminative representations. Unique 
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walking patterns or body shape outlines from radar can help differentiate indi-
viduals who look similar in visual images. 

 Richer Contextual Information: Fusing spatial information from both sensors 
can provide a more accurate 3D understanding of the scene and the pedestrian’s 
position and trajectory within it. 

Compared with systems that rely on a single modality, this combination ensures 
that the application system is more robust and reliable in complex real-world en-
vironments [10]. 

3. Data Acquisition and Processing 

Successfully fusing mmWave radar and visual data for pedestrian ReID depends 
on data acquisition and processing. This section discusses the typical sensor setups, 
critical techniques for data synchronization and sensor calibration, and essential 
pre-processing steps for both modalities. 

3.1. Sensor Setup and Hardware Configuration 

A typical mmWave-visual ReID system involves one or more cameras and mmWave 
radar sensors deployed to cover the area of interest. 
 Cameras: Standard RGB cameras are commonly used. Camera resolution, frame 

rate, lens type, and placement are crucial design parameters influencing visual 
data quality and coverage. 

 mmWave Radar: Commercial off-the-shelf (COTS) mmWave radar sensors, 
often operating in the 77 - 81 GHz band (popular for automotive applications) 
or sometimes 24 GHz or 60 GHz bands, are frequently employed [6]. Key radar 
parameters include range resolution, velocity resolution, angular resolution, field 
of view, and update rate. Multiple radars might be used for wider coverage or 
improved localization accuracy through triangulation. 

 Placement: Sensors are often co-located or placed with known geometric rela-
tionships. Optimal placement aims to maximize overlapping fields of view while 
minimizing mutual interference and ensuring pedestrians are adequately cap-
tured by both sensor types. Figure 2 illustrates a common setup. 

This configuration facilitates calibration and ensures that both sensors observe 
the same scene region, simplifying data association. The diagram should also pre-
sent the subsequent processing steps. 

3.2. Data Synchronization 

Temporal alignment of data streams from cameras and radars is critical for accu-
rate fusion. Mismatched timestamps can lead to incorrect associations between vis-
ual features and radar points corresponding to the same pedestrian at a given mo-
ment. Common synchronization techniques include: 
 Hardware Triggering: A dedicated signal generator triggers both the camera ex-

posure and radar chirp generation simultaneously. This offers the highest pre-
cision but requires specialized hardware and physical connections. 
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Figure 2. Example of a co-located mmWave radar and camera sensor setup. 

 
 Software Synchronization: Sensors timestamp their data using their internal 

clocks. A central processing unit collects data and aligns streams based on these 
timestamps. Network time protocol (NTP) or precision time protocol (PTP) 
can be used to synchronize system clocks across a network, improving accuracy 
over unsynchronized clocks but potentially suffering from network latency and 
jitter. 

 Data-Driven Synchronization: Analyzing correlations in the data itself (e.g. 
correlating motion patterns detected by both sensors) can sometimes be used 
for coarse alignment, often as a refinement step after initial clock-based syn-
chronization. 

3.3. Sensor Calibration 

Spatial alignment, or calibration, is necessary to establish the geometric relationship 
between the coordinate systems of the camera(s) and the radar(s). This allows pro-
jecting radar points onto the image plane or transforming visual features into the 
radar’s coordinate system, enabling data association and fusion. 
 Camera Intrinsic Calibration: Determines the internal parameters of the cam-

era. Standard methods like Zhang’s chessboard pattern calibration [11] are widely 
used. 

 Radar-Camera Extrinsic Calibration: Determines the rigid body transformation 
between the radar’s coordinate system and the camera’s coordinate system. 
Common approaches include: 
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 Target-Based: Using specific calibration objects (e.g. corner reflectors, spheres, 
calibration boards) visible to both sensors [12]. The 3D position of the target 
measured by radar is matched with its corresponding 2D projection in the cam-
era image to solve for the extrinsic parameters. 

 Targetless: Exploiting natural features or motion patterns in the scene that are 
detectable by both sensors, avoiding the need for dedicated calibration targets 
[13]. This is often more practical but can be less accurate. 

In multi-sensor systems, the collaboration between millimeter-wave radar and 
RGB cameras faces three core challenges: calibration, synchronization, and data 
association. Hardware-level synchronization can achieve microsecond-level pre-
cision but is costly, while software synchronization (NTP/PTP) requires motion 
compensation algorithms to correct the data misalignment caused by millisecond-
level delays. In terms of external parameter calibration, traditional checkerboard 
calibration has high accuracy but is limited to static environments, whereas target-
less calibration is flexible but relies on rich natural feature matching. In data associ-
ation, the modal differences between the radar’s sparse point cloud and the camera’s 
dense image can easily lead to target mismatches, necessitating the fusion of prob-
abilistic models and deep learning features to enhance consistency. In practical 
use, it is essential to balance cost and performance: first, use a calibration board 
for precise calibration and automatically adjust during operation; prioritize hard-
ware synchronization, but if the budget is insufficient, resort to software synchro-
nization with algorithm compensation. Ultimately, success depends on the collab-
oration between hardware and algorithms to adapt to environmental changes in 
real-time. 

3.4. Data Pre-Processing 

Raw data from cameras and radar require significant pre-processing before fu-
sion. 

Visual Data Pre-processing includes the following context: 
 Pedestrian Detection: Identify pedestrian locations in the image using object de-

tectors (e.g. YOLO [14], Faster R-CNN [15]). 
 Bounding Box Generation: Extract image patches corresponding to detected 

pedestrians. 
 Background Subtraction: Isolate foreground pixels corresponding to moving 

objects. 
 Normalization: Adjust image brightness, contrast, and size. 

mmWave Radar Data Pre-processing including the following context: 
 Point Cloud Generation: Radar signal processing (FFT, CFAR detection) gen-

erates a point cloud, where each point has coordinates (x, y, z), radial velocity 
(v). 

 Noise Filtering: Remove spurious detections caused by noise or clutter using 
techniques like density-based spatial clustering of applications with noise 
(DBSCAN) [16] or statistical outlier removal. 
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 Clustering: Group radar points belonging to the same object. Algorithms like 
DBSCAN or Euclidean clustering are common. 

 Tracking: Associate detections over time using filters like Kalman Filters [17] 
or particle filters to estimate pedestrian trajectories and smooth velocity meas-
urements. This can help group points belonging to a single pedestrian over 
time. 

Effective pre-processing cleans the raw data, extracts relevant information (e.g. 
pedestrian bounding boxes, clustered radar points associated with pedestrians), 
and prepares it for subsequent fusion stages. 

4. Classification and Evolution of Pedestrian  
Re-Identification Methods Using Millimeter-Wave  
Radar and Visual Fusion 

Pedestrian re-identification (ReID) is a critical task in computer vision and sensor 
fusion, aiming to recognize and track the same individual across different views 
or time instances. This section classifies fusion methods into data-level, feature-level, 
and decision-level approaches, reviews representative studies, and discusses their 
evolution, supported by comparative tables. 

4.1. Data-Level Fusion 

Data-level fusion involves merging raw or minimally processed data from mmWave 
radar and visual sensors before detection or identification. This approach leverages 
radar’s precise localization to generate regions of interest (ROI) in images, which 
are then processed for re-identification. Early methods relied on straightforward 
data integration, but recent advancements incorporate deep learning for enhanced 
performance. 

One of the earliest works, Milch and Behrens [18], proposed a method that uses 
a radar-generated target list to define the ROIs, and then verifies the pedestrian 
through visual profile analysis. This approach was computationally efficient but 
limited by the simplicity of visual features. Guo et al. [19] advanced this by intro-
ducing intra-frame clustering and inter-frame tracking, using radar data to filter 
noise and guide visual confirmation. Their method improved robustness in noisy 
environments. 

More recently, Wang et al. [20] developed a three-layer fusion model integrat-
ing radar and monocular vision, using a visual attention mechanism to prioritize 
ROIs. This method enhanced detection in dynamic scenes. Similarly, Streubel and 
Yang [21] explored data-level fusion for indoor pedestrian tracking, projecting ra-
dar points onto stereo camera images. Their approach achieved high localization 
accuracy but required precise sensor calibration. 

Data-level fusion excels in leveraging raw data complementarity but faces chal-
lenges in computational complexity and sensor synchronization. Recent studies, 
such as Plascencia et al. [22], have begun integrating deep learning into process 
fused data, improving scalability. Table 1 compares key data-level fusion meth-
ods. 
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Table 1. Comparison of data-level fusion methods. 

Study Year Technique Application Strengths Weaknesses Reference 

Milch and Behrens 2001 
Radar target lists,  

visual contour 
Detection 

Simple,  
low computation 

Limited feature 
complexity 

[18] 

Guo et al. 2018 
Clustering,  

visual confirmation 
Detection/ 
Tracking 

Noise reduction 
Calibration  
sensitivity 

[19] 

Wang et al. 2011 
Three-layer fusion,  

attention 
Detection 

Dynamic scene  
handling 

High computation [20] 

Streubel and Yang 2016 
Radar projection,  

stereo vision 
Tracking High accuracy 

Calibration  
complexity 

[21] 

Plascencia et al. 2023 Deep learning fusion Detection Scalable Data requirements [22] 

4.2. Feature-Level Fusion 

Feature-level fusion extracts features from radar and visual data separately, and then 
combines them for re-identification. This approach has gained prominence with 
deep learning, enabling models to learn complex feature representations and fusion 
strategies dynamically. 

Nobis et al. [23] proposed a deep learning architecture, which fuses projected 
radar data with camera images within network layers. This method improved 2D 
detection accuracy by learning optimal fusion levels. Plascencia et al. [22] extended 
this concept, transforming radar and lidar data into 2D grayscale images and fus-
ing them with RGB images using a SegNet-based network. Their approach enhanced 
pedestrian detection in cluttered environments. 

In addition to that, attention mechanisms have further refined feature-level fu-
sion. Li et al. [24] introduced an attention-based network for pedestrian liveness 
detection, combining radar cross-section (RCS) features with visual data to distin-
guish real pedestrians from static images. Similarly, Yu et al. [25] proposed a dual 
cross-attention module (DCAM) for feature fusion, initially for vehicle detection 
but adaptable to pedestrians. Liu et al. [26] developed a multi-modal network in-
tegrating radar gait features with visual appearance, achieving robust re-identifi-
cation in occluded scenes. 

Feature-level fusion benefits from deep learning’s ability to model complex re-
lationships but requires substantial training data and computational resources. Ta-
ble 2 summarizes key methods. 

 
Table 2. Comparison of feature-level fusion methods. 

Study Year Technique Application Strengths Weaknesses Reference 

Nobis et al. 2019 CRF-Net, deep fusion Detection Adaptive fusion Data-intensive [23] 

Plascencia et al. 2023 SegNet, grayscale fusion Detection Clutter robustness Computation-heavy [22] 

Li et al. 2022 Attention, RCS features Liveness Detection High specificity Training complexity [24] 

Yu et al. 2025 DCAM fusion Detection Flexible Limited pedestrian focus [25] 

Liu et al. 2024 Gait and visual fusion ReID Occlusion handling Data requirements [26] 
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4.3. Decision-Level Fusion 

Decision-level fusion involves independent detection or identification by each sen-
sor, followed by result integration. This modular approach is robust to sensor fail-
ures and suitable for real-time applications. 

Yang et al. [27] proposed a decision-level fusion method using an unscented Kal-
man filter (UKF) for radar data and YOLOv5 with DeepSORT for visual tracking, 
matching targets in polar coordinates. This method achieved high tracking preci-
sion. An earlier study [28] introduced a multi-sensor tracking algorithm with back-
projection and multi-hypothesis association, enhancing trajectory accuracy. Zhao 
et al. [29] focused on nighttime detection, combining infrared vision and radar with 
an improved YOLOv5 and extended Kalman filter. 

Additional studies include Graves et al. [30], who used decision-level fusion for 
pedestrian collision warning, integrating radar localization with visual classifica-
tion, and Zhu et al. [31], who developed a track-to-track fusion method for multi-
pedestrian tracking. These methods prioritize simplicity and robustness but may 
miss early-stage data synergies. Table 3 compares key approaches. 

 
Table 3. Comparison of decision-level fusion methods. 

Study Year Technique Application Strengths Weaknesses Reference 

Yang et al. 2023 
UKF, 

YOLOv5/DeepSORT 
Tracking High precision Limited synergy [27] 

Cui et al. 2021 
Back-projection,  

association 
Tracking Trajectory accuracy Complexity [28] 

Zhao et al. 2023 YOLOv5, Kalman filter Nighttime Detection Low-light robustness Data association [29] 

Graves et al. 2022 Radar-visual matching Collision Warning Simplicity Limited integration [30] 

Zhu et al. 2022 Track-to-track fusion Tracking Multi-target handling Synchronization [31] 

4.4. Evolution of Methods 

The evolution of mmWave radar and visual fusion for pedestrian ReID reflects 
advancements in sensor technology and algorithms. Early methods (2000s) fo-
cused on data-level fusion, using radar to guide visual processing in simple sce-
narios. The 2010s saw decision-level fusion gain traction for its robustness, as seen 
in collision warning systems. Since 2015, feature-level fusion has dominated, 
driven by deep learning’s ability to model complex multi-modal relationships. Fu-
ture directions may involve end-to-end deep learning models and efficient han-
dling of sparse radar data, addressing real-time constraints in autonomous sys-
tems. 

4.5. Typical System Analysis 

To better illustrate the fusion approach, we present a detailed explanation of sev-
eral representative re-identification methods. This will facilitate a more comprehen-
sive understanding of the advantages offered by millimeter-wave radar and vision 
fusion for re-identification tasks. 
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Zheng et al. [1] proposed the pedestrian alignment network (PAN) that utilizes 
two convolutional branches (the base branch and the alignment branch) and an 
affine estimation branch to simultaneously address pedestrian alignment and recog-
nition issues. The base branch deploys a pre-trained ResNet-50 model on ImageNet 
and removes the final fully connected (FC) layer. The alignment branch consists 
of 3 ResBlocks and 1 average pooling layer, also adding an FC layer to predict mul-
ticlass probabilities. The affine estimation branch receives two activated input ten-
sors from the base branch. The Res4 Feature Maps contain shallow feature maps 
of the original image, reflecting local pattern information; the Res2 Feature Maps 
are closer to the classification layer and encode attention and semantic cues for 
pedestrian recognition. 

Zheng et al. [2] proposed a deep learning model that combines the advantages 
of verification models and recognition models. Establishing relationships through 
pairwise comparisons, such as partial matching and contrastive loss, is performed. 
Contrastive loss directly computes the Euclidean distance between two embeddings. 
In the recognition model, there exists an implicit relationship between the learned 
embeddings constructed using cross-entropy loss. The cross-entropy loss can be 
used. When the directions of the embedding vectors are similar, the network con-
verges, thereby maintaining the similarity of the embeddings. The proposed model 
simultaneously utilizes both types of loss functions and benefits from pre-training 
on ImageNet, thereby overcoming the limitations of a single model. 

In the performance evaluation of data-level fusion methods, computational com-
plexity and real-time indicators have significant advantages. Regarding the issue of 
computational complexity, existing research mainly focuses on two dimensions: 
noise suppression and accuracy optimization. For example, Yu et al. [25] utilized 
modules to reduce technical complexity, providing a reference technical path for 
complexity control. In terms of real-time performance, most studies present a pro-
cessing delay of less than 50 ms, which is largely attributed to the inherent char-
acteristics of data-level fusion due to operating directly at the raw data layer, thus 
avoiding the time overhead associated with higher-level processing, such as feature 
extraction and decision reasoning. 

Zheng et al. [1] adopted a multi-branch architecture (base branch, aligned branch, 
affine estimated branch), which has a higher complexity, resulting in a surge in 
memory and computation, and its multi-task joint optimization (recognition, 
alignment, and feature learning) further increases the training complexity. In ad-
dition, due to high-resolution feature map processing and multi-branch parallel 
computing, PAN has higher hardware requirements, resulting in large inference 
delays. The model proposed by Zheng et al. [2] fused the comparison loss of the 
verification model (based on Euclidean distance) and the cross-entropy loss of the 
recognition model, although it is manifested in the complexity of dual-objective 
optimization and high-dimensional embedding calculation. The transfer learning 
of the ImageNet pre-trained model (such as ResNet) reduces the training cost. In 
general, the model proposed by Zheng et al. [2] has made a breakthrough in com-
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plexity and real-time, which can be used as a good reference for similar processing 
of complexity and real-time in this project to achieve more accurate pedestrian 
re-identification. 

Although the constructed models of the two are different, both have improved 
the accuracy of pedestrian re-identification, providing certain insights and guid-
ance for the fusion re-identification system. 

5. Typical Applications of Pedestrian Re-Identification  
Methods Using Millimeter-Wave Radar and Visual  
Fusion 

Multi-modal perception technology utilizing millimeter-wave (mmWave) radar has 
increasingly become a significant focus and an important field of study [32], which 
supports critical applications in autonomous driving, smart cities, and surveillance. 
Object detection and tracking based on radar-camera fusion have also gained grow-
ing attention [33]. We investigate these references, hoping to make a greater con-
tribution to research on fusion-based pedestrian re-identification. 

5.1. Nighttime Pedestrian Detection 

Nighttime or low-light conditions challenge visual sensors, but radar’s penetration 
ability ensures reliability. Zhao et al. [29] proposed a decision-level fusion frame-
work using infrared vision and radar, achieving high accuracy in dark environments. 
Similarly, Zhang et al. [11] combined thermal imaging with radar for nighttime 
ReID, improving robustness.  

5.2. Pedestrian Tracking 

Real-time pedestrian tracking supports path planning and collision avoidance. Yang 
et al. [27] developed a decision-level fusion method using UKF and DeepSORT, en-
suring precise trajectory tracking. Zhu et al. [31] introduced track-to-track fusion 
for multi-pedestrian scenarios, handling occlusions effectively. These methods ena-
ble vehicles to anticipate pedestrian movements. 

5.3. Impact and Future Directions 

Fusion-based ReID methods significantly enhance safety and reliability in auton-
omous systems. Studies like [28] demonstrate reduced false positives compared to 
single-sensor approaches. Future advancements may leverage datasets and focus 
on real-time processing and adverse weather performance. 

6. Key Technical Challenges and Future Research  
Directions 

Despite the promising potential of fusing mmWave radar and visual data for ro-
bust pedestrian ReID, several significant technical challenges hinder its widespread 
adoption and performance optimization. Addressing these challenges constitutes 
key future research directions. 
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6.1. Key Technical Challenges 

1) Lack of Dedicated Benchmarks: The absence of large-scale, diverse, and pub-
licly available datasets specifically designed for mmWave-visual pedestrian ReID 
(with ground-truth IDs across non-overlapping views under various conditions) 
is arguably the biggest obstacle. This impedes standardized evaluation, fair compar-
ison of methods, and the training of data-hungry deep learning models. 

2) Data Heterogeneity and Representation: Effectively fusing the sparse, geomet-
ric, and point cloud data from radar with the dense, semantic, and appearance-
rich pixel data from cameras remains fundamentally challenging. Finding optimal 
representations for radar data that facilitate effective fusion with visual features is 
crucial. 

3) Radar Data Quality and Interpretation: mmWave radar data can be noisy, 
suffer from multipath reflections (ghost targets), and have low angular resolution 
compared to cameras. Sparsity makes it difficult to infer detailed shapes or associate 
points reliably to specific body parts for fine-grained gait analysis or ReID, espe-
cially in crowds. Extracting discriminative features solely from sparse radar points 
is non-trivial. 

4) Complexity vs. Real-Time Performance: Sophisticated hybrid fusion models 
(e.g. using transformers or complex attention mechanisms) often achieve better 
performance but come with high computational costs, making real-time deployment 
on resource-constrained platforms (like robots or edge devices) challenging. 

5) Generalization and Domain Adaptation: Models trained on data from one 
specific sensor setup, environment, or weather condition may not generalize well 
to others (domain shift). Variability in radar hardware, camera types, environ-
mental clutter, and pedestrian densities poses significant generalization chal-
lenges. 

6.2. Future Research Directions 

1) Benchmark Dataset Development: Creating large-scale, diverse mmWave-vis-
ual pedestrian ReID datasets covering various environments (indoor/outdoor), 
weather conditions, pedestrian densities, and sensor viewpoints is paramount. In-
cluding annotations for persistent IDs across non-overlapping views is essential. 

2) Advanced Fusion Architectures: Exploring novel deep learning architectures 
tailored for heterogeneous sensor fusion. This includes investigating more advanced 
transformer variants, graph neural networks specifically designed for radar point 
cloud structure and radar-visual interaction, and perhaps integrating neural render-
ing techniques to bridge the modality gap. 

3) Exploiting Richer Radar Information: Moving beyond basic point clouds (x, 
y, z, v). Research into effectively incorporating radar micro-Doppler signatures for 
gait recognition utilizing the full Range-Azimuth-Elevation-Doppler radar tensor, 
or learning discriminative features directly from raw radar ADC data holds signifi-
cant promise. 

4) Real-Time Optimization: Studying model compression, quantization, know- 
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ledge distillation, and efficient network architectures to enable real-time execution 
of complex fusion models on edge devices. 

5) Cross-Modal Adaptation: Developing geometry-aware fusion models with 
3D pose estimation to overcome the core challenge of view-invariant matching in 
non-overlapping sensor configurations, while addressing domain shift through 
adversarial feature representation. 

Overcoming these challenges and pursuing these research directions will be cru-
cial for unlocking the full potential of mmWave-visual fusion and realizing truly 
robust and reliable pedestrian ReID systems for real-world applications. 

7. Conclusions 

Pedestrian re-identification is a critical technology for intelligent systems, but tra-
ditional visual methods struggle in challenging real-world conditions. This review 
has surveyed the emerging field of mmWave-visual fusion for pedestrian ReID, mo-
tivated by the complementary strengths of cameras and mmWave radar. 

We began by outlining the fundamental concepts of ReID, multi-modal ReID, 
and the characteristics of the visual and mmWave modalities, establishing the 
strong rationale for their fusion. We then discussed the essential practical aspects 
of data acquisition, including sensor setup, synchronization, calibration, and pre-
processing techniques crucial for successful integration. The core of the review pro-
vided a systematic classification and analysis of fusion methodologies, tracing their 
evolution from early and late fusion approaches to the currently dominant inter-
mediate/hybrid fusion strategies, particularly those leveraging deep learning, atten-
tion mechanisms, and graph networks. We highlighted the importance of experi-
mental validation and explained the lack of dedicated ReID benchmarks. Finally, 
we identified key technical challenges, including data scarcity, heterogeneity, radar 
limitations, complexity, and generalization issues. Based on these challenges, we 
proposed promising future research directions, emphasizing benchmark creation, 
advanced fusion architectures, richer radar feature utilization, self-supervised learn-
ing, and real-time optimization. 

In conclusion, fusing mmWave radar and visual data offers a compelling path-
way towards achieving robust, all-weather, and reliable pedestrian re-identification 
systems. While significant challenges remain, the ongoing advancements in sensor 
technology, deep learning, and multi-modal fusion techniques promise substan-
tial progress in this important research area, paving the way for more capable per-
ception systems in surveillance, robotics, and autonomous driving. 
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