
Journal of Computer and Communications, 2025, 13(3), 86-102
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2025.133007 Mar. 26, 2025 86 Journal of Computer and Communications

Reverse Engineering Approach for Analyzing
and Transforming Graphical User Interface
Source Code into Class Diagrams

Herifidy Malalaniaina Andrianaivo, William Germain Dimbisoa, Thomas Mahatody

School of Computer Science, University of Fianarantsoa, Fianarantsoa, Madagascar

Abstract
In the field of software engineering, the design phase occupies a pivotal posi-
tion, serving as a critical juncture in ensuring the quality, maintainability, and
efficiency of software systems. The creation of software typically begins with
the design phase, which is then succeeded by the production phase. In this
context, model-driven engineering (MDE) represents a robust methodology
for enhancing the development of complex systems by situating models at the
core of the process. This method is concerned with the creation and transfor-
mation of models, progressing from abstract to concrete representations. To
illustrate, in the context of MDE, models can be transformed from the Unified
Modelling Language (UML) to a graphical interface. In contrast, reverse engi-
neering such as MDE-based reverse engineering is a process that aims to un-
derstand, analyse and reconstruct design artifacts from an existing system.
This approach involves transforming concrete models into abstract models.
This paper proposes an innovative approach to reverse engineering based on
software design using the graphical user interface model. More specifically,
this project involves the transformation of a WIMP (Window, Icon, Menu and
Pointer) graphical user interface into a class diagram. To do this, we will use a
syntactic analysis method of the source code based on the Java language and
regular expressions, and the Atlas Transformation Language (ATL) will be
used to transform the graphical interface into a class diagram.

Keywords
MDE, Reverse Engineering, Source Code Parsing, Regex, ATL, Class
Diagrams

1. Introduction

Design is a crucial phase in software engineering. It precisely defines the detailed

How to cite this paper: Andrianaivo, H.M.,
Dimbisoa, W.G. and Mahatody, T. (2025)
Reverse Engineering Approach for Analyz-
ing and Transforming Graphical User Inter-
face Source Code into Class Diagrams. Jour-
nal of Computer and Communications, 13,
86-102.
https://doi.org/10.4236/jcc.2025.133007

Received: January 30, 2025
Accepted: March 23, 2025
Published: March 26, 2025

Copyright © 2025 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2025.133007
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jcc.2025.133007
http://creativecommons.org/licenses/by/4.0/

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 87 Journal of Computer and Communications

requirements, the functionalities to be implemented and the concepts of the soft-
ware to be created. It allows potential problems to be identified and resolved early
in the project, ensures the consistency and quality of the final product, and opti-
mises resources and lead times.

From this perspective, MDE is emerging as a powerful approach to strengthen
these aspects by placing models at the centre of the development process. MDE
focuses on the creation and transformation of models, facilitating the transition
from abstract to concrete representations, and thus from design to implementa-
tion. For example, this approach allows models derived from the UML to be trans-
formed into functional graphical interfaces, illustrating the potential of MDE to
improve the quality and efficiency of the development of complex systems.

Many researches in MDE focus on the generation of HCI from autonomous
models [1]-[3]. The creation of HCI is therefore an essential stage in the develop-
ment of modern software, as it determines the way in which users interact with
computers. Currently, it is common to come across software projects where exist-
ing systems lack adequate documentation or present absolute interfaces. So, in the
face of rapidly evolving technologies and user requirements, it is essential to re-
design, update or reuse HCI.

Reverse engineering [4] is a method of analyzing an existing product or system
to understand its structure, operation and behaviour. The process involves break-
ing down the product into its fundamental components and creating an abstract
representation or documentation of the system based on this analysis. Reverse en-
gineering can be used to modernize interfaces by transforming HCI models into
class diagrams. Transforming an HCI [5] model into a class diagram is a crucial
step, as the class diagram is a fundamental component of the UML. It plays an
important role in software engineering for the design and documentation of soft-
ware systems. In addition, in object-oriented programming, the dominant trend
in software development, the class diagram helps to organize code into classes and
objects. By visualizing classes and their relationships, developers can design sys-
tems that are more modular, reusable and easy to maintain.

Furthermore, transforming the graphic user interface (GUI) into a class dia-
gram poses significant challenges in reverse engineering, as these two models are
not compatible. Obtaining a class diagram, including the types of relationships
between classes and multiplicities, from the GUI requires clear methods.

Given the incompatibility between the graphical interface model and the UML
model [6], this research aims to create a methodical approach for reverse engi-
neering graphical interfaces of the window, icon, menu and pointer types into
UML diagrams. The aim of this research is to analyze the source code of graphical
interfaces, examining elements such as buttons, panels, window names and events.
This analysis will make it possible to transform the results obtained into a UML
model, thus facilitating the conversion of the graphical interfaces into coherent
and usable UML representations.

For this project, we will use the reverse engineering method. First, we will pro-

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 88 Journal of Computer and Communications

ceed the parsing of the GUI source code to extract the various elements needed to
create the class diagram. This includes class names, attributes, methods, relation-
ships between classes and multiplicities, among others. This analysis will be car-
ried out using regular expressions to accurately identify and extract these ele-
ments. Secondly, we will transform the results of this syntactic analysis into an
instance of the Ecore metamodel using the Java language. Finally, we will trans-
form the graphical interface into a class diagram using ATL [7].

2. Methodologies

This section presents a review of previous research in the area of reverse engineer-
ing, parsing and transforming GUI source code into UML class diagrams. It dis-
cusses existing methods and situates the present work in relation to this existing
body of knowledge.

2.1. Reverse Engineering

Reverse engineering is a methodology frequently employed in model-driven en-
gineering projects. [8] presented an illustrative example of reverse engineering,
which was employed with the objective of facilitating the development and
maintenance of software comprising substantial user interface source code. The
GUISURFER tool [8] [9], a reverse engineering tool that automatically extracts
behavioural models from GUI source code, was employed in this instance. The
tool is also capable of automating certain tasks associated with the analysis of these
models; however, it is unable to generate a class diagram from the GUI.

[10] employs a model-based architectural approach to facilitate comprehension
of complex software systems throughout their evolution and maintenance. In ac-
cordance with [10] methodology, the conversion of GUI source code into a dia-
gram is feasible; however, the requisite tool for transforming source code into a
UML model is currently unavailable.

In their study, [11] employed reverse engineering to construct a class diagram
from the graphical user interface, which was represented in the form of a screen
capture. In this study, optical character recognition (OCR) [12] and Petri nets
were employed to transform the graphical interface into a class diagram. This ap-
proach results in the generation of a class diagram; however, it lacks the requisite
details pertaining to the recovery of the types of relationship between classes and
stereotypes.

In this study, we put forth a novel methodology for parsing with regular expres-
sions and transforming GUI source code into UML class diagrams. The method
is distinguished by its flexibility and efficiency in source code transformation.

2.2. Parsing Analysis

Parsing analysis represents a fundamental stage in the processing and execution
of programs. It is employed to ascertain whether the source code adheres to the
grammatical conventions of the programming language and to transform this

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 89 Journal of Computer and Communications

code into an organised data structure for subsequent processing stages. The utili-
sation of decomposition and composition methodologies, in conjunction with
tools such as Yacc [13], Bison [14] and ANTLR [15], facilitates the development
of robust and high-performance parsers for an array of programming languages.

Parsing is the process of identifying the structure of a text, which is often a sen-
tence in a natural language. It is also used for computer programs. In the context
of computer science, parsing involves the examination of the contents of a text or
file in order to ascertain its syntax or to identify the requisite elements. In the
context of source code, [16] employed source code analysis and transformation
techniques, with a particular emphasis on tools for the description, analysis and
transformation of source code. This approach is concerned with the transfor-
mation of source code, employing techniques of syntactic analysis and code re-
writing. However, it does not address the specific issue of transforming source
code into UML class diagrams.

2.3. Regular Expressions

Regex are powerful tools that are used to identify and manipulate text patterns in
character strings. Despite their occasionally intricate structure, regular expressions
facilitate the formulation of precise and efficient text queries. They are a crucial tool
in modern word processing and programming languages, including the retrieval of
social media data using the Social Media Developers API and Regex [17].

Table 1 provides an illustration of the process of recovering a line of code in
Java using regular expressions. In this example, a regular expression was employed
to identify and extract the declarations of graphical components, including JBut-
ton, JTextField, JFrame, and JLabel. This approach automates the analysis of the
source code, thereby facilitating the transformation of graphical elements into
UML representations. Furthermore, the utilisation of regular expressions is highly
advantageous for the processing of extensive code volumes, circumventing the
potential inaccuracies inherent to manual analysis.

Table 1. Example of Regex-based code line retrieval in Java Swing.

Graphics Component Line of code to be analyzed Regular expressions

Boutons (Jbutton) JButton myButton = new JButton("Click"); JButton\s+(\w+)\s*=\s*new\s+JButton\s*\((.*?)\)\s*;

Field (Jlabel) JLabel myLabel = new JLabel("name: "); JLabel\s+(\w+)\s*=\s*new\s+JLabel\s*\((.*?)\)\s*;

Text field (JtextField) JTextField myTextField = new JTextField(20); JTextField\s+(\w+)\s*=\s*new\s+JTextField\s*\((.*?)\)\s*;

Window (Jframe) JFrame frame = new JFrame("Customer") JFrame\s+(\w+)\s*=\s*new\s+JFrame\s*\((.*?)\)\s*;

Class name (public
class)

public class Example public\s+class\s+(\w+)\s*{?

Table 2 presents an example of a regular expression used in the analysis of web

page source code, illustrating its capability to extract specific information beyond
graphical components.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 90 Journal of Computer and Communications

Table 2. Example of extracting web code lines using Regex.

Component/or test Line of code to be analyzed Regular expressions

Page Title <title>MyTitle</title> <title>(.*?)</title>

button <button type="submit">Register</button> <button(?:\s+[^>]*)?>(.*?)</button>

label <label for="email">Email:</label> <label for=\" (.*?)\">(.*?)</label>
Testing the presence
of a price (in $ or €)

<p>Price: $19.99</p> [$€]\\d+(\\.\\d+)?

To test for the
existence of an email

address
Exemple33@gmail.com

[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-
Z]{2,}

To test for the
presence of the word

“name”
<h2 Id="name_product"> Status in Malagasy Art </h2> <*=\"name

Redirection managed
by HTML

Register href=\" ([^"]*)\ "

Redirection managed
by JavaScript

docu ment.getElementById('registerButton').onclick =
function() { window.location.href = 'shop.html'; };

window\.location\.href\s*=\s*'([^']*)' or
window\.location\s*=\s*'([^']*)'

To test for the
presence of an image

<img src="mintour-banque-dimage-photo-336.jpg"
alt="Product">

<img\s*[^>]*src\s*=\s*['"][^'"]+\.(jpg|jpeg|png|
gif)['"][^>]*>

2.4. Transformation of Source Code into a Class Diagram

The conversion of source code into a class diagram represents a fundamental as-
pect of systems design, particularly in the context of object-oriented systems. They
play a pivotal role at various stages of software development, offering a visual rep-
resentation of data structures and relationships between disparate classes within
a system. The automatic transformation of source code into class diagrams facili-
tates a more comprehensive understanding, documentation and maintenance of
software systems. This paper presents an overview of existing approaches to the
automatic transformation of source code into class diagrams, an examination of
the tools that are currently available for this purpose, and a discussion of the chal-
lenges that have been encountered. It then proposes a new method that is based
on syntactic analysis and regular expressions.

Table 3. Existing and proposed approaches.

Methodology Transformation tool Graphical interface to class diagram

Approach of Saraiva
et al., (2012) [8]

GUISURFER does not transform

Approach of Favre, (2012)
[10]

NEREUS
only a theoretical approach, not a

transformation

Approach of Muhairat
et al., (2011) [11]

OCR, Petri nets
contains the transformation, but the

class diagram still needs to be
completed

Proposed approach Regex, Java and ATL
Transformation of the graphical

interface into a class diagram

Table 3 illustrates the extant approaches, together with the tools used for model

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 91 Journal of Computer and Communications

transformation. The approach proposed by Saraiva et al., (2012) [8] does not in-
clude the transformation of the graphical interface into a class diagram. The ap-
proach proposed by Favre (2012) [10] presents a theoretical framework but lacks
a detailed explanation of the transformation process. Similarly, the approach put
forth by Muhairat et al. (2011) [11] outlines the transformation but lacks a com-
prehensive methodology for identifying the types of relationships between classes
and the associated stereotypes.

In order to achieve this, we put forward a syntactic analysis approach for source
code, based on regular expressions, and a Java transformer to transform the anal-
ysis result into a UML class diagram. Figure 1 presents an overview of the meth-
odology employed in this research project.

Figure 1. Overview of the proposed approach.

Step 1: Parsing source code with regex,
Step 2: creation of the Ecore metamodel instance,
Step 3: ATL transformation,
MM: Metamodel, ATL: Atlas Transformation Language, UML: Unified Model-

ing Language.
Figure 1 illustrates the methodology employed in this study. Initially, the syn-

tax of the GUI source code is analyzed using regular expressions, a process con-
ducted in Java. Subsequently, an instance of the Ecore metamodel is created in
Java. Finally, the instance of the Ecore metamodel is transformed into a UML class
diagram utilising ATL.

Figure 2 provides a more detailed explanation of the stages involved in the ap-
proach.

The three stages, as illustrated in Figure 2 will be discussed in greater detail
below.

First step: The initial stage of the process is to parse the source code of the GUI
using regex. In this phase, specific information from the GUI source code is ex-
tracted, including button names and window titles, through the use of regular ex-
pressions.

In the context of our project, regex functionality is employed for the purpose of
identifying and subsequently retrieving the requisite information within the given

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 92 Journal of Computer and Communications

line of code. In order to detect the button, the following Java code with regular
expressions is employed: String buttonRegex = "\\bJButton\\b\\s*\\w*\\s*=\\
w*\\s*=\\ w*\\s*=\\ s*JButton\\s*\\(";.

Figure 2. Three steps in the current approach.

Once we have extracted the line of code containing, for example, the declaration
of a button, we can use the split() method to extract the useful information. Look
at the following line of code: “JButton btn_Purchase = new JButton(“Purchase”);”.
To extract only the name of the “Purchase” button, we can use the split() method.

By employing the split function with the double quote character as the separa-
tor, specifically String[] parts = line.split("\""), an array is generated in which the
elements between the quotes are isolated. Consequently, to retrieve the string be-
tween the quotes, the expression String buttonLabel = parts [1]; is utilized. Finally,
the retrieved value can be displayed with the System.out.println(“Button:” + but-
tonLabel.trim()) statement.

Second step: The second step is the creation of the Ecore metamodel instance.
This stage involves the generation of instances of the Ecore metamodel based on
the outcomes of the syntactic analysis conducted in the preceding stage. The final
product will be a XML Metadata Interchange (XMI) file, in the .xmi format.

Third step: the third step is as follows, the graphical interface is transformed
into a class diagram using the ATL transformation language.

ATL is a rule-based model transformation language [7] developed within the
context of the Eclipse Modeling Framework (EMF) initiative. ATL enables the
specification of transformations between models written in metamodels compli-
ant with the Meta Object (MOF) Facility standard.

As part of this research, we use ATL to transform the result of the previous step,
in particular the Gui_file.xmi file, into a class diagram. In fact, the Gui_file.xmi
file obtained in the previous step is a metamodel that corresponds to the graphical
interface model to be transformed. The transformation is then performed using
this file as the source model.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 93 Journal of Computer and Communications

The transformation of the graphical interface into a class diagram using ATL is
shown in Figure 3.

Figure 3. Transformation of the graphical interface into a class diagram using ATL. MM:
Metamodel, ATL: Atlas Transformation Language, UML: Unified Modeling Language,
GUI: Graphical User Interface.

Figure 3 illustrates that the source model aligns with the source metamodel, as

represented by the Gui_file.xmi file. This modeling is based on the Ecore meta-
model, which serves as the foundation for modeling within EMF.

2.5. Transformation Rules

Transformation rules are directives or criteria that are employed in order to facil-
itate the conversion of one model into another. In the context of ATL, transfor-
mation rules [18] are defined with the objective of establishing a consistent and
precise association between the structures and properties of source models and
those of target models. In this project, the transformation rule is typically applied
during the parsing of the source code. ATL merely transforms the retrieved infor-
mation into a UML class diagram.

In the case of this work, the source metamodel, Gui_file.xmi, contains parsing
results obtained using regular expressions. The transformation rules comprise the
recovery of elements from the source metamodel with a view to converting them
into a class diagram.

The establishment of transformation rules is of paramount importance in the
conversion of source models into target models that align with the requisite met-
amodels. In the process of transforming GUI source code into UML class dia-
grams, these rules serve to determine the manner in which elements extracted
from the source code are represented in the UML diagram. In this context, the
source model is the GUI source code, and the target model is the UML class dia-
gram. The following section will provide a detailed overview of the transformation
rules.

Rule 1: The names of the classes present on the graphical interfaces will be con-
verted into class names on the product class diagram.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 94 Journal of Computer and Communications

Rule 2: The textual content displayed on the JLabel of the graphical interfaces
will be converted into class attributes on the product class diagram.

Rule 3: It is not possible to ascertain the attribute type either by examining the
graphical interface or by parsing the source code. As a result, the attributes of the
generated classes are defined in a systematic manner as follows:

• The Identifier (Id) and Quantity attributes will be of the integer data type.
• The Price attribute will be of the floating-point data type.
• All other attributes will be of the string data type.
Rule 4: The text on the buttons will be transformed into class methods on the

product class diagram.
Rule 5: The relationships between classes in UML can be described as follows.
• Association: When one class contains a list of objects from another class, this

indicates an association relationship. This means that instances of the first class
have a reference to one or more instances of the second class.

• Aggregation: When a class contains a collection of objects from another class
without managing their lifecycle, this relationship is called aggregation. In other
words, the aggregated objects can exist independently of the aggregator object.

• Inheritance: When the “extends” keyword is used to define a class in terms of
another class, this indicates an inheritance relationship. This means that the de-
rived class inherits the attributes and methods of the base class.

Rule 6: If an “Add” button is present in the source code, as in the following
example “JButton btnNewButton = new JButton(“Add”);”, this generally indicates
that the interface allows multiple items to be added to a collection or list within
the class. Consequently, the multiplicity of these elements in the class can be in-
ferred by “0…*”. The line of code containing the button can be easily analyzed
using regex. In addition, if a class contains a list (or other collection) from another
class, this also indicates a multiplicity of “0…*” for the elements in that list. If
neither of these conditions is met, the default multiplicity is 1.

2.6. Tools and Technologies

The main tools used to transform graphical interfaces into UML class diagrams
are Java, Regular expressions and ATL.

Java is a high-level, object-oriented programming language that is widely used
for the construction of applications. In this case study, the graphical interfaces
utilized are Java Swing interfaces created with WindowsBuilder, an Eclipse plugin
dedicated to the design of graphical interfaces. Java is employed to author the ap-
plication source code, perform syntactic analysis of the GUI code and generate the
Ecore metamodel instance.

A regular expression is defined as a sequence of characters that define a search
pattern. They are employed extensively for the purposes of string matching and
manipulation. In this context, regex is employed for the parsing of source code
within graphical user interfaces, with the objective of extracting pertinent infor-
mation such as class names, attributes, operations, relations and multiplicities.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 95 Journal of Computer and Communications

ATL is a model transformation language and tool developed by the Eclipse
Foundation. It permits the delineation and implementation of transformations
between disparate models. In the present study, the objective is to transform the
results of the syntactic analysis of the source code of graphical interfaces into UML
class diagrams.

In addition to the aforementioned principal tools, we also employ the EMF [19]
[20], the Eclipse Integrated Development Environment (IDE), and the Papyrus
plugin for the purpose of visualizing the class diagrams that are produced.

3. Results

This study demonstrates the feasibility and efficacy of employing a combination
of Java, regular expressions, and ATL to transform graphical user interfaces into
class diagrams. This methodology contributes to the advancement of software sys-
tems engineering by providing a UML representation of graphical interfaces,
which facilitates comprehension and maintenance of systems.

The transformation of the GUI source code into a class diagram is performed
in three main steps: first, syntactic analysis of the GUI source code is performed
using regular expressions; second, an instance of the Ecore metamodel is created;
third, the transformation of the GUI into a class diagram is performed using ATL.

Syntactic analysis of the GUI source code is used to extract the elements re-
quired to construct the class diagram, which is shown in Table 4.

Table 4. Correspondence between graphical interface and class diagrams.

Graphical interface components Class diagram elements

Class name or window title Class name

Text on labels Attributes

Button names Methods

Correspondences between classes and between attributes Relations

According to the transformation rules,
existence of the “add” button

Multiplicity

Table 4 shows the correspondence between the graphical interface and the class

diagram. The use of regular expressions to analyze the syntax of the source code
proves effective in recovering the elements needed to construct the class diagram.

3.1. Analysis and Transformation of Java Source Code into UML
Class Diagrams

This case study examines the process of transforming a graphical user interface
(GUI) into a class diagram. The GUIs used are simple forms created by Win-
dowsBuilder, which are described in greater detail in Figure 4.

The graphical interfaces in Figure 4 include three forms relating to suppliers,
customers and products.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 96 Journal of Computer and Communications

Figure 4. GUI to be analyzed.

Figure 5 illustrates the Java code employed for parsing the source code of the
Customer.java GUI. And the result of utilizing regular expressions for the analysis
of source code syntax is obtained through the application of the six aforemen-
tioned rules, as illustrated in Figure 6.

Figure 5. Example of Java code utilizing Regex for parsing Java source code.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 97 Journal of Computer and Communications

Figure 6. Result of parsing source code of the Customer.java GUI.

Figure 6 demonstrates that parsing the GUI source code is a pivotal step in
transforming the GUI into a class diagram.

The creation of an instance of the ecore metamodel results in the generation of
the GUI_file.xmi file. This file serves as a concrete representation of the GUI com-
ponents and their relationships as defined by the metamodel. In particular, it en-
capsulates detailed information about the various GUI elements, such as buttons,
text fields, and labels, along with their attributes. The structured format allows for
the subsequent transformation and analysis processes, providing a standardized
way to manage and manipulate the data extracted from the GUI source code.

The most intriguing outcome of this study is the class diagram, which is pre-
sented in Figure 7.

Figure 7. Result of transforming the graphical interface into a class diagram.

As illustrated in Figure 7, the diagram demonstrates the transformation of the
graphical interface into a structural model with clarity. The classes identified,
along with their attributes and methods and the relationships between them, are
described in precise detail, thereby providing a complete overview of the system.
The class diagram presented in Figure 7 was visualised using Papyrus, a UML-
based modeling tool integrated into the EMF [19].

3.2. Analysis and Transformation of Web Source Code into UML
Class Diagrams

The second case study, dedicated to the analysis and transformation of HTML

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 98 Journal of Computer and Communications

source code into UML class diagrams, demonstrates that the employed interfaces,
designed using HTML and CSS, are not limited to simple forms, as illustrated in
Figure 8.

Figure 8. Web Graphical User Interface to be analyzed.

The three relevant web interfaces are dedicated to online sales and respectively
address aspects related to clients and products. These graphical user interfaces
comprise three pages: a registration page, a page dedicated to product purchases,
and a page displaying the quantity of stock available in the database.

Figure 9. Example of Java code utilizing Regex for parsing web page source code.

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 99 Journal of Computer and Communications

The analysis of the web source code of these interfaces using Regex yielded the
results presented in Figure 9 and Figure 10.

Figure 10. Results of web page source code analysis using Regex.

The results presented in Figure 10 highlight the elements necessary for the ex-
traction of the class diagram, which is illustrated in Figure 11.

Figure 11. UML class diagram generated from web page analysis.

Similar to the analysis and transformation of Java source code presented in the

previous case study, Regex facilitates the analysis of web page source code and its
transformation into a class diagram. This process employs a principle analogous
to ATL, yielding the class diagram illustrated in Figure 11.

4. Discussions

The GUI source code into a UML class diagram presents a number of advantages
and challenges that warrant discussion. This case study examines the integrated
utilization of Java, regex and ATL for model transformation. This approach is em-
ployed for the automation of the transformation of textual models into structural
models, thereby facilitating a more comprehensive analysis of the software.

The utilization of Java in conjunction with regex to extract data from the GUI
has been demonstrated to be an effective approach. The use of regex enables the
precise searching and manipulation of text patterns, which is a crucial aspect for

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 100 Journal of Computer and Communications

the identification of pivotal interface components (such as buttons, text fields, and
menus) and their associated properties. Furthermore, the ATL transformation
language provides an exemplary of a straightforward transformation rule for the
conversion of an interface component into a UML class. This rule can be extended
to include additional properties, methods, and relationships between classes,
thereby providing a comprehensive and accurate representation of the system’s
structural model.

This reverse engineering principle for the transformation of graphical compo-
nents was implemented in the approach proposed by M. I. Muhairat (2011) [11],
using Optical Character Recognition (OCR) and Petri nets. The approach [11]
offers an advantage in the structured recognition of interface graphical compo-
nents in image mode, through OCR, and identifies the correspondences of graph-
ical components by means of Petri nets. However, this approach [11] is limited
with respect to the identification of relationship types between classes and their
multiplicities for the resulting class diagram. Nevertheless, the present approach
offers the possibility to extract class diagrams from source codes written in various
languages (Java, HTML, etc.), taking into account the types of relationships be-
tween classes and their multiplicities. The use of Regex allows for the analysis of
graphical components within the source codes, such as buttons, labels, and text
fields, and is not limited to simple forms.

In fact, the second case study, focusing on the analysis and transformation of
HTML source code into UML class diagrams, highlights the power of Regex.
These allow for the testing and extraction of information from elements present
in web pages, such as, titles (<title> tag), meta-descriptions, the presence of mon-
etary symbols (€ or $), regular expressions for testing email addresses and images,
page redirections via buttons, database-linked table lists, and labels, among others.

The limitations of Regex in source code analysis can arise when there are no
longer indices available to extract certain elements of the class diagram, even with
highly sophisticated regular expressions. For example, it is possible that the attrib-
ute “Name” cannot be extracted from an HTML code if no “name” index is found,
neither in the meta-description nor in other potential indices. This leads us to
consider the utilization of Artificial Intelligence to extract class diagram elements
from the context and the correspondence between terms present in the code and
potential class diagram elements.

5. Conclusions

This study has demonstrated the efficacy of a methodology combining Java, reg-
ular expressions and ATL in the transformation of graphical interfaces into UML
class diagrams. The integration of these tools and techniques enabled the automa-
tion and streamlining of the transformation process, thereby facilitating a more
comprehensive understanding and documentation of the structure of software
systems. The use of Java and regular expressions allowed for the precise extraction
of graphical user interface components, thereby facilitating their transformation

https://doi.org/10.4236/jcc.2025.133007

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 101 Journal of Computer and Communications

into structured models. Subsequently, ATL afforded considerable flexibility in
specifying transformation rules, ensuring the resulting models’ compliance with
system requirements.

The principal benefits of this methodology are the precision of data extraction
facilitated by regular expressions, the adaptability of ATL for transforming ex-
tracted data into comprehensive class diagrams, and the automation of the trans-
formation process, which reduces the time and effort required compared with a
manual approach.

Our case studies are focused on the analysis of Java and web source codes; how-
ever, due to the power of Regex, which is programming language-independent,
we foresee the potential for analyzing source codes from other languages.

Beyond class diagram elements, by the flexibility of Regex, it is possible to ex-
tract data. As demonstrated in our second case study, we can extract: product
names, prices, stock quantities, and product descriptions, which are data that can
be processed by other analyses such as data analysis, for example.

And the limitation of Regex when there are no longer indices available to extract
certain elements of the class diagram, leads us to resort to other techniques such
as Artificial Intelligence to infer the correspondence between terms present in the
code and potential elements of the class diagram, according to the contexts.

Acknowledgements

I would like to extend my sincerest gratitude to all those who contributed to this
work.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Dimbisoa, W.G., Mahatody, T. and Razafimandimby, J.P. (2018) Creating a Meta-

model of UI Components in Form of Model Independant of the Platform. Interna-
tional Journal of Conceptions on Computing and Information Technology, 6, 48-52.

[2] Crampes, J.-B. and Ferry, N. (2008) SNO: High Level Model for IHM Design and
Mock-Up. Electronic Journal of Information Technology, 5, 1-18.

[3] Ferry, N. (2008) Formalisation of MACAO Method Models and Development of a
Software Engineering Tool for the Creation of Man-Machine Interfaces. Ph.D. The-
sis, University of Toulouse.

[4] Telea, A.C. (2012) Reverse Engineering—Recent Advances and Applications. IntechOpen.
https://doi.org/10.5772/1850

[5] Mahfoudhi, A., Bouchelligua, W., Abed, M. and Abid, M. (2006) Towards a New Ap-
proach of Model-Based HCI Conception. Proceedings of the 6th WSEAS Interna-
tional Conference on Multimedia, Internet & Video Technologies, Lisbon, 22-24 Sep-
tember 2006, 117-125.

[6] Lucas, F.J., Molina, F. and Toval, A. (2009) A Systematic Review of UML Model Con-
sistency Management. Information and Software Technology, 51, 1631-1645.
https://doi.org/10.1016/j.infsof.2009.04.009

https://doi.org/10.4236/jcc.2025.133007
https://doi.org/10.5772/1850
https://doi.org/10.1016/j.infsof.2009.04.009

H. M. Andrianaivo et al.

DOI: 10.4236/jcc.2025.133007 102 Journal of Computer and Communications

[7] Jouault, F., Allilaire, F., Bézivin, J. and Kurtev, I. (2008) ATL: A Model Transformation
Tool. Science of Computer Programming, 72, 31-39.
https://doi.org/10.1016/j.scico.2007.08.002

[8] Saraiva, J.A., Campos, J.C., Silva, J.C. and Silva, C. (2012) GUIsurfer: A Reverse En-
gineering Framework for User Interface Software. In: Telea, A.C., Ed., Reverse Engi-
neering—Recent Advances and Applications, IntechOpen.

[9] Silva, J.C., Silva, C.C., Gonçalo, R.D., Saraiva, J. and Campos, J.C. (2010) The
GUISurfer Tool: Towards a Language Independent Approach to Reverse Engineering
GUI Code. 2nd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, Braga, June 2010.

[10] Favre, L. (2012) MDA-Based Reverse Engineering. In: Telea, A.C., Ed., Reverse En-
gineering—Recent Advances and Applications, IntechOpen.
https://doi.org/10.5772/32473

[11] Muhairat, M.I., AL-Qutaish, R.E. and Athamena, B.M. (2011) From Graphical User
Interface to Domain Class Diagram: A Reverse Engineering Approach. Journal of
Theoretical and Applied Information Technology, 24, 28-40.

[12] Mithe, R., Indalkar, S. and Divekar, N. (2013) Optical Character Recognition. Inter-
national Journal of Recent Technology and Engineering (IJRTE), 2, 72-75.

[13] Johnson, S.C. (1986) YACC: Yet Another Compiler-Compiler. Bell Laboratories.

[14] Levine, J.R. (2009) Flex & Bison: Text Processing Tools, O’Reilly Media, Inc.

[15] Latif, A., Azam, F., Anwar, M.W. and Zafar, A. (2023). Comparison of Leading Lan-
guage Parsers—ANTLR, Javacc, Sablecc, Tree-Sitter, Yacc, Bison. 2023 13th Interna-
tional Conference on Software Technology and Engineering (ICSTE), Osaka, 27-29
October 2023, 7-13. https://ieeexplore.ieee.org/abstract/document/10366650
https://doi.org/10.1109/icste61649.2023.00009

[16] Vinju, J. (2005) Analysis and Transformation of Source Code by Parsing and Re-
writing, UvA-DARE (Digital Academic Repository). University of Amsterdam.

[17] Dewi, L.C., Meiliana, and Chandra, A. (2019) Social Media Web Scraping Using So-
cial Media Developers API and Regex. Procedia Computer Science, 157, 444-449.
https://doi.org/10.1016/j.procs.2019.08.237

[18] Tisi, M., Martínez, S. and Choura, H. (2013) Parallel Execution of ATL Transfor-
mation Rules. In: Moreira, A., Schätz, B. and Gray, J., Eds., Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 656-672.
https://doi.org/10.1007/978-3-642-41533-3_40

[19] Brun, C. and Pierantonio, A. (2008) Model Differences in the Eclipse Modelling
Framework. UPGRADE, the European Journal for the Informatics Professional, 9,
29-34.

[20] Arendt, T. and Taentzer, G. (2013) A Tool Environment for Quality Assurance Based
on the Eclipse Modeling Framework. Automated Software Engineering, 20, 141-184.
https://doi.org/10.1007/s10515-012-0114-7

https://doi.org/10.4236/jcc.2025.133007
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.5772/32473
https://ieeexplore.ieee.org/abstract/document/10366650
https://doi.org/10.1109/icste61649.2023.00009
https://doi.org/10.1016/j.procs.2019.08.237
https://doi.org/10.1007/978-3-642-41533-3_40
https://doi.org/10.1007/s10515-012-0114-7

	Reverse Engineering Approach for Analyzing and Transforming Graphical User Interface Source Code into Class Diagrams
	Abstract
	Keywords
	1. Introduction
	2. Methodologies
	2.1. Reverse Engineering
	2.2. Parsing Analysis
	2.3. Regular Expressions
	2.4. Transformation of Source Code into a Class Diagram
	2.5. Transformation Rules
	2.6. Tools and Technologies

	3. Results
	3.1. Analysis and Transformation of Java Source Code into UML Class Diagrams
	3.2. Analysis and Transformation of Web Source Code into UML Class Diagrams

	4. Discussions
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

