4

X/
*

Scientifi
o2 Resoarch
94% Publishing

@,

Journal of Computer and Communications, 2024, 12, 102-106
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227

ISSN Print: 2327-5219

Script-Based GPU-Ready ELM Development for
Continuous Code Integration

Peter Schwartz’, Dali Wang*, Fengming Yuan, Peter Thornton

Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, USA-

Email: *schwartzpd@ornl.gov, *wangd@ornl.gov, yuanf@ornl.gov, thorntonpe@ornl.gov

How to cite this paper: Schwartz, P,
Wang, D.L., Yuan, F.M. and Thornton, P.
(2024) Script-Based GPU-Ready ELM De-
velopment for Continuous Code Integra-
tion. Journal of Computer and Communi-
cations, 12, 102-106.
https://doi.org/10.4236/jcc.2024.125007

Received: April 10, 2024
Accepted: May 24, 2024
Published: May 27, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

[ONom

Abstract

Designing and optimizing complex scientific code for new computing archi-
tectures is a challenging task. To address this issue in the E3SM land model
(ELM) development, we developed a software tool called SPEL, which facili-
tates code generation, verification, and performance tuning using compiler
directives within a Function Unit Test framework. In this paper, we present a
SPEL extension that leverages the version control system (e.g., Git) to auto-
nomous code generation and demonstrate its application to continuous code
integration and development of the ELM software system. The study can
benefit the scientific software development community.

Keywords

E3SM Land Model, GPU Code Porting, Continuous Code Integration, SPEL,
Scientific Software Refactorization

1. Introduction

State-of-the-art Earth system models (ESM) provide critical information on cli-
mate change. There are several fully-coupled ESMs, including the Energy Exas-
cale Earth System Model (E3SM) that uses code optimized for the US Depart-
ment of Energy’s (DOE) advanced computers [1]. The E3SM Land Model (ELM)
is an integral part of the E3SM framework, simulating the interactions between
terrestrial land surfaces and other Earth system components. ELM has been in-
strumental in understanding hydrologic cycles, biogeophysics, and dynamics of
terrestrial ecosystems [2].

In the development of large-scale, ultrahigh-resolution ELM (uELM), the re-
searchers have implemented the GPU-ready ELM code using OpenACC on
Summit at Oak Ridge National Laboratory [3]. To facilitate the automatic port-

*Both authors contributed equally.

DOI: 10.4236/jcc.2024.125007 May 27, 2024

102 Journal of Computer and Communications

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.125007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.125007
http://creativecommons.org/licenses/by/4.0/

P. Schwartz et al.

ing of individual ELM modules, the researchers have developed a software tool
named SPEL [4]. SPEL works within a Functional Unit Testing framework [5]
and contains a collection of functions to parse ELM code, generate code seg-
ments, analyze dataflow, and support code verification. This paper presents the
extension of SPEL functions to support continuous ELM integration based on

code change information harvested from Git commits.

2. SPEL Extension to Support Continuous ELM Code
Development

ELM uses GitHub to facilitate its full-cycle software development, including de-
sign, development, quality assurance, deployment, and maintenance. Currently,
SPEL provides functions for ELM code analysis and GPU code generation, as
well as optimization (Figure 1). The SPEL software package consists of four
major functions. The basic function involves parsing and code generation, initia-
lizing ELM, capturing module parameters, and generating Fortran code. The
unit test creation function is responsible for creating a unit test driver, managing
data input and output, and executing code. The GPU porting function handles
GPU data regions, offloading to the GPU, and performance tuning. Lastly, the
verification function is used for verifying testing results.

Our objective is to expand SPEL’s capabilities to support continuous integra-
tion of ELM code. To achieve this, we have developed a script-based function that
follows a two-step workflow. The first step involves analyzing and processing in-
formation from the Git commit output of the CPU code base. The second step
involves calling SPEL’s functions to generate GPU-ready code for new modifica-
tions. This function skips all unchanged OpenACC segments, examines the
structure and scope of code modifications, and generates code with appropriate
directives (clauses) for these altered sections. The workflow of using SPEL GitU-
til is also shown in Figure 1.

The ELM code can undergo three major types of change:

1) Change to land subgrid datatypes (such as the addition of topographic
units) and associated ELM processes. This modification impacts many ELM
processes, including Canpoy FLux, Ecosystem Dynamics, and Soil Temperature.

2) Change to ELM process parameters (such as the addition of parameters for

snowmelt) and associated functions. This type of change requires adjustments in

SPEL basic function SPEL GPU
(parsing and code generation) porting function
ELM ELM unit test GPU-ready unit
code programs test programs
SPEL unit test SPEL unit test
creation function I creation function I

SPEL verification function

SPEL GitUtil function Existing SPEL basic function Updated
ELM unittest —— ELM unit test
programs SPEL unit test creation function programs

Figure 1. SPEL functions used for uELM code porting within a Functional Unit Testing
framework.

DOI: 10.4236/jcc.2024.125007 103 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.125007

P. Schwartz et al.

GPU data region creation and ELM function kernels and impacts limited ELM
processes.

3) Change to individual ELM functions (such as subroutines). This type of
change results in data and code changes in specific subroutines. The third type

of change is considered as the basic ELM code change.

3. Code Generation for Modifications in a Single ELM Source

File
This paper presents a code generation procedure for VerticalProfileMod.F90 that
holds routines for the vertical discretization of C and N inputs into decomposing
pools. It is an example of the basic ELM code change without new data (variable)
introduced. There are four steps:

1) Find the change history of the module (i.e.,
git log—follow—VerticalProfileMod.F90).

2) Select a specific commit (Ze,,
067be7cbc99¢d349770d4eeb827-0b58f47498dfe, committed by Michael A.
Brunke on June 10, 2020, to add “profile adjustments w/ variable soil in Verti-
calProfileMod”).

3) Extract the modified file (ie. git show {commit}) and save the Git change
logs. Four code sections in the VerticalProfileMod.F90 were changed, annotated
by special symbols “@@” (Table 1).

4) Develop a new SPEL function (gitutils) use regex to analyze the Git
output file (Ze, list of filenames, changed sections), mark the region of code
change in the existing GPU code, remove all the OpenACC directives in the re-
gion, modify the code (based on Git commit), then call SPEL functions to gener-
ate GPU-ready code only for the changed sections.

For illustration purpose, the first code change section (starting at line 141)
(left) and the newly generated GPU-ready code (right) is shown in Figure 2.
Gitutils first parses the code change section and determines the impacted region
of the code change (the outer loop that beyond the texts in the commit log), se-
condly removes existing acc statements in the target region (first two acc state-
ments), and then changes the code (the old 11-line code became a new 22-line
code with new statements (cyan)), finally uses appropriate SPEL functions to re-

generate the GPU code (add three acc statements (gray) at the right places).

Table 1. Changed code sections in VerticalProfileMod.F90.

Changed code section Purpose

. recalculate fine-root distribution in soil and
@@ —141,11 +141,22 @@ contains
bedrock
@@ —-171,7 +182,12 @@ contains adjust root profile integration
@@ —181,8 +197,15 @@ contains adjust leaf and stem profile integration

@@ -270,7 +295,7 @@ contains adjust error reporting for new bedrock layers

DOI: 10.4236/jcc.2024.125007

104 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.125007

P. Schwartz et al.

@@ -141,11 +141,22 @@ contains

+

1 use beta distribution parameter from Jackson et al., 1996
do fp = 1,num_soilp

p = filter_soilp(fp)

¢ = veg_pp%column(p)

nlevbed = nlev2bed(c)

rootfr_tot = 0._r8

if (veg_pp%itype(p) /= noveg) then

do j =1, nlevdecomp
cinput_rootfr(p,j) = (rootprof_beta(veg_pp%itype(p)) ** (zisoi(j-1)*100._r8) - &

1$acc parallel loop independent default(present)
do fp = 1,num_soilp // Line 141 in the newCPU code
p = filter_soilp(fp)
<new code>
if (veg_pp%itype(p) /= noveg) then
!$acc loop seq
do j =1, nlevdecomp
if (j <= nlevbed) then
cinput_rootfr(p,j) = formula 2
<new code>

if (j <= nlevbed) then else
+ cinput_rootfr(p,j) = (rootprof_beta(veg_pp%itype(p)) **(zisoi(j-1)*100._r8)-& <new code>
rootprof_beta(veg_pp%itype(p)) ** (zisoi(j)*100._r8)) & end if
/ dzsoi_decomp(j) end do
rootfr_tot = rootfr_tot + cinput_rootfr(p,j) * dzsoi_decomp(j)
i !$acc loop seq
cinput_rootfr(p,j) = 0._r8 doj=Hiiinievbed

B

end if
end do
do j =1, nlevbed
cinput_rootfr(p,j) = cinput_rootfr(p,j) / rootfr_tot
end do
else
cinput_rootfr(p,1) = 1._r8 / dzsoi_decomp(1)

cinput_rootfr(p,j) = cinput_rootfr(p,j) / rootfr_tot
end do
else
cinput_rootfr(p,1) = 1._r8 / dzsoi_decomp(1)
<some code>
endif
<other code>

enddo

Figure 2. The input Git commit log (left) and the new GPU-ready code (right) for the
first changed code section in VerticalProfileMod.F90.

4. Conclusion

This study successfully extended the SPEL functions to generate GPU-ready
code for continuous ELM integration. The exemplar case demonstrated the ef-
fectiveness of the GPU-code generation procedure based on the GitHub change
logs. This study laid the foundation for more complicated cases via iterative ap-

proaches, which will be reported in future publications.

Acknowledgements

This research was supported as part of the Energy Exascale Earth System Model
(E3SM) project, funded by the U.S. Department of Energy, Office of Biological
and Environmental Research. This research used resources from the Oak Ridge

Leadership Computing Facility at the Oak Ridge National Laboratory.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Golaz, J.-C., Caldwell, P.M., Van Roekel, L.P., Petersen, M.R., Tang, Q., Wolfe,].D.,
Abeshu, G., Anantharaj, V., Asay-Davis, X.S., Bader, D.C., et al (2019) The DOE
E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution.
Journal of Advances in Modeling Earth Systems, 11, 2089-2129.
https://doi.org/10.1029/2019MS001870

[2] Burrows, S.M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., Ricciuto, D.,
Wang, S., Bisht, G., Tang, J., et al (2020) The DOE E3SM vl1.1 Biogeochemistry
Configuration: Description and Simulated Ecosystem-Climate Responses to Histor-

ical Changes in Forcing. Journal of Advances in Modeling Earth Systems, 12,
€2019MS001766. https://doi.org/10.1029/2019MS001766

[3] Wang, D.L, Schwartz, P., Yuan, F.M., Thornton, P. and Zheng, W.J. (2022) To-
wards Ultra-High-Resolution E3SM Land Modeling on Exascale Computers. Com-

puting in Science & Engineering, 1, 1-14.

DOI: 10.4236/jcc.2024.125007

105 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.125007
https://doi.org/10.1029/2019MS001870
https://doi.org/10.1029/2019MS001766

P. Schwartz et al.

(4]

(5]

Schwartz, P., Wang, D.L., Yuan, F.M. and Thornton, P. (2022) SPEL: Software Tool
for Porting E3SM Land Model with OpenACC in a Function Unit Test Framework.
2022 Workshop on Accelerator Programming Using Directives (WACCPD), Dallas,
USA, 13-18 November 2022, 1-14.
https://doi.org/10.1109/WACCPD56842.2022.00010

Wang, D.L,, Xu, Y., Thornton, P., King, A., Steed, C., Gu, L.H. and Schuchart, J.
(2014) A Functional Test Platform for the Community Land Model. Environmental
Modelling & Software, 55, 25-31. https://doi.org/10.1016/j.envsoft.2014.01.015

DOI: 10.4236/jcc.2024.125007

106 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.125007
https://doi.org/10.1109/WACCPD56842.2022.00010
https://doi.org/10.1016/j.envsoft.2014.01.015

	Script-Based GPU-Ready ELM Development for Continuous Code Integration
	Abstract
	Keywords
	1. Introduction
	2. SPEL Extension to Support Continuous ELM Code Development
	3. Code Generation for Modifications in a Single ELM Source File
	4. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

