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Abstract 
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering 
method, designed to integrate diverse views to uncover a common subspace, 
enhancing the accuracy and robustness of clustering results. The significance 
of low-rank prior in MVSC is emphasized, highlighting its role in capturing 
the global data structure across views for improved performance. However, it 
faces challenges with outlier sensitivity due to its reliance on the Frobenius 
norm for error measurement. Addressing this, our paper proposes a Low-Rank 
Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- 
Sparse) approach. Sparse regularization helps in selecting the most relevant 
features or views for clustering while ignoring irrelevant or noisy ones. This 
leads to a more efficient and effective representation of the data, improving 
the clustering accuracy and robustness, especially in the presence of outliers 
or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effec-
tively handle outlier sensitivity, which is a common challenge in traditional 
MVSC methods relying solely on low-rank priors. Then Alternating Direc-
tion Method of Multipliers (ADMM) algorithm is employed to solve the 
proposed optimization problems. Our comprehensive experiments demon-
strate the efficiency and effectiveness of LMVSC-Sparse, offering a robust al-
ternative to traditional MVSC methods. 
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1. Introduction 

Clustering plays a significant role in machine learning and artificial intelligence 
(AI) for several reasons, acting as a foundational technique that underpins many 
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of the processes and applications within these fields [1] [2].  
Multi-view Subspace Clustering (MVSC) is an advanced clustering technique 

that is particularly suited for handling data that naturally comes from multiple 
sources or “views.” This approach is based on the principle that different views 
of the data can provide complementary information that should be integrated 
when performing clustering. The goal of MVSC is to find a common subspace 
that best represents the underlying structure of the data across all views, thereby 
improving the quality and accuracy of the clustering results. As shown in [3] and 
[4], by leveraging multiple views of the data, MVSC can achieve higher cluster-
ing accuracy than single-view clustering methods, especially when the views are 
complementary. The works [5] and [6] claim that the integration of multiple 
views can make the clustering process more robust to noise and redundancy 
within individual views, as the method can exploit the clean and informative 
parts of each view.  

As a result, the Multi-view Subspace Clustering has been applied in various 
areas, such as image and video analysis [7], bioinformatics [8] [9], and social 
network analysis [10]. Among them, low-rank prior is a critical technique used 
to capture the global structure of data across multiple views while ensuring that 
the representation is compact and meaningful. The low-rank prior is based on 
the assumption that the data from all views lie on or near a low-dimensional 
subspace, and this inherent structure can be exploited to improve clustering 
performance. The key contributions in the domain of low-rank subspace-based 
methods encompass several notable works, such as Latent Multi-view Subspace 
Clustering (LMSC) [11], Multimodal Sparse and Low-rank Subspace Clustering 
(MLRSSC) [12], Flexible Multi-view Representation Learning for Subspace Clus-
tering (FMR) [13] and Dual Shared-Specific Multi-view Subspace Clustering 
(DSS-MSC) [14]. These methods, grounded in the well-established framework of 
low-rank representation, have demonstrated competitive clustering performance 
in empirical studies.  

Especially, the recent work [15] introduced an efficient and effective approach 
termed Facilitated Low-rank Multi-view Subspace Clustering (FLMSC), they 
factorize the view-specific representation matrix into two small factor matrices, 
i.e., an orthogonal dictionary and a latent representation, which can fully explore 
the underlying subspace structure of multiple views. However, this approach still 
suffers from one issue. They focus on the F-norm to measure the error between 
observation data and reconstruction data. However, as well known F-norm is 
sensitive to outliers, as it squares the values before summing them, which can 
proportionately increase the impact of larger differences. 

To address the aforementioned drawback, this paper develops a Low-Rank 
Multi-view Subspace Clustering Based on Sparse Regularization approach, which 
is featured by sparse regularization. The main contributions and novelty of this 
work can be summarized below. 1) By employing sparse regularization, this pa-
per presents a robust low-rank multi-view subspace clustering approach termed, 
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LMVSC-Sparse. 2) This paper develops an Alternating Direction Method of 
Multipliers (ADMM) algorithm to solve proposed optimization problems. 3) 
Comprehensive experiments are conducted on benchmark data sets, which have 
shown the advantage of our approach in both efficiency and effectiveness. 

The rest of the paper is organized as follows: Section 2 reviews the related 
model. In Section 3, we propose a novel model, low-rank multi-view subspace 
clustering based on sparse regularization (LMVSC-Sparse) and its correspond-
ing optimization algorithm. Section 4 illustrates the experiment’s benchmark 
data sets. 

2. Foundational Model 

Denote { }:1 :, , d n
nX x x ×= ∈   a collection of data samples, where d is the fea-

ture dimension and n is the number of data samples. Then, the traditional sub-
space clustering based on the self-expression can be modeled by (1): 

X XZ E= + .                          (1) 

where n nZ ×∈  denotes the subspace representation at dictionary X and E de-
notes the error matrix. The corresponding optimization problem based on low 
rank prior can be given by (2) 

2minZ FXZ X Zλ
∗

− + .                     (2) 

in which Z
∗

 means nuclear norm, computed by summing the singular values 
of Z

∗
. The nuclear norm is widely used to measure the low rank property. (2) 

is also called low-rank representation (LRR) [16]. LRR has being successfully ap-
plied in dimensionality reduction [17], noise reduction [18], recommendation 
systems [19], image processing [20], and also clustering and classification [21] 
[22]. 

After solving (2), the affinity matrix W can be obtained by 

( )T1
2

W Z Z= + .                        (3) 

Then one can obtain the final clustering results by conducting spectral clus-
tering algorithm. 

The (2) can be extended to a general problem (4):  
2minZ FXZ X f Zλ

∗
− + .                     (4) 

where function f means general regularization. 
Now, considering the multi-view data samples, denoted by  

( ) ( ){ }T T T
1 , , VX X X=  , where ( ) ( ) ( )

:1 :, , vv v v d n
nX x x × = ∈    being the vth view. 

The LRR (2) can be extended to (5): 

( ){ }
( ) ( ) ( ) ( )

1

2

1 1min Vv

v

v v v v
v vFZ

V VX X Z Zλ
=

= = ∗
− +∑ ∑ .           (5) 

Recently, the [15] furthermore extends (5) to following (6): 
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( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1

T

2 2

1 21 1 1,
, ,

min

s.t. , ,

Vv v v

v

v v v v v w
v v v v wF F

V

Z L C

v v v v v

V VX X Z C C C

Z L C L L I v

λ λ
=

= = = ≠∗
− + + −

= = ∀

∑ ∑ ∑
 (6) 

where 1λ  and 2λ  are two positive balancing parameters. 
Compared to (5), the (6) factorize the view specific representation ( )vZ  into 

two small matrices ( )vL  and ( )vC , and employed the property ( ) ( )v vC Z
∗ ∗
=  

when ( )vL  has orthogonal columns, i.e. ( ) ( )Tv vL L I= . 

3. Proposed Approach 

In this section, we utilize sparse regularization instead of F norm regularization. 
in (6). Sparse regularization is often preferred over F-norm regularization in 
various machine learning and signal processing applications due to its unique 
properties and benefits, especially when dealing with high-dimensional data or 
models that incorporate many parameters. There exist two benefits for sparse 
regularization. 1) Sparse regularization can promote sparsity of solution. This 
means that they encourage the model to use fewer features or parameters by 
driving the coefficients of less important features to zero. This is particularly 
useful in feature selection and for models where interpretability is important, as 
it highlights which features are most relevant to the prediction. 2) Sparse regula-
rization is effective at preventing overfitting, especially in high-dimensional set-
tings where the number of features greatly exceeds the number of observations. 
By encouraging a model to concentrate on fewer variables, it reduces the model’s 
complexity and enhances its capacity to fit noise. 

Thus, we replace the F-norm in (6) by L1-norm, and obtain the Low-Rank 
Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC-Sparse): 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1

T

2

1 21 1 1,1, ,

min

s.t. , ,

Vv v v

v

V v V Vv v v v w
v v v v w FZ L C

v v v v v

X X Z C C C

Z L C L L I v

λ λ
=

= = = ≠∗
− + + −

= = ∀

∑ ∑ ∑
 (7) 

Based on the framework of ADMM [23], we propose an efficient optimization 
algorithm to solve the minimization problem abovementioned. First, the cor-
responding augmented Lagrange function is formulated as follows: 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )T

1

2
2

11 1 1,1

2

1 1

, ,

1

,
2

s.t. ,

V V V

V V

Vv v v

v

v v v v v w
v v v v w F

v v v v v v v
v v F

v v

L Z L C

X X Z C C C
V

Y Z L C Z L C

L L I v

λλ

µ

=

= = = ≠∗

= =

 
 
 

= − + + −
−

+ − + −

= ∀

∑ ∑ ∑

∑ ∑
   (8) 

where ( ){ }
1

Vv

v
Y

=
 represent the Lagrange multipliers and μ represents the penalty  

parameter. Apparently, it is not easy to optimize all the variables at the same 
time. Therefore, we adopt an iterative optimization scheme to update the va-
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riables one by one. The corresponding procedure of updating steps as shown in 
what follows. 

1) Update the variables ( ){ }
1

Vv

v
Z

=
 

When fixing the other variables, we can solve the following minimization 
sub-problem w.r.t. variable ( )vZ : 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2

1
min ,

2v
v v v v v v v v v v

Z F
X X Z Y Z L C Z L Cµ

− + − + − .   (9) 

This can be rewritten equivalently as: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

1

1min
2v

v v v v v v v

Z
F

X X Z Z L C Yµ
µ

− + − + .       (10) 

By introducing the auxiliary variable H, and omitting the superscript for sim-
plicity, we have: 

2

, 1

1min s.t.
2Z H

F

H Z LC Y X XZ Hµ
µ

+ − + − = .        (11) 

This is a constrained optimization problem. We adopt half-quadratic splitting 
(HQS) [24] algorithm for its simplicity and fast convergence. Then it is solved by 
following minimization 

2
2

, 1

1min
2 2Z H F

F

H Z LC Y X XZ Hµ η
µ

+ − + + − − .       (12) 

where η is a penalty parameter that forces X XZ−  and H to approach the same 
fixed point. Subsequently, H and Z can be updated by following two sub-problems. 

Sub-problem one: 

2
1 1min

2H Ff H X XZ Hη
= + − − .               (13) 

Sub-problem two: 
2

2
2

1min
2 2Z F

F

f Z LC Y X XZ Hµ η
µ

= − + + − − .         (14) 

For first sub-problem, let : R Rτ →  denote the shrinkage operator  
( ) ( ) ( )sgn max ,0x x xτ τ= −  and extend it to matrices by applying it to each 

element. It is easy to show that above sub-problem’s solution can be given by 

( )H X XZη= − .                      (15) 

For second sub-problem, it is equal to following problem 
2

2
3

1minZ F
F

f Z LC Y X XZ Hµ
η µ

= − + + − − .           (16) 

Its solution can be given by setting the derivative of above sub-problem to ze-
ro and obtain: 
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( ) ( )

( )

( )

T

3

T

T T T T T T

T T T T T T

T

1 1

12 2

12 2

f trace Z LC Y Z LC Y

trace X XZ H X XZ H

trace Z Z Z Y LC trace Z X XZ Z X H X

trace Z Z Z Y LC trace Z X XZ Z X H X

trace Z X

µ
η µ µ

µ
η µ

µ µ
η η η

µ
η

    
= − + − +    

    
 + − − − − 
    = + − + + −      

    = + − + + −      

= + ( )T T T12X Z Z Y LC X H Xµ
η η

    
+ − + −    

    

 

(17) 
Then 

( )T T3 12 2f X X Z Y LC X H X
Z

µ µ
η η η

∂    
= + + − + −   ∂    

.       (18) 

Let 3 0f
Z
∂

=
∂

, we have 

( )
1

T T1Z X X Y LC X X Hµ µ
η η η

−
   

= + − + + −   
   

.         (19) 

By Sherman-Morrison-Woodbury equation, according the size of X, Z can al-
so be rewritten as 

1 1
T T T

1
T T

X X I X I X X X

I X I XX X

µ η η η η
η µ µ µ µ

η η η
µ µ µ

− −

−

   
+ = − +   

   
   = − +    

          (20) 

2) Update rule for the variables ( ){ }
1

Vv

v
L

=
 

When fixing the other variables, we can solve the following minimization 
sub-problem w.r.t. variable ( )vL : 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )T

2
min ,

2

s.t.

v

v v v v v v v

FL

v v

Y Z L C Z L C

L L I

µ
− + −

=

            (21) 

This constrained problem could be further reduced into the form as follows: 

( )
( ) ( )( ) ( ) ( )T T

max s.t.
v

v v v v

L
Tr L R L L I= .               (22) 

where ( ) ( ) ( ) ( )T1v v v vR Z Y C
µ

 
= + 
 

. Before solving (22), we need following lemma:  

Lemma 1. For any matrices m nA ×∈ , suppose the singular value decompo-
sition (SVD) of matrix A is TU VΛ , then we consider the following constrained 
problem: 

( )T Tmax s.t.
Y

Tr Y A Y Y I= .                  (23) 
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has closed form as follows: 
TY UV= .                         (24) 

Based on the Lemma 1, by performing the SVD decomposition of matrix 
( )vR  as ( ) ( ) ( ) ( )v v v v

R R RR U W= Λ , the solution for (22) can be achieved by: 

( ) ( ) ( )Tv v v
R RL U W= .                       (25) 

3) Update rule for the variables ( ){ }
1

Vv

v
C

=
 

When fixing the other variables, we obtain the problem (26): 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2

1

2

min
1

,
2

v

v v w
v w FC

v v v v v v

F

C C C
V

Y Z L C Z L C

λλ

µ

≠∗
+ −

−

+ − + −

∑
             (26) 

Before solving (26), we need following lemma [25]: 
Lemma 2. For a given matrix F and a positive parameter 0τ > , the optimal 

solution to the following problem 

21min
2 FD

D D Fτ
∗
+ − .                    (27) 

is given by 

( ) T
F F FD U Wτ= Θ Σ .                      (28) 

where T
F F FU WΣ  is the SVD decomposition of matrix F. Meanwhile, ( )τΘ ⋅  is 

defined as follows: 

( ) ( ) ( )max 0, min 0,F F Fτ τ τΘ Σ = Σ − + Σ + .            (29) 

Based on Lemma 2, by setting 
( )

1

22
λγ
µ λ

=
+

, the closed-formed solution for 

variable ( )vC  is shown as follows: 
( ) ( ) ( )( ) ( )Tv v v v

H H HC U Wγ= Θ Σ .                   (30) 

where, ( ) ( ) ( )Tv v v
H H HU WΣ  represents the SVD decomposition of ( )

2

1 vH
µ λ+

, and 

( ) ( ) ( ) ( ) ( )T
21
1

v v v v w
w vH L Z Y C

V
λµ

µ ≠

 
= + +  − 

∑            (31) 

The final affinity matrix S could be obtained as follows: 

( ) ( )
1

1 vv v
v L CS

V =
= ∑ .                      (32) 

and 
T

2
S S

S
+

=
 

. 

In a nutshell, the detailed optimization process for LMVSC-Sparse is summa-
rized in Algorithm 1. 
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Algorithm 1. ADMM for LMVSC-Sparse. 

Input: multi-view data the multi-view data samples, denoted by ( ) ( ){ }1 , , VX X X= 
, 

1λ , 2λ , and the numbers of clusters. 

Initialize: 310µ −= , 1.2ρ = , 6
max 10µ = , 100γ = , ( ) 0vL = , ( ) 0vC = , v∀ , stooping 

tolerance  . 
Repeat: 

Step 1: Computing ( ){ }
1

Vv

v
Z

=
 by (19). 

Step 2: Computing ( ){ }
1

Vv

v
L

=
 by (25). 

Step 3: Computing ( ){ }
1

Vv

v
C

=
 by (30). 

Step 4: Computing ( ){ }
1

Vv

v
Y

=
 by ( ) ( ) ( ) ( ) ( )( )v v v v vY Y Z L Cµ= + − . 

Step 5: Computing ( )maxmin ,µ µ µρ= . 

Until ( ) ( ) ( )
1

v
v

V v vZ L C
= ∝

− ≤∑   or achieved maxim iteration number. 

Output ( )vZ . 

4. Experiments 

The proposed algorithm is compared with four state-of-the-art cluster algo-
rithms, namely, Facilitated Low-rank Multi-view Subspace Clustering (FLMSC) 
[15], Scalable Multi-view Subspace Clustering with UnifiedAnchors (SMVSC) 
[26], Large-Scale Multi-View Subspace Clustering (LMVSC) [3], Graph-based 
Multi-view Clustering (GMC) [27].  

4.1. Data and Metrics 

To verify performance, the BBC [28] is used for clustering. There are 2225 
documents over 5 annotated topics in this data set. In the experiments, we use as 
ampled subset of original BBC consisting of 685 documents and four different 
views, with 4659, 4633, 4665 and 4684 in each view, respectively. 

For the evaluation metrics, F-score, Normalized Mutual Information (NMI), 
Accuracy (ACC), and Adjusted Rand index (AR) are employed. The F-score, al-
so known as the F1-score or F-measure, considers both the precision and the re-
call to compute the score. Normalized Mutual Information (NMI) is a measure 
used to evaluate the similarity between two clustering of a dataset. It’s a measure 
of the mutual dependence between two variables, in this case, the clustering as-
signments obtained from different algorithms or methods. Accuracy (ACC) is a 
common evaluation metric used in the context of clustering, particularly when 
the ground truth labels are available. It measures the proportion of data points 
that are correctly assigned to their true clusters. 

It’s a popular metric due to its simplicity and ability to handle varying cluster 
sizes and shapes. AR is a measure that assesses the similarity between two clus-
tering by considering all pairs of samples and counting pairs that are assigned to 
the same or different clusters in the predicted and true clustering. It then adjusts 
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the raw Rand Index to account for the expected similarity between clustering 
due to chance. 

4.2. Comparison with State-of-Arts 

In the first experiments, 1% elements in BBC dataset is added noise, the noise 
level vary from 0 to 0.5. Then we compare the F-score, NMI, ACC, and AR for 
various algorithms. The results are shown in Figures 1-4.  
 

 
Figure 1. The F-score values at different noise level. 

 

 
Figure 2. The NMI values at different noise level. 
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Figure 3. The ACC values at different noise level. 

 

 
Figure 4. The AR values at different noise level. 

 
From Figure 1, one might conclude that LMVSC-Sparse is the most robust 

method in the presence of noise, maintaining a high F-score across all tested 
noise levels. In contrast, GMC is the least effective method in terms of F-score, 
regardless of the noise level. The other methods show varying degrees of decline 
in their F-scores as the noise level increases, suggesting that they are more sensi-
tive to noise than LMVSC-Sparse. These observations could be useful for select-
ing a method for applications where data is expected to have a certain level of 
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noise. LMVSC-Sparse might be preferable in environments where noise is un-
avoidable or difficult to control. 

In Figure 2, the overall trend indicates that all methods suffer a decline in 
clustering performance as noise increases, but to varying degrees. LMVSC-Sparse 
appears to be the most robust against noise, maintaining a high NMI through-
out. GMC is markedly affected by noise, with a significant decrease in NMI as 
the noise level rises. For applications where maintaining clustering quality in the 
presence of noise is important, LMVSC-Sparse would likely be the preferred 
choice based on this data. The other methods may still be considered, but their 
performance will depend on the acceptable threshold for NMI in the context of 
the specific application. Figure 3 and Figure 4 show the similar trend as Figure 
1 and Figure 2. 

Also, the mean running times of algorithms are summarized in Table 1. From 
this table, we can conclude that, LMVSC is the fastest algorithm across all noise 
levels, making it suitable for applications where running time is critical. LMVSC- 
Sparse is the slowest, which might be a trade-off for its robust performance in 
terms of F-score, NMI, ACC and AR, as indicated in the previous figures. 
Choosing the right algorithm would depend on the balance between accuracy (as 
measured by F-score, NMI, ACC and AR) and efficiency (as measured by run-
ning time), alongside the specific requirements of the application or task at 
hand. 

In the second experiments, 1%, 5%, 10%, 20%, 50% elements in BBC dataset is 
added noise, the noise level is 0.1. Then we compare the F-score, NMI, ACC, 
and AR for various algorithms. The results are shown in Figures 5-8. From 
these figures, we can conclude that: 

1) All algorithms show a decline in F-score with increasing sparsity levels, 
with LMVSC-Sparse and FLMSC being the least affected. GMC’s performance 
drops significantly and remains low across sparsity levels. 

2) For NMI again, all algorithms show a decline as sparsity increases, with 
LMVSC-Sparse showing the least impact. GMC performs poorly at higher spar-
sity levels. 

3) For ACC, we see a sharp decline for all methods as sparsity increases, with 
LMVSC-Sparse being the most robust but still affected.  

4) For AC, all algorithms experience a drop sparsity increase. LMVSC-Sparse 
and FLMSC tend to have better robustness compared to others.  

4.3. Parameter Sensitivity Analysis 

Figure 9 shows a series of heatmaps that represent a parameter analysis for dif-
ferent evaluation metrics and rank bounds. Each heatmap corresponds to a 
combination of two parameters, which are 1λ  and 2λ . The colors in each 
heatmap represent different values of the metric being evaluated, with darker or 
brighter colors typically indicating better performance. Here’s a breakdown of 
the analysis: 
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Table 1. The running times compare (Time unit: s). 

Noise Level LMVSC-Sparse FLMSC SMVSC LMVSC GMC 

0 44.47 19.93 21.84 2.26 4.02 

0.1 44.39 19.66 21.72 2.24 3.89 

0.3 44.76 19.85 21.22 2.18 3.70 

0.5 45.55 20.55 20.97 2.08 3.21 

 

 
Figure 5. The F-score values at different sparsity level. 

 

 
Figure 6. The NMI values at different sparsity level. 
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Figure 7. The ACC values at different sparsity level. 

 

 
Figure 8. The AR values at different sparsity level. 

 
In summary, the performance of all algorithms degrades with increasing spar-

sity, which is expected as sparser data tends to have less information for the al-
gorithms to leverage in the clustering process. LMVSC-Sparse seems to be the 
most robust across all evaluated metrics, maintaining higher values than the 
others as sparsity increases.  

1) There is a consistent trend where the F-score, NMI, and AC seem to be 
more sensitive to the second parameter across rank bounds. 
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Figure 9. Parameter analysis, the first row means F-score, second row NMI, third row ACC, fourth row AC, the first column 
means rank bound is 50, second column 100, third column 200.  

 
2) For all metrics, there are specific parameter combinations that yield high 

values, indicating optimal regions for each rank bound setting. 
3) The first parameter appears to have a less significant impact on the F-score 

and NMI compared to ACC and AC. 
4) The optimal regions for high values seem to shift and become less extensive 

as the rank bound increases, which may indicate that models with higher com-
plexity (larger rank bounds) do not necessarily perform better and can be harder 
to tune. 

In conclusion, these heatmaps can be used to identify the optimal parameter 
settings for each rank bound and metric. It is important to balance model com-
plexity with the ability to tune the parameters effectively, as overly complex 
models may not yield better performance and can be more challenging to op-
timize. 
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5. Conclusion 

This paper introduced an innovative Low-Rank Multi-view Subspace Clustering 
based on Sparse Regularization (LMVSC-Sparse) method. LMVSC-Sparse in-
corporated sparse regularization to mitigate the impact of outliers, thus enhanc-
ing the robustness of the clustering process. The developed ADMM algorithm 
efficiently solved the optimization problem, ensuring both effectiveness and effi-
ciency, as evidenced by the experimental results on benchmark datasets. The 
performance of LMVSC-Sparse, particularly in noisy and sparse conditions, 
demonstrated its superiority over other state-of-the-art MVSC methods. This 
robustness is critical for practical applications in fields such as image analysis, 
bioinformatics, and social network analysis, where data often contain noise and 
come from diverse sources. The results of this work not only further the under-
standing of multi-view clustering dynamics but also open avenues for future re-
search in optimizing clustering methods for complex, real-world datasets. 
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