
Journal of Computer and Communications, 2024, 12, 201-227
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2024.124015 Apr. 30, 2024 201 Journal of Computer and Communications

A Lightweight IoT Malware Detection and
Family Classification Method

Changguang Wang1,2, Ziqi Ma1, Qingru Li1,2, Dongmei Zhao1,2, Fangwei Wang1,2*

1College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang, China
2Key Laboratory of Network and Information Security of Hebei Province, Hebei Normal University, Shijiazhuang, China

Abstract
A lightweight malware detection and family classification system for the In-
ternet of Things (IoT) was designed to solve the difficulty of deploying de-
fense models caused by the limited computing and storage resources of IoT
devices. By training complex models with IoT software gray-scale images and
utilizing the gradient-weighted class-activated mapping technique, the system
can identify key codes that influence model decisions. This allows for the re-
construction of gray-scale images to train a lightweight model called LMDNet
for malware detection. Additionally, the multi-teacher knowledge distillation
method is employed to train KD-LMDNet, which focuses on classifying mal-
ware families. The results indicate that the model’s identification speed sur-
passes that of traditional methods by 23.68%. Moreover, the accuracy achieved
on the Malimg dataset for family classification is an impressive 99.07%. Fur-
thermore, with a model size of only 0.45M, it appears to be well-suited for the
IoT environment. By training complex models using IoT software gray-scale
images and utilizing the gradient-weighted class-activated mapping technique,
the system can identify key codes that influence model decisions. This allows
for the reconstruction of gray-scale images to train a lightweight model called
LMDNet for malware detection. Thus, the presented approach can address
the challenges associated with malware detection and family classification in
IoT devices.

Keywords
IoT Security, Visual Explanations, Multi-Teacher Knowledge Distillation,
Lightweight CNN

1. Introduction

The Internet of Things (IoT) is a vast network that integrates diverse informa-

How to cite this paper: Wang, C.G., Ma,
Z.Q., Li, Q.R., Zhao, D.M. and Wang, F.W.
(2024) A Lightweight IoT Malware Detec-
tion and Family Classification Method.
Journal of Computer and Communications,
12, 201-227.
https://doi.org/10.4236/jcc.2024.124015

Received: March 6, 2024
Accepted: April 27, 2024
Published: April 30, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.124015
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.124015
http://creativecommons.org/licenses/by/4.0/

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 202 Journal of Computer and Communications

tion sensors with the Internet. It is at the forefront of the global information in-
dustry. Nowadays, IoT has been applied in extensive industries, including smart
transportation [1], smart homes [2], agricultural production [3], and healthcare
[4]. Meanwhile, the security of IoT [5] is attracting more attention.

The landscape of cybersecurity threats, particularly concerning the Internet of
Things (IoT), has indeed been evolving significantly over recent years. In 2020, a
cybersecurity officer managed to exploit Bluetooth vulnerability and successfully
attacked a Tesla Model X in less than two minutes [6]. In 2021, Swiss hackers
successfully breached 150,000 Verkada live cameras that are primarily used for
monitoring in public places such as schools, hospitals, prisons, and businesses
[7]. The 2023 Cyber Threat Landscape report published by SonicWall highlights
that the number of IoT malware instances has surpassed 100 million in 2022 [8].
Furthermore, a new attack type called IoT ransomware or R4IoT has emerged,
which goes beyond encryption and data leakage. This attack can disrupt indus-
trial production by Programmable Logic Controllers (PLC) and other means,
causing significant disruptions in critical infrastructure and operational tech-
nology environments. Therefore, the ability to detect unknown malware and
identify their families becomes important due to rapid changes in the threat
landscape and the emergence of unknown malware.

Malware is commonly defined as software that poses a threat to the security of
a user’s computer and jeopardizes the user’s interests. The interception of un-
known malware and its variants presents a formidable challenge. Traditional
methods of malware detection and family classification primarily rely on static
analysis, dynamic analysis, and hybrid analysis [9]. Malware programs require
execution on specific platforms. For IoT devices, the predominant operating
system is Linux, which employs executable ELF files (.elf, .o, .so, etc.), similar to
Windows executable PE files (.exe, .obj, .dll, etc.). Additionally, IoT devices often
utilize various CPU instruction set architectures (such as ARM, MIPS, x86, etc.).
The diversity of IoT devices makes it challenging to establish uniform standards
for different types of IoT hardware and software. Moreover, the limited compu-
ting resources and storage space available in IoT devices make it difficult to set
up a dynamic analysis environment suitable for IoT software disassembly and
configuration [10]. Furthermore, security schemes designed for Windows sys-
tems are not easily implementable on IoT devices [11]. These factors pose sig-
nificant challenges to the rapid malware detection on IoT devices.

The method based on the raw bytes of malware binaries primarily focuses on
the characteristics of the abstract binary data, eliminating the need to address
issues arising from platform heterogeneity, such as different opcodes and in-
struction sets. By avoiding the execution of malware, this approach overcomes
the challenge of configuring detection environments that are specific to diverse
IoT devices. However, the conversion of malware binaries into gray-scale images
which forms the basis of this method, relies on complex models [12] [13] [14].
Consequently, its deployment in the IoT context is impractical. Furthermore, the
majority of these methods are currently employed for Windows and Android

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 203 Journal of Computer and Communications

malware detection, without validation on IoT malware datasets. Therefore, the
issues of security requirements of different platforms and insufficient feature ex-
traction capabilities of small models are crucial.

In this paper, we propose a lightweight malware detection and family classifi-
cation method based on visual explanations to enhance the accuracy and recog-
nition speed of small models in IoT environments. In the detection, all samples
are initially converted into gray-scale images, forming a gray-scale image dataset.
Subsequently, ResNet-34 is trained on this dataset. To gain insights into the
model’s attention during malware detection, we employ the Gradient-weighted
class-activated mapping (Grad-CAM) technique. Additionally, we extract and
analyze the coordinates of key locations that significantly influence the model’s
decision-making process. To train the lightweight malware detection networks
(LMDNet), we construct a new dataset by transforming only the binary encod-
ing of high-frequency locations into gray-scale images. Experimental results
demonstrate that the lightweight model exhibits improved accuracy and recog-
nition speed. For family classification, we utilize VGG-16 and ResNet-34 as the
teacher models, while LMDNet serves as the student model. The multi-teacher
knowledge distillation method is employed to train the student model on the
gray-scale image dataset of malware. Notably, our approach eliminates the need
for decompiled files and dynamic analysis, significantly reducing the cost of fea-
ture engineering. In contrast to previous deep learning techniques relying solely
on gray-scale images of malware, this paper strikes a balance between model ac-
curacy and size.

The main contributions of this paper are as follows:
1) The gradient-weighted class-activated mapping technique was employed to

visualize and quantify the high-frequency locations of key codes that have a sig-
nificant impact on the model’s decision-making process. Subsequently, these key
location codes were extracted and transformed into grayscale images to train the
lightweight malware detection model. This approach addresses the limitations of
small models with limited feature extraction capabilities while substantially im-
proving the model’s recognition speed.

2) The lightweight model, LMDNet, is designed by incorporating deep separ-
able convolution, channel shuffle, group convolution, and the Efficient Channel
Attention (ECA) module, which reduces the number of parameters in the model
while improving its accuracy. The model proposed in this paper exhibits a small
parameter, compact model size, and faster training and recognition speeds.

3) In the context of malware family classification, a lightweight convolutional
neural network is trained using a multi-teacher knowledge distillation approach.
This methodology effectively enhances the accuracy of the model in accurately
classifying different malware families.

2. Related Work

The primary methods for IoT malware detection and family classification in-

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 204 Journal of Computer and Communications

volve static analysis and dynamic analysis. Static analysis methods rely on ex-
amining the characteristics of the malware without executing it, while dynamic
analysis involves observing the behavior of malware in a controlled environ-
ment. Static feature-based analysis methods in IoT malware detection typically
utilize both low-level and high-level features. Low-level features include file
structure and raw binaries, which can be directly obtained from the malware bi-
naries. High-level features, such as control flow graphs, opcodes, and strings,
require disassembly to extract relevant information. Given the diverse CPU ar-
chitectures and limited computational and storage resources of IoT devices, this
paper categorizes the related work into three directions: static high-level feature
analysis, static low-level feature analysis, and dynamic analysis.

2.1. Static Features-Based Methods

In static analysis, the malware detection methods rely on extracting the static
features such as Operation Codes, Strings, or File Structure to distinguish mali-
cious samples. These characteristics can be divided into two groups: low-level
features and high-level features. In particular, the low-level features can be ob-
tained directly from the binary file structure itself, while the high-level features
must be extracted by a disassembler.

1) In IoT malware detection, static high-level feature analysis primarily focus-
es on opcodes, which are individual instructions executed by the CPU and de-
scribe the behavior of executable files. Researchers have utilized various ap-
proaches in this context. HaddadPajouh et al. [15] employed a deep recurrent
neural network-based approach that utilizes operand sequences for IoT malware
detection. Their method achieved an accuracy of 98.18% on a dataset comprising
270 benign samples and 281 ARM-based IoT malware samples. Darabian et al.
[16] discovered that certain opcodes were more frequently repeated in malware
compared to benign software. They developed a malware detection technique
based on counting the number of opcode repetitions in executable files, achiev-
ing an accuracy of 99%. Dovom et al. [17] transformed the opcodes of a program
into a vector space and utilized fuzzy and fast fuzzy pattern tree methods for
malware detection. Their approach was tested on an ARM-based IoT dataset,
consisting of 1078 benign samples and 128 malware samples, achieving an accu-
racy of 99.83%.

In summary, it is important to note that different CPU architectures utilize
distinct software opcodes and instruction sets. Therefore, static high-level fea-
ture analysis methods may not be effective in detecting IoT malware across var-
ious architectures.

2) Static low-level feature-based analysis methods in IoT malware detection
encompass the ELF file header-based approach and the gray image-based ap-
proach. Notable studies have explored these methods and achieved varying levels
of accuracy. Shahzad et al. [18] extracted 383 features from ELF file headers for
malware family classification, attaining a 99% accuracy rate on a dataset con-

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 205 Journal of Computer and Communications

sisting of 709 malicious samples. Bai et al. [19] utilized information extracted
from the ELF file symbol table for IoT malware classification, achieving an ac-
curacy of 98%. The gray image-based approach, initially proposed by Nataraj et
al. [20], involved converting binary files into grayscale images and extracting gist
texture features for malware classification. Su et al. [21] proposed a lightweight
solution utilizing shallow convolutional neural networks to detect IoT malware.
Both malware and benign samples were classified by inputting grayscale images
into the network. However, the shallow convolutional neural network in their
study had limited model learning capability, resulting in an accuracy of only
81.8% in classifying benign software and two types of IoT malware. Karanja et al.
[22] employed Haralick image texture features of malware gray-scale images in
combination with machine learning methods for IoT malware classification.
They achieved an accuracy of 95% using a random forest classifier. However,
their dataset was relatively small, with only 133 Gafygt class samples and 125
Mirai class samples. Wang et al. [12] proposed a lightweight attention module
called DEAM to enhance the application of the channel attention model in mal-
ware detection. Their method, combined with DenseNet, improved malware de-
tection by focusing on malware features. However, their method was specifically
applied to a Windows malware dataset, making it challenging to extrapolate its
performance to heterogeneous malware datasets. Yuan et al. [23] introduced a
method for IoT malware classification using lightweight convolutional neural
networks and multidimensional Markov images. This approach demonstrated
an average accuracy higher than 95% on an IoT malware dataset. However, the
multidimensional Markov image used in their method is a three-channel image
of 256 × 256 pixels, which is larger than the size of many IoT software, resulting
in redundant information.

Static low-level feature-based analysis does not require consideration of dif-
ferent opcodes and instruction sets, making it applicable to various platforms.
However, shallow convolutional neural networks and traditional machine learning
methods tend to have lower accuracy. On the other hand, complex models that
achieve high accuracy often rely on significant computational and storage re-
sources, making them challenging to employ in the IoT context.

2.2. Dynamic Features-Based Methods

Dynamic code analysis, as a part of code debugging, involves analyzing the be-
havior of an application during its execution. This approach allows for thorough
testing of the program under various scenarios, eliminating the need to create
artificial inputs or situations that may introduce unexpected errors. By scruti-
nizing the program’s behavior at runtime, dynamic code analysis can identify
unforeseen issues and un-cover required functionalities that may not have been
apparent during the design stage. While it is impossible to account for all poten-
tial scenarios, dynamic code analysis is a standard procedure that reduces testing
costs and time while facilitating maintenance activities.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 206 Journal of Computer and Communications

Chen et al. [24] developed an automated virtual machine-based analysis sys-
tem to collect IoT malware behaviors, including API calls and system calls. Mul-
tiple API calls were aggregated into a family behavior graph for further analysis.
Jeon et al. [25] analyzed IoT malware on a cloud platform, extracting data on
behaviors related to memory, network, virtual file system, processes, and system
calls. The behavioral data was then transformed into IoT malware behavioral
images and classified using convolutional neural networks. However, this ap-
proach relies on the cloud platform and cannot be directly deployed on IoT de-
vices. There are several sandboxing tools available for IoT malware analysis [26]
[27] [28]. These automated sandbox analysis tools allow malware to be executed
in a controlled and isolated environment, generating malware analysis reports
automatically. However, the challenge with sandboxing is the need to simulate
the underlying environment in which IoT malware operates. Currently, there are
no sandbox analysis tools that can support all CPU architectures of IoT samples.

While dynamic analysis methods tend to be more accurate, they require the
development of specific analysis tools for different platforms as IoT devices run
on different CPU architectures. Dynamic analysis also consumes more compu-
ting re-sources and storage space compared to static analysis. Additionally, dy-
namic analysis is time-consuming, which can be considered a disadvantage.

3. Proposed Method

To solve the problem of low accuracy and recognition speed of small models in
IoT malware detection and family classification, we propose a lightweight mal-
ware detection and family classification method for IoT based on visual explana-
tions. The general framework of our proposed method is illustrated in Figure 1.

Figure 1. The framework of malware detection and family classification for IoT.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 207 Journal of Computer and Communications

In this section, we will provide a detailed introduction to our proposed model.
In malware detection, it is often not necessary to traverse all the information of
the software to determine if it has malicious functions. By focusing on local and
key information, we can improve the efficiency of detection. We start by con-
verting IoT software into gray-scale images. A large-scale model is trained on
this dataset, and we utilize the gradient-weighted class-activated mapping me-
thod to visualize and count the high-frequency locations of key codes that influ-
ence the model’s decisions. We then intercept these key location codes and re-
construct grayscale images to train the light-weight model. This approach ad-
dresses the limited feature extraction capabilities of small models, thereby en-
hancing their accuracy and speed in malware detection and classification.

In malware family classification, preserving as much original information
about the malware as possible is crucial for improving classification accuracy. In
our method, we convert IoT malware binary files into grayscale images, which
can be executed on different CPU architectures. By employing the technique of
multi-teacher knowledge distillation, we train a student model called LMDNet to
enhance its accuracy in malware family classification.

3.1. Targeting Malicious Code Locations by Gard-CAM

Malware detection poses challenges in identifying the location of malicious code
solely through human analysis because not all code within malware exhibits ma-
licious functions, and a significant portion of the malware consists of benign in-
formation. Therefore, isolating the malicious code portion and providing it to
the model for learning, we can enhance the accuracy, training speed, and recog-
nition speed of the model. In this paper, we convert IoT software into grayscale
images for malware detection. These images are used to train a ResNet-34 mod-
el. We employ the Grad-CAM [29] technique to visualize and count the regions
that contribute to the decisions made by the convolutional neural network. This
visualization and counting process helps us identify the regions of interest in the
malware images. We then transform the local binary code, which contains the
focused information, into grayscale images to create a new dataset. The process
is depicted in Figure 2.

Grad-CAM is a technique for interpreting decisions in convolutional neural
net-works. It is possible to visualize the results of decisions in a convolutional
neural network as to which regions of the image contributed to the decision. To
generate a Grad-CAM, the first step is to perform a forward pass of the input
image through the CNN and obtain the prediction probabilities for different
classes. Then, the gradients of the predicted class with respect to the feature
maps of the last convolutional layer are computed using back propagation.
These gradients represent the importance of each feature map in the final pre-
diction. Next, the global average pooling is applied to the gradients, resulting in
a weighted combination of the gradients for each feature map. This step helps to
aggregate the importance of different spatial locations within each feature map.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 208 Journal of Computer and Communications

After obtaining the weighted combination, a heat map is generated by linearly
combining the feature maps with their corresponding weights. This heat map
represents the saliency or relevance of each pixel in the input image to the pre-
dicted class. By overlaying the heat map on the original input image, Grad-CAM
produces a visual explanation of the decision-making process of the CNN. The
regions in the image that are highlighted by the heat map indicate the areas that
strongly contribute to the network’s prediction. This helps us to understand the
decision-making process and the basis of the model. This is shown in Figure 3.
In malware image classification, the network is first forward propagated to ob-
tain the feature layer A and the model prediction y. If we want to look at the re-
gions where the model is particularly interested in benign samples, we first de-
rive the logits of the model for benign samples by training, cy . The backward
propagation is then performed on cy to obtain the gradient information A′
at the feature layer A. By calculating the weights that determine the influence of
each channel in the feature layer A on the final decision, a weighted summation

Figure 2. Targeting malicious code locations by Gard-CAM and converting important location codes to grey-scale images.

Figure 3. Generating heatmaps by Gard-CAM.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 209 Journal of Computer and Communications

is computed. The corresponding class activation map for each category is ob-
tained using ReLU activation. The process of gradient-weighted class activation
mapping can be represented as follows:

Grad-GAM ReLUC c k
k

k
L Aα 

=  
 
∑ (1)

1
c

c
k k

i j ij

y
Z A

α ∂
=

∂∑∑ (2)

A represents a specific feature layer. In convolutional neural networks,
high-level semantic features are extracted by deep convolutional layers [30].
These deep convolutional layers also contain information in both the spatial di-
mensions (length and width). Hence, in this study, we selected the feature layer
output from the last convolutional layer of the model. k represents the kth
channel in feature layer A; c represents a specific class; kA represents the data
of channel k in feature layer A; c

kα represents the weights applied to kA ; cy
represents the logits of the network for class c. These logits refer to the predicted
probability for class c without being passed through the Softmax activation func-
tion; k

ijA represents the data at position (),i j in channel k of feature layer A.
Z represents the size of the feature layer.

In this paper, we focus on extracting key positions within the feature layer A,
which is obtained from the last convolutional layer output of the ResNet-34
model. The feature map size of layer A is 7 × 7. By applying the Grad-CAM
technique, we generate a class activation map that is also a 7 × 7 two-dimensional
array. Due to the highly abstract nature of gray-scale images, it is difficult to vi-
sually assess the magnitude of the impact of heatmaps on model decisions.
Therefore, we conducted extensive experiments on natural image classification
datasets. Through experiments, we identified positions with heatmap values
greater than 0.8 as critical locations influencing model decisions. As an example,
Figure 4 illustrates the significant regions of interest when the model recognizes
malware. The portion of the heatmap with values greater than 0.8 corresponds to
the location of the malware. Specifically, we count the frequency of the 49 posi-
tions in the array where the element values exceed a threshold of 0.8. These posi-
tions correspond to regions in the grayscale image that have a strong impact on
the model’s decision-making process. After counting the frequency of occur-
rence, we sort the 49 coordinate points based on the frequency of their asso-
ciated key codes. This sorting process allows us to identify the key positions that
have a higher frequency of occurrence and therefore have a more significant in-
fluence on the model’s decision. By focusing on these key positions, we can ef-
fectively extract the essential features from the malware images and improve the
accuracy and performance of the lightweight model for malware detection and
classification.

3.2. Design of Lightweight Convolutional Neural Network (LMDNet)

The design of LMDNet relies on deepwise separable convolution and group

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 210 Journal of Computer and Communications

Figure 4. The decision basis for malware recognition using Grad-CAM.

convolution to reduce the number of floating-point operations and the number
of parameters in the model. Channel shuffle and ECA module are used to en-
hance the model’s channel feature learning capability.

3.2.1. Deepwise Separable Convolution and Group Convolution
Deepwise separable convolution consists of two processes: depthwise convolu-
tion and pointwise convolution. Depthwise convolution involves convolving the
input features with the convolutional kernel on a per-channel basis to obtain
spatial information. Subsequently, the output features of the depthwise convolu-
tion are used as input features for the next layer, where pointwise convolution is
performed. Point-wise convolution employs a 1 × 1 convolutional kernel to
convolve the output features of the depthwise convolution to obtain channel in-
formation. The decomposition of standard convolution into depthwise convolu-
tion and pointwise convolution is shown in Figure 5. k kD D× is the convolu-
tion kernel size, and M and N are the number of input and output channels.

Number of parameters and floating point operations for standard convolution
with depthwise separable convolution:

1 k kP D D M N= × × × (3)

1 k k F FC D D M N D D= × × × × × (4)

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 211 Journal of Computer and Communications

Figure 5. Standard convolution and depthwise separable convolution.

2 k kP D D M M N= × × + × (5)

2 k k F F F FC D D M D D M N D D= × × × × + × × × (6)

2
2

1

1 1

k

P
P N D

= + (7)

2
2

1

1 1
k

C
C N D

= + (8)

In the formula, 1P and 1C denote the number of parameters and floating
point operations for standard convolution, 2P and 2C denote the number of
parameters and floating point operations for depth-separable convolution, and

F FD D× means the feature map size. Equation (7) and (8) show that the num-
ber of parameters and floating-point operations of the depth-separable convolu-

tion is 2
1 1

kN D
+ of that of the standard convolution. In this paper, the size of

the convolution kernel for the depth-wise convolution operation is 3 × 3, so the
number of deepwise separable convolution parameters and the number of float-
ing-point operations is about 1/9 of the number of standard convolution para-
meters.

3.2.2. Channel Shuffle and ECA Module
Group convolution divides the input feature map into G groups by channel. The
convolution kernel performs the convolution operation on the input features of
the same group only, and then concatenates the output results of each group to
obtain the final output features. Number of covariates for group convolution:

3 k k
MP D D N
G

= × × × (9)

where 3P means the number of parameters of the grouped convolution. Group
convolution has only 1/G of the number of parameters of standard convolution,
so grouped convolution has some lightweighting effect. The idea of grouped
convolution has its roots in LeNet-5 [31] and AlexNet [32]. Because of the limi-
tation of early GPU storage, splitting the model and training it through two

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 212 Journal of Computer and Communications

GPUs can solve this problem.
In group convolution, the convolutional kernel operates only on the inputs

within its group, resulting in relatively isolated feature information between dif-
ferent groups. This isolation leads to the inability to capture information from
all input features in the output feature maps. To address this issue, we introduce
channel shuffle, a technique that reorganizes feature information across different
groups, allowing for better integration among the groups without increasing
computational complexity. The detailed processes of grouped convolution and
channel shuffle are illustrated in Figure 6.

In 2020 Wang [33] et al. proposed an efficient channel attention (ECA) mod-
ule, which can effectively capture the information of cross-channel interactions
and achieve the effect of channel feature enhancement. As depicted in Figure 7,
the Efficient Channel Attention (ECA) module operates by performing a
one-dimensional local convolution operation among the original channel data,
enabling the fusion of local channel information. Subsequently, an appropriate
activation function is applied. This approach effectively mitigates the computa-
tional and parameter increase issues encountered with the fully connected layers
employed in SENet [34]. The ECA module, as a lightweight and readily applica-
ble component, significantly enhances network performance while ensuring a
lightweight design.

The output of the ECA module does not alter the size of the feature maps.
During the learning process of channel features, a 1 × 1 convolutional kernel is
employed, where the length of the convolutional kernel remains fixed for the

Figure 6. Group convolution and channel shuffle.

Figure 7. Efficient Channel Attention (ECA) module.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 213 Journal of Computer and Communications

high and low-dimensional channels, while the size of the convolutional kernel
for the remaining channels is set to 1 × 1 L. The value of L adapts and changes
based on the number of input feature map channels.

() ()2log

odd

M bL M
a a

ϕ= = + (10)

In the publicity, odd means that L can only take odd numbers. a and b are
used to adjust the ratio of the number of channels M to the length L of the 1 × 1
convolution kernel.

3.2.3. The Overall Structure of LMDNet
The basic unit and structure of the proposed lightweight student network,
LMDNet, is shown in Figure 8.

In LMDNet, the input grayscale images derived from malicious binary files
are treated as three-channel images instead of single-channel. This means that
the gray-scale image is replicated across all three channels to create a
three-channel representation. This approach has been experimentally shown to
improve the classification accuracy. The decision to treat grayscale images as
three-channel images is motivated by previous research studies in different do-
mains, such as the work of Kalash et al. [35] and medical image classification
[36]. These studies have observed that reading grayscale images as three-channel
images can result in better classification performance. In the initial stage of

Figure 8. The basic unit and structure of LMDNet.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 214 Journal of Computer and Communications

LMDNet, we perform a 3 × 3 convolution followed by max pooling. This helps
introduce initial non-linear feature transformations and gradually increasing re-
ceptive fields, providing richer input features for subsequent depth-wise separa-
ble convolution modules. The LMDNet basic unit is then used for feature ex-
traction. Initially, the feature maps are downsampled and divided into multiple
groups using grouped convolution. Channel shuffling is applied to alternate the
feature maps along the channel dimension, enhancing interaction between the
groups. The feature maps are then processed using depth-wise separable convo-
lution to combine local spatial and channel information, and an ECA (Efficient
Channel Attention) module is employed to enhance long-range dependencies
between channels. Finally, a 1 × 1 grouped convolution is used for dimensional-
ity increase. In the experiments, the addition of channel shuffling after the last
grouped convolution has only a slight impact on the results, so it is not included
after the grouped convolution. The first half of the basic unit performs down-
sampling, while the second half is responsible for feature extraction. Specifically,
the output channel numbers of the three basic units are set as 120, 240, and 480.
The fully connected layers in the network are adjusted accordingly based on the
number of classes required for the classification task.

3.3. Malware Image Classification Using Multi-Teacher
Knowledge Distillation

In traditional malware image classification studies, complex models exhibit good
performance and generalization capabilities. However, they often come with a
large number of parameters, requiring significant storage and computational
resources. This limitation hinders the direct application of traditional malware
detection and family classification methods in the IoT environment.

Knowledge distillation provides a solution by transferring the knowledge from
a large teacher model to a lightweight student model. This approach compen-
sates for the accuracy limitations of the student model caused by its smaller
network size, resulting in improved performance. By leveraging knowledge dis-
tillation, the student model can benefit from the expertise of the larger model
while maintaining a smaller footprint.

The concept of knowledge distillation was formally introduced by Hinton et
al. in 2015. In the training process of knowledge distillation, the student model
learns from the output of the teacher model at the Softmax layer. By introducing
a distillation temperature, denoted as T, soft labels are generated. These soft la-
bels are then used to train the student network, allowing the network to learn
additional knowledge by exposing the information related to non-correct class
probabilities more thoroughly.

In this paper, we employ a multi-teacher knowledge distillation approach to
enhance the effectiveness of distillation by integrating predictions from multiple
teachers. The efficacy of multi-teacher knowledge distillation has been demon-
strated in various studies [37] [38] [39]. The process of multi-teacher knowledge

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 215 Journal of Computer and Communications

distillation can be represented by the following formula:

exp

exp

i

T
i

N k
k

v
Tp

v
T

 
 
 =
 
 
 

∑
 (11)

exp

exp

i

T
i

N k
k

z
Tq

zS
T

 
 
 =
 
 
 

 (12)

()log
N

T T
soft i i

i
L p q= −∑ (13)

1
m

mkd i softiL Q L
=

= ×∑ (14)

where represents the logits of the teacher model, iz represents the logits of the
student model, T

ip and T
iq refer to the softened outputs of the teacher and

student models, respectively, under the temperature T. softL represents the
cross-entropy between the student model and a single teacher model’s softened
labels at temperature T. N denotes the total number of labels. iQ represents the
weights assigned to different teacher models during the knowledge distillation
process. mkdL represents the cross-entropy between the student model and
multiple teacher models with different weights, resulting in softened labels at
temperature T.

The overall loss of knowledge distillation can be divided into two components:
distillation loss and student loss. The distillation loss is partially derived from
the cross-entropy loss between the student network’s output and the soft labels
generated by the teacher network using the temperature T. The student loss, on
the other hand, is computed using the cross-entropy loss between the student
network’s output and the true labels. The total loss is a weighted sum of these
two losses.

Specifically, the process of knowledge distillation involves two aspects. Firstly,
the student model is trained to fit the soft label information generated by the
teacher network, enabling the student network to learn underlying semantic in-
formation and capture the experience of the teacher network. Secondly, the stu-
dent network is trained with the cross-entropy loss using the true hard labels,
allowing it to understand the differences in real data. The total loss is obtained
by combining these two losses with appropriate weights.

The cross-entropy loss between the Softmax output of the student model, un-
der the condition of introducing the temperature parameter T = 1, and the true
labels forms the second part of the overall loss function, hardL .

()1log
N

hard j j
j

L c q= −∑ (15)

()
()

1 exp
exp

i
j N

kk

z
q

z
=
∑

 (16)

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 216 Journal of Computer and Communications

Knowledge distillation utilizes a weighted combination of soft and hard label
cross-entropy loss functions to train the student model. The parameter Q
represents the proportion of distillation loss. The overall weighted function can
be expressed as:

1mkd hardLoss Q L Q L= × + − × (17)

The proposed LMDNet structure in this paper is simple and has fewer traina-
ble parameters, resulting in limited accuracy. Therefore, this paper adopts a
multi-teacher knowledge distillation approach to enhance the accuracy of
LMDNet. LMDNet is used as the student model, while ResNet-34 and VGG-16
are employed as the teacher models. The multi-teacher knowledge distillation
structure used in this paper is illustrated in Figure 9.

4. Experimental Results and Analysis
4.1. Data Preprocessing

This paper utilizes three datasets: the IoT malware detection dataset, the IoT
malware family classification dataset, and the Malimg dataset. As shown in Ta-
ble 1, the Malimg dataset consists of 9339 malicious samples, distributed among
25 malicious families. The IoT malware detection dataset comprises 11,499 be-
nign and malicious samples across various architectures such as MIPS, x86,
SUPERH, etc., with an equal number of samples for each category. The IoT
malware family classification dataset consists of 11,499 samples from three mali-
cious families, selected from the detection dataset. Further details can be found
in Table 2 and Table 3.

Figure 9. Multi-teacher knowledge distillation framework.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 217 Journal of Computer and Communications

Table 1. MalImg: distribution of samples.

No. Family Number of samples

1 Adialer. C 122

2 Agent. FYI 116

3 Allaple. A 2949

4 Allaple. L 1591

5 Alueron. gen!J 198

6 Autorun. K 106

7 C2LOP. gen!g 200

8 C2LOP. P 146

9 Dialplatform. B 177

10 Dontovo. A 162

11 Fakerean 381

12 Instantaccess 431

13 Lolyda. AA1 213

14 Lolyda. AA2 184

15 Lolyda. AA3 123

16 Lolyda. AT 159

17 Malex. gen!J 136

18 Obfuscator. AD 142

19 Rbot!gen 158

20 Skintrim. N 80

21 Swizzor. gen!E 128

22 Swizzor. gen!I 132

23 VB. AT 408

24 Wintrim. BX 97

25 Yuner. A 800

Total 9339

Table 2. Sample distribution of IoT malware detection dataset.

No. Family Number of samples

1 Benign samples 11,499

2 Malware 11,499

Total 22,998

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 218 Journal of Computer and Communications

Table 3. Sample distribution of IoT malware family classification dataset.

No. Family Number of samples

1 Gafgyt 1848

2 Generic 1651

3 Mirai 8000

Total 11,499

The samples in the IoT malware dataset used in this paper are derived from

the real captures of IoT honeypots, namely IoTPOT [40] and X-Pot [41], span-
ning from 2016 to 2020. This dataset is the first publicly released dataset for IoT
malware [22], although it is not openly available and requires permission from
the authors for its usage. The benign software samples were collected from
projects on GitHub [42]. As the IoT software dataset does not provide data la-
bels, this paper employs VirusTotal [43] to query and label the IoT software
samples. The detailed process is illustrated in Figure 10.

4.2. Experimental Environment

The experiments were conducted on the Kaggle cloud platform using the fol-
lowing equipment specifications: Ubuntu 20.04.4 system, Intel(R) Xeon(R) CPU
@ 2.20 GHz, and NVIDIA Tesla P100 PCIe 16GB. The programming language
used was Python 3.7, and the neural network framework PyTorch was utilized
for creating and training the neural networks.

Regarding the key parameters of the neural network, the settings were as fol-
lows: epochs = 50, batch size = 128, optimizer = Adam, and learning rate =
0.001. Additionally, the values of a = 2, b = 1, G = 3, and T = 2 were used, and Q
= 0.5 represented the weights assigned to different teacher models in the know-
ledge distillation process based on their accuracy. The three datasets were split
into training and testing sets in a 7:3 ratio.

4.3. Evaluation Indicators

This study evaluates the performance of the models using widely employed me-
trics such as accuracy, precision, recall, and F1 score. Additionally, to better
align with the IoT application environment, parameters like the number of pa-
rameters, model size, training time per epoch, and inference time per image are
introduced as evaluation metrics. Model size encompasses not only the number
of parameters but also includes information about the network architecture, op-
timizer details, and other relevant factors. These metrics provide a comprehen-
sive assessment of the model’s efficiency and suitability for IoT applications.

4.4. Experimental Results

In the detection process, the IoT software is first transformed into grayscale

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 219 Journal of Computer and Communications

Figure 10. Acquisition of sample grayscale image.

images. ResNet-34 is then trained on this dataset, and gradient-weighted class
activation mapping is used to generate square heatmaps of size 7 × 7,
representing the key locations influencing the model’s decision. The heatmaps
are analyzed to identify the “important” positions where the heatmap values are
greater than 0.8. These positions are then mapped back to the corresponding re-
gions in the original software structure.

Through statistical analysis, it is determined that the grayscale images of the
software contribute significantly to the detection task, ranging from 2.04% to
28.57% and from 87.75% to 97.95%. Therefore, in the next experiments, only the
portions of the binary code are converted into gray-scale images.

Table 4 shows the experimental results using LMDNet on the initial and op-
timized datasets for IoT malware detection. It can be observed that LMDNet
achieves a 0.61% improvement in accuracy and a 23.68% increase in recognition
speed, demonstrating the effectiveness of the proposed method.

In the task of malicious software family classification, the use of the mul-
ti-teacher knowledge distillation method effectively improves the accuracy of
lightweight models in the classification task. To better select the teacher models,
we carefully observed the specific classification performance of each model and
plotted the distribution of classification accuracies for each model on the malimg
dataset. The results are shown in Figure 11.

From Figure 11, it can be observed that VGG-16 and ResNet-34 have rela-
tively high accuracies, and each of them excels in different categories. This is
beneficial for the student model to learn from their respective strengths. In the
C2LOP.P, Swizzor.gen!E, and Swizzor.gen!I malware families, ResNet-34
achieves higher accuracies, while VGG-16 performs better in the C2LOP.gen!g
family. On the other hand, AlexNet and LMDNet have relatively lower accura-
cies, with both models achieving 0 accuracy in the classification task of the Au-
torun.K family. Considering all these factors, this paper selects VGG-16 and
ResNet-34 as the teacher models, as they are well-performing convolutional
neural network models with promising performance.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 220 Journal of Computer and Communications

Table 4. IoT malware detection dataset test results.

Model Acc Pre Rec F1 Params Model size
Time of one

epoch
Time of

inference
Dataset

LMDNet 0.9831 0.9835 0.9831 0.9831 0.0852M 0.39M 69.09s 0.0038s initial

LMDNet 0.9892 0.9894 0.9893 0.9893 0.0852M 0.39M 54.13s 0.0029s upgrade

Figure 11. Accuracy of each model for each category in the malimg dataset.

The experimental results for malicious software family classification are

shown in Table 5 and Table 6. In these tables, KD-LMDNet represents the stu-
dent model after multi-teacher knowledge distillation. Although the student
model in this paper is small, its initial accuracy is not low. After undergoing
multi-teacher knowledge distillation, the accuracy in “weak” classification cate-
gories shows a significant improvement, leading to an overall improvement in
the model’s accuracy.

As shown in Figure 12, in the classification task of the Autorun.K family, the
accuracy of the student model LMDNet is 0. However, by learning from the two
teachers, KD-LMDNet achieves the same level of accuracy as the two teachers,
reaching 100% accuracy in this category.

In addition, to validate the effectiveness of multi-teacher knowledge distilla-
tion, we compared the accuracy of the multi-teacher knowledge distillation me-
thod with the accuracy obtained using single-teacher knowledge distillation me-
thods. The experimental results using single teachers, VGG, and ResNet-34, are
shown in Figure 13 and Figure 14. In the figures, T-VGG represents the student
model distilled using only VGG-16 as the teacher, and T-RES represents the
student model distilled using only ResNet-34 as the teacher. In the malimg data-
set, many classes are relatively easy for the student model, and the student model
achieves a perfect score before the “apprenticeship learning” process. To make
the experimental results clearer, we selected only 8 difficult LMDNet classifica-
tion families, such as Alueron.gen!J, for demonstration.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 221 Journal of Computer and Communications

Table 5. Malimg dataset family classification test results.

Model Acc Pre Rec F1 Params Model size
Time of one

epoch
Time of

inference

ResNet-34 0.9935 0.9850 0.9847 0.9849 21.2975M 85.34M 54.64s 0.0066s

VGG-16 0.9910 0.9767 0.9760 0.9762 134.3630M 537.47M 86.48s 0.0071s

LMDNet 0.9804 0.9361 0.9397 0.9375 0.0963M 0.45M 36.46s 0.0051s

KD-LMDNet 0.9925 0.9814 0.9801 0.9799 0.0963M 0.45M 54.81s 0.0051s

Table 6. IoT malware family classification dataset test results.

Model Acc Pre Rec F1 Params Model size
Time of one

epoch
Time of

inference

ResNet-34 0.9666 0.9566 0.9428 0.9495 21.2862M 85.30M 49.03s 0.0443s

VGG-16 0.9797 0.9756 0.9609 0.9681 134.2728M 537.11M 89.75s 0.0059s

LMDNet 0.9579 0.9396 0.9333 0.9363 0.0867M 0.40M 35.39s 0.0037s

KD-LMDNet 0.9620 0.9421 0.9439 0.9429 0.0867M 0.40M 58.72s 0.0037s

Figure 12. Accuracy improvement of KD-LMDNet in malimg.

Figure 13. Single-teacher VGG knowledge distillation.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 222 Journal of Computer and Communications

Figure 14. Single-teacher ResNet-34 knowledge distillation.

Figure 15. Comparison of accuracy between multi-teacher knowledge distillation and
single-teacher knowledge distillation.

Figure 16. Accuracy of each model for each category in the IoT malware family classifi-
cation dataset.

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 223 Journal of Computer and Communications

Table 7. Comparison of the detection results on the Malimg dataset.

Method Acc Pre Rec F1

DEAM + DenseNet [12] 0.985 0.969 0.966 0.967

IMCFN [44] 0.9827 0.9825 0.9819 0.9820

[45] 0.9450 0.9460 0.9450 0.9455

VGG19 [46] 0.9872 0.9761 0.9875 0.9661

Ours 0.9907 0.9749 0.9752 0.9749

The results of the comparison of the accuracy of single-teacher knowledge

distillation and multi-teacher knowledge distillation are shown in Figure 15.
The performance of the student model KD-LMDNet trained by multi-teacher
knowledge distillation in each family classification is not lower than T-VGG and
T-RES has the highest accuracy.

In the task of malicious software family classification in the IoT domain,
KD-LMDNet, the student model after knowledge distillation, shows a significant
improvement in accuracy compared to LMDNet in the Generic family classifica-
tion category. The results are shown in Figure 16.

4.5. Comparison with the State-of-the-Art Malware Classification
Methods

To validate the effectiveness of the proposed method, it was compared with tra-
ditional machine learning methods and deep learning methods based on mali-
cious software images. The results are shown in Table 7.

From Table 7, it can be observed that the proposed method achieves higher
accuracy compared to existing literature, and the model has fewer parameters
and a smaller size. Traditional machine learning methods mostly rely on ex-
tracting features based on texture similarity, which requires significant compu-
tational resources to extract complex texture features from malicious software
images, making it less efficient. Deep learning methods based on malicious soft-
ware images often require deploying large neural networks, which are challeng-
ing to apply in the resource-constrained IoT domain with limited computational
and storage resources. In contrast, the proposed model is simple and efficient.
Through the use of multi-teacher knowledge distillation, the accuracy is further
improved, achieving high accuracy with a small number of trainable parameters.

5. Conclusions

This paper introduces a lightweight malware detection and family classification
method for IoT based on visual explanations. The proposed method offers sev-
eral key advantages, including a small model size, high accuracy, fast recogni-
tion, and compatibility with multiple platforms. In malware detection, a gra-
dient-weighted class activation mapping technique is employed to identify the
crucial locations recognized by the convolutional neural network. Only these key

https://doi.org/10.4236/jcc.2024.124015

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 224 Journal of Computer and Communications

locations are considered for detection, thereby improving the efficiency of the
model. The design of LMDNet incorporates lightweight convolutional neural
network design techniques and incorporates the ECA module for simplicity and
efficiency. In family classification, the student models are trained using mul-
ti-teacher knowledge distillation, resulting in improved accuracy rates. In com-
parison to methods relying on static low-level features, the models proposed in
this paper demonstrate higher accuracy and smaller size, making them suitable
for the IoT environment.

Although the model presented in this paper performs well in known malware
recognition, it suffers from overfitting when faced with unknown malware. In
future work, we will consider combining the model proposed in this paper with
few-shot learning techniques to build a more robust detection system that
achieves accurate detection of unknown malware samples. This will help address
the increasingly complex and evolving malware threats in the IoT domain.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gaikwad, N.B., Khare, S.K., Satpute, N., et al. (2022) Hardware Implementation of

High-Performance Classifiers for Edge Gateway of Smart Automobile. 2022 1st In-
ternational Conference on the Paradigm Shifts in Communication, Embedded Sys-
tems, Machine Learning and Signal Processing (PCEMS), Nagpur, 6-7 May 2022,
74-77. https://doi.org/10.1109/PCEMS55161.2022.9808049

[2] Casillo, M., Colace, F., Gupta, B.B., et al. (2022) A Situation Awareness Approach
for Smart Home Management. 2021 International Seminar on Machine Learning,
Optimization, and Data Science (ISMODE), Jakarta, 29-30 January 2022, 260-265.
https://doi.org/10.1109/ISMODE53584.2022.9742901

[3] Rokade, A. and Singh, M. (2021) Analysis of Precise Green House Management
System Using Machine Learning Based Internet of Things (IoT) for Smart Farming.
2021 2nd International Conference on Smart Electronics and Communication
(ICOSEC), Trichy, 7-9 October 2021, 21-28.
https://doi.org/10.1109/ICOSEC51865.2021.9591962

[4] Subrahmannian, A. and Behera, S.K. (2022) Chipless RFID Sensors for IoT-Based
Healthcare Applications: A Review of State of the Art. IEEE Transactions on In-
strumentation and Measurement, 71, 1-20.
https://doi.org/10.1109/TIM.2022.3180422

[5] HaddadPajouh, H., Dehghantanha, A., Parizi, R.M., et al. (2021) A Survey on Inter-
net of Things Security: Requirements, Challenges, and Solutions. Internet of Things,
14, Article 100129. https://doi.org/10.1016/j.iot.2019.100129

[6] Greenberg, A. (2020) This Bluetooth Attack Can Steal a Tesla Model X in Minutes.
https://www.wired.com/story/tesla-model-x-hack-bluetooth

[7] Yousuf, M.J., Kanwal, N., Ansari, M.S., et al. (2022) Deep Learning Based Human
Detection in Privacy-Preserved Surveillance Videos. 35th International BCS Hu-
man-Computer Interaction Conference (HCI2022), Keele, 11-13 July 2022, 1-7.

https://doi.org/10.4236/jcc.2024.124015
https://doi.org/10.1109/PCEMS55161.2022.9808049
https://doi.org/10.1109/ISMODE53584.2022.9742901
https://doi.org/10.1109/ICOSEC51865.2021.9591962
https://doi.org/10.1109/TIM.2022.3180422
https://doi.org/10.1016/j.iot.2019.100129
https://www.wired.com/story/tesla-model-x-hack-bluetooth

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 225 Journal of Computer and Communications

https://doi.org/10.14236/ewic/HCI2022.33

[8] Sonicwall, J. (2023) 2023 SonicWall Cyber Threat Report. SonicWall, Milpitas.

[9] Liang, G., Bai, L., Pang, J., et al. (2021) A Malware Detection Method Based on Hy-
brid Learning. Acta Electronica Sinica, 49, 286-291.

[10] Ngo, Q.D., Nguyen, H.T., Le, V.H., et al. (2020) A Survey of IoT Malware and De-
tection Methods Based on Static Features. ICT Express, 6, 280-286.
https://doi.org/10.1016/j.icte.2020.04.005

[11] Madan, S., Sofat, S. and Bansal, D. (2022) Tools and Techniques for Collection and
Analysis of Internet-of-Things Malware: A Systematic State-of-Art Review. Journal
of King Saud University-Computer and Information Sciences, 34, 9867-9888.
https://doi.org/10.1016/j.jksuci.2021.12.016

[12] Wang, C., Zhao, Z., Wang, F., et al. (2021) A Novel Malware Detection and Family
Classification Scheme for IoT Based on DEAM and DenseNet. Security and Com-
munication Networks, 2021, Article ID: 6658842.
https://doi.org/10.1155/2021/6658842

[13] Aslan, Ö. and Yilmaz, A.A. (2021) A New Malware Classification Framework Based
on Deep Learning Algorithms. IEEE Access, 9, 87936-87951.
https://doi.org/10.1109/ACCESS.2021.3089586

[14] Nisa, M., Shah, J.H., Kanwal, S., et al. (2020) Hybrid Malware Classification Method
Using Segmentation-Based Fractal Texture Analysis and Deep Convolution Neural
Network Features. Applied Sciences, 10, Article 4966.
https://doi.org/10.3390/app10144966

[15] HaddadPajouh, H., Dehghantanha, A., Khayami, R., et al. (2018) A Deep Recurrent
Neural Network Based Approach for Internet of Things Malware Threat Hunting.
Future Generation Computer Systems, 85, 88-96.
https://doi.org/10.1016/j.future.2018.03.007

[16] Darabian, H., Dehghantanha, A., Hashemi, S., et al. (2020) An Opcode-Based Tech-
nique for Polymorphic Internet of Things Malware Detection. Concurrency and
Computation: Practice and Experience, 32, e5173.
https://doi.org/10.1002/cpe.5173

[17] Dovom, E.M., Azmoodeh, A., Dehghantanha, A., et al. (2019) Fuzzy Pattern Tree
for Edge Malware Detection and Categorization in IoT. Journal of Systems Archi-
tecture, 97, 1-7. https://doi.org/10.1016/j.sysarc.2019.01.017

[18] Shahzad, F. and Farooq, M. (2012) ELF-Miner: Using Structural Knowledge and
Data Mining Methods to Detect New (Linux) Malicious Executables. Knowledge
and Information Systems, 30, 589-612.
https://link.springer.com/article/10.1007/s10115-011-0393-5
https://doi.org/10.1007/s10115-011-0393-5

[19] Bai, J., Yang, Y., Mu, S., et al. (2013) Malware Detection through Mining Symbol
Table of Linux Executables. Information Technology Journal, 12, 380-384.
https://doi.org/10.3923/itj.2013.380.384

[20] Nataraj, L., Karthikeyan, S., Jacob, G., et al. (2011) Malware Images: Visualization
and Automatic Classification. Proceedings of the 8th International Symposium on
Visualization for Cyber Security, Pittsburgh, 20 July 2011, 1-7.
https://doi.org/10.1145/2016904.2016908

[21] Su, J., Vasconcellos, D.V., Prasad, S., et al. (2018) Lightweight Classification of IoT
Malware Based on Image Recognition. 2018 IEEE 42nd Annual Computer Software
and Applications Conference (COMPSAC), Tokyo, 23-27 July 2018, 664-669.
https://doi.org/10.1109/COMPSAC.2018.10315

https://doi.org/10.4236/jcc.2024.124015
https://doi.org/10.14236/ewic/HCI2022.33
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.1016/j.jksuci.2021.12.016
https://doi.org/10.1155/2021/6658842
https://doi.org/10.1109/ACCESS.2021.3089586
https://www.mdpi.com/2076-3417/10/14/4966
https://www.sciencedirect.com/science/article/pii/S0167739X1732486X
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5173
https://doi.org/10.1016/j.sysarc.2019.01.017
https://link.springer.com/article/10.1007/s10115-011-0393-5
https://doi.org/10.1007/s10115-011-0393-5
https://doi.org/10.3923/itj.2013.380.384
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/COMPSAC.2018.10315

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 226 Journal of Computer and Communications

[22] Karanja, E.M., Masupe, S. and Jeffrey, M.G. (2020) Analysis of Internet of Things
Malware Using Image Texture Features and Machine Learning Techniques. Internet
of Things, 9, Article 100153. https://doi.org/10.1016/j.iot.2019.100153

[23] Yuan, B., Wang, J., Wu, P., et al. (2021) IoT Malware Classification Based on
Lightweight Convolutional Neural Networks. IEEE Internet of Things Journal, 9,
3770-3783. https://doi.org/10.1109/JIOT.2021.3100063

[24] Chen, C.Y. and Hsiao, S.W. (2019) IoT Malware Dynamic Analysis Profiling System
and Family Behavior Analysis. 2019 IEEE International Conference on Big Data
(Big Data), Los Angeles, 9-12 December 2019, 6013-6015.
https://doi.org/10.1109/BigData47090.2019.9005981

[25] Jeon, J., Park, J.H. and Jeong, Y.S. (2020) Dynamic Analysis for IoT Malware Detec-
tion with Convolution Neural Network Model. IEEE Access, 8, 96899-96911.
https://doi.org/10.1109/ACCESS.2020.2995887

[26] Monnappa, K. (2015) Automating Linux Malware Analysis Using Limon Sandbox.
Black Hat Europe.
https://www.blackhat.com/docs/asia-16/materials/arsenal/asia-16-KA-Limon-wp.pdf

[27] HaboMalHunter: Habo Malware Analysis System. https://habo.qq.com

[28] Falcon Sandbox: Automated Malware Analysis Tool. https://www.crowdstrike.com

[29] Selvaraju, R.R., Cogswell, M., Das, A., et al. (2017) Grad-CAM: Visual Explanations
from Deep Networks via Gradient-Based Localization. Proceedings of the 2017
IEEE International Conference on Computer Vision, Venice, 22-29 October 2017,
618-626. https://doi.org/10.1109/ICCV.2017.74

[30] Zeiler, M.D. and Fergus, R. (2014) Visualizing and Understanding Convolutional
Networks. Computer Vision—ECCV 2014: 13th European Conference, Zurich, 6-12
September 2014, 818-833. https://doi.org/10.1007/978-3-319-10590-1_53

[31] LeCun, Y., Bottou, L., Bengio, Y., et al. (1998) Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE, 86, 2278-2324.
https://doi.org/10.1109/5.726791

[32] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with
Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90.
https://doi.org/10.1145/3065386

[33] Wang, Q., Wu, B., Zhu, P., et al. (2020) ECA-Net: Efficient Channel Attention for
Deep Convolutional Neural Networks. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 11534-11542.
https://doi.org/10.1109/CVPR42600.2020.01155

[34] Hu, J., Shen, L. and Sun, G. (2018) Squeeze-and-Excitation Networks. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June
2018, 7132-7141. https://doi.org/10.1109/CVPR.2018.00745

[35] Kalash, M., Rochan, M., Mohammed, N., et al. (2018) Malware Classification with
Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on
New Technologies, Mobility and Security (NTMS), Paris, 26-28 February 2018, 1-5.
https://doi.org/10.1109/NTMS.2018.8328749

[36] Sharma, H., Jain, J.S., Bansal, P., et al. (2020) Feature Extraction and Classification
of Chest X-Ray Images Using CNN to Detect Pneumonia. 2020 10th International
Conference on Cloud Computing, Data Science & Engineering (Confluence), Noi-
da, 29-31 January 2020, 227-231.
https://doi.org/10.1109/Confluence47617.2020.9057809

[37] You, S., Xu, C., Xu, C., et al. (2017) Learning from Multiple Teacher Networks.

https://doi.org/10.4236/jcc.2024.124015
https://doi.org/10.1016/j.iot.2019.100153
https://doi.org/10.1109/JIOT.2021.3100063
https://doi.org/10.1109/BigData47090.2019.9005981
https://doi.org/10.1109/ACCESS.2020.2995887
https://www.blackhat.com/docs/asia-16/materials/arsenal/asia-16-KA-Limon-wp.pdf
https://habo.qq.com/
https://www.crowdstrike.com/
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR42600.2020.01155
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/Confluence47617.2020.9057809

C. G. Wang et al.

DOI: 10.4236/jcc.2024.124015 227 Journal of Computer and Communications

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, 13-17 August 2017, 1285-1294.
https://doi.org/10.1145/3097983.3098135

[38] Fukuda, T., Suzuki, M., Kurata, G., et al. (2017) Efficient Knowledge Distillation
from an Ensemble of Teachers. Proceedings of the 18th Annual Conference of the
International Speech Communication Association, Stockholm, 20-24 August 2017,
3697-3701. https://doi.org/10.21437/interspeech.2017-614

[39] Wu, M.C., Chiu, C.T. and Wu, K.H. (2019) Multi-Teacher Knowledge Distillation
for Compressed Video Action Recognition on Deep Neural Networks. 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, 12-17 May 2019, 2202-2206.
https://doi.org/10.1109/ICASSP.2019.8682450

[40] Pa, Y.M.P., Suzuki, S., Yoshioka, K., et al. (2015) IoTPOT: Analysing the Rise of IoT
Compromises. 9th USENIX Workshop on Offensive Technologies (WOOT 15),
Washington, D.C., 10-11 August 2015, 1-9.
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa

[41] Kato, S., Tanabe, R., Yoshioka, K., et al. (2021) Adaptive Observation of Emerging
Cyber Attacks Targeting Various IoT Devices. 2021 IFIP/IEEE International Sym-
posium on Integrated Network Management (IM), Bordeaux, 17-21 May 2021,
143-151. https://ieeexplore.ieee.org/abstract/document/9464004

[42] https://github.com/azmoodeh/

[43] https://www.virustotal.com/

[44] Vasan, D., Alazab, M., Wassan, S., et al. (2020) IMCFN: Image-Based Malware Classi-
fication Using Fine-Tuned Convolutional Neural Network Architecture. Computer
Networks, 171, Article 107138.
https://doi.org/10.1016/j.comnet.2020.107138

[45] Cui, Z., Xue, F., Cai, X., et al. (2018) Detection of Malicious Code Variants Based on
Deep Learning. IEEE Transactions on Industrial Informatics, 14, 3187-3196.
https://doi.org/10.1109/TII.2018.2822680

[46] Çayir, A., Ünal, U. and Dağ, H. (2021) Random CapsNet Forest Model for Imba-
lanced Malware Type Classification Task. Computers & Security, 102, Article 102133.
https://doi.org/10.1016/j.cose.2020.102133

https://doi.org/10.4236/jcc.2024.124015
https://dl.acm.org/doi/abs/10.1145/3097983.3098135
https://doi.org/10.21437/Interspeech.2017-614
https://doi.org/10.1109/ICASSP.2019.8682450
https://www.usenix.org/conference/woot15/workshop-program/presentation/pa
https://ieeexplore.ieee.org/abstract/document/9464004
https://github.com/azmoodeh/
https://www.virustotal.com/
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1016/j.cose.2020.102133

	A Lightweight IoT Malware Detection and Family Classification Method
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	2.1. Static Features-Based Methods
	2.2. Dynamic Features-Based Methods

	3. Proposed Method
	3.1. Targeting Malicious Code Locations by Gard-CAM
	3.2. Design of Lightweight Convolutional Neural Network (LMDNet)
	3.2.1. Deepwise Separable Convolution and Group Convolution
	3.2.2. Channel Shuffle and ECA Module
	3.2.3. The Overall Structure of LMDNet

	3.3. Malware Image Classification Using Multi-Teacher Knowledge Distillation

	4. Experimental Results and Analysis
	4.1. Data Preprocessing
	4.2. Experimental Environment
	4.3. Evaluation Indicators
	4.4. Experimental Results
	4.5. Comparison with the State-of-the-Art Malware Classification Methods

	5. Conclusions
	Conflicts of Interest
	References

