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Abstract 
A lightweight malware detection and family classification system for the In-
ternet of Things (IoT) was designed to solve the difficulty of deploying de-
fense models caused by the limited computing and storage resources of IoT 
devices. By training complex models with IoT software gray-scale images and 
utilizing the gradient-weighted class-activated mapping technique, the system 
can identify key codes that influence model decisions. This allows for the re-
construction of gray-scale images to train a lightweight model called LMDNet 
for malware detection. Additionally, the multi-teacher knowledge distillation 
method is employed to train KD-LMDNet, which focuses on classifying mal-
ware families. The results indicate that the model’s identification speed sur-
passes that of traditional methods by 23.68%. Moreover, the accuracy achieved 
on the Malimg dataset for family classification is an impressive 99.07%. Fur-
thermore, with a model size of only 0.45M, it appears to be well-suited for the 
IoT environment. By training complex models using IoT software gray-scale 
images and utilizing the gradient-weighted class-activated mapping technique, 
the system can identify key codes that influence model decisions. This allows 
for the reconstruction of gray-scale images to train a lightweight model called 
LMDNet for malware detection. Thus, the presented approach can address 
the challenges associated with malware detection and family classification in 
IoT devices. 
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1. Introduction 

The Internet of Things (IoT) is a vast network that integrates diverse informa-
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tion sensors with the Internet. It is at the forefront of the global information in-
dustry. Nowadays, IoT has been applied in extensive industries, including smart 
transportation [1], smart homes [2], agricultural production [3], and healthcare 
[4]. Meanwhile, the security of IoT [5] is attracting more attention. 

The landscape of cybersecurity threats, particularly concerning the Internet of 
Things (IoT), has indeed been evolving significantly over recent years. In 2020, a 
cybersecurity officer managed to exploit Bluetooth vulnerability and successfully 
attacked a Tesla Model X in less than two minutes [6]. In 2021, Swiss hackers 
successfully breached 150,000 Verkada live cameras that are primarily used for 
monitoring in public places such as schools, hospitals, prisons, and businesses 
[7]. The 2023 Cyber Threat Landscape report published by SonicWall highlights 
that the number of IoT malware instances has surpassed 100 million in 2022 [8]. 
Furthermore, a new attack type called IoT ransomware or R4IoT has emerged, 
which goes beyond encryption and data leakage. This attack can disrupt indus-
trial production by Programmable Logic Controllers (PLC) and other means, 
causing significant disruptions in critical infrastructure and operational tech-
nology environments. Therefore, the ability to detect unknown malware and 
identify their families becomes important due to rapid changes in the threat 
landscape and the emergence of unknown malware.  

Malware is commonly defined as software that poses a threat to the security of 
a user’s computer and jeopardizes the user’s interests. The interception of un-
known malware and its variants presents a formidable challenge. Traditional 
methods of malware detection and family classification primarily rely on static 
analysis, dynamic analysis, and hybrid analysis [9]. Malware programs require 
execution on specific platforms. For IoT devices, the predominant operating 
system is Linux, which employs executable ELF files (.elf, .o, .so, etc.), similar to 
Windows executable PE files (.exe, .obj, .dll, etc.). Additionally, IoT devices often 
utilize various CPU instruction set architectures (such as ARM, MIPS, x86, etc.). 
The diversity of IoT devices makes it challenging to establish uniform standards 
for different types of IoT hardware and software. Moreover, the limited compu-
ting resources and storage space available in IoT devices make it difficult to set 
up a dynamic analysis environment suitable for IoT software disassembly and 
configuration [10]. Furthermore, security schemes designed for Windows sys-
tems are not easily implementable on IoT devices [11]. These factors pose sig-
nificant challenges to the rapid malware detection on IoT devices. 

The method based on the raw bytes of malware binaries primarily focuses on 
the characteristics of the abstract binary data, eliminating the need to address 
issues arising from platform heterogeneity, such as different opcodes and in-
struction sets. By avoiding the execution of malware, this approach overcomes 
the challenge of configuring detection environments that are specific to diverse 
IoT devices. However, the conversion of malware binaries into gray-scale images 
which forms the basis of this method, relies on complex models [12] [13] [14]. 
Consequently, its deployment in the IoT context is impractical. Furthermore, the 
majority of these methods are currently employed for Windows and Android 
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malware detection, without validation on IoT malware datasets. Therefore, the 
issues of security requirements of different platforms and insufficient feature ex-
traction capabilities of small models are crucial. 

In this paper, we propose a lightweight malware detection and family classifi-
cation method based on visual explanations to enhance the accuracy and recog-
nition speed of small models in IoT environments. In the detection, all samples 
are initially converted into gray-scale images, forming a gray-scale image dataset. 
Subsequently, ResNet-34 is trained on this dataset. To gain insights into the 
model’s attention during malware detection, we employ the Gradient-weighted 
class-activated mapping (Grad-CAM) technique. Additionally, we extract and 
analyze the coordinates of key locations that significantly influence the model’s 
decision-making process. To train the lightweight malware detection networks 
(LMDNet), we construct a new dataset by transforming only the binary encod-
ing of high-frequency locations into gray-scale images. Experimental results 
demonstrate that the lightweight model exhibits improved accuracy and recog-
nition speed. For family classification, we utilize VGG-16 and ResNet-34 as the 
teacher models, while LMDNet serves as the student model. The multi-teacher 
knowledge distillation method is employed to train the student model on the 
gray-scale image dataset of malware. Notably, our approach eliminates the need 
for decompiled files and dynamic analysis, significantly reducing the cost of fea-
ture engineering. In contrast to previous deep learning techniques relying solely 
on gray-scale images of malware, this paper strikes a balance between model ac-
curacy and size.  

The main contributions of this paper are as follows: 
1) The gradient-weighted class-activated mapping technique was employed to 

visualize and quantify the high-frequency locations of key codes that have a sig-
nificant impact on the model’s decision-making process. Subsequently, these key 
location codes were extracted and transformed into grayscale images to train the 
lightweight malware detection model. This approach addresses the limitations of 
small models with limited feature extraction capabilities while substantially im-
proving the model’s recognition speed. 

2) The lightweight model, LMDNet, is designed by incorporating deep separ-
able convolution, channel shuffle, group convolution, and the Efficient Channel 
Attention (ECA) module, which reduces the number of parameters in the model 
while improving its accuracy. The model proposed in this paper exhibits a small 
parameter, compact model size, and faster training and recognition speeds.  

3) In the context of malware family classification, a lightweight convolutional 
neural network is trained using a multi-teacher knowledge distillation approach. 
This methodology effectively enhances the accuracy of the model in accurately 
classifying different malware families. 

2. Related Work 

The primary methods for IoT malware detection and family classification in-
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volve static analysis and dynamic analysis. Static analysis methods rely on ex-
amining the characteristics of the malware without executing it, while dynamic 
analysis involves observing the behavior of malware in a controlled environ-
ment. Static feature-based analysis methods in IoT malware detection typically 
utilize both low-level and high-level features. Low-level features include file 
structure and raw binaries, which can be directly obtained from the malware bi-
naries. High-level features, such as control flow graphs, opcodes, and strings, 
require disassembly to extract relevant information. Given the diverse CPU ar-
chitectures and limited computational and storage resources of IoT devices, this 
paper categorizes the related work into three directions: static high-level feature 
analysis, static low-level feature analysis, and dynamic analysis. 

2.1. Static Features-Based Methods 

In static analysis, the malware detection methods rely on extracting the static 
features such as Operation Codes, Strings, or File Structure to distinguish mali-
cious samples. These characteristics can be divided into two groups: low-level 
features and high-level features. In particular, the low-level features can be ob-
tained directly from the binary file structure itself, while the high-level features 
must be extracted by a disassembler. 

1) In IoT malware detection, static high-level feature analysis primarily focus-
es on opcodes, which are individual instructions executed by the CPU and de-
scribe the behavior of executable files. Researchers have utilized various ap-
proaches in this context. HaddadPajouh et al. [15] employed a deep recurrent 
neural network-based approach that utilizes operand sequences for IoT malware 
detection. Their method achieved an accuracy of 98.18% on a dataset comprising 
270 benign samples and 281 ARM-based IoT malware samples. Darabian et al. 
[16] discovered that certain opcodes were more frequently repeated in malware 
compared to benign software. They developed a malware detection technique 
based on counting the number of opcode repetitions in executable files, achiev-
ing an accuracy of 99%. Dovom et al. [17] transformed the opcodes of a program 
into a vector space and utilized fuzzy and fast fuzzy pattern tree methods for 
malware detection. Their approach was tested on an ARM-based IoT dataset, 
consisting of 1078 benign samples and 128 malware samples, achieving an accu-
racy of 99.83%. 

In summary, it is important to note that different CPU architectures utilize 
distinct software opcodes and instruction sets. Therefore, static high-level fea-
ture analysis methods may not be effective in detecting IoT malware across var-
ious architectures. 

2) Static low-level feature-based analysis methods in IoT malware detection 
encompass the ELF file header-based approach and the gray image-based ap-
proach. Notable studies have explored these methods and achieved varying levels 
of accuracy. Shahzad et al. [18] extracted 383 features from ELF file headers for 
malware family classification, attaining a 99% accuracy rate on a dataset con-
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sisting of 709 malicious samples. Bai et al. [19] utilized information extracted 
from the ELF file symbol table for IoT malware classification, achieving an ac-
curacy of 98%. The gray image-based approach, initially proposed by Nataraj et 
al. [20], involved converting binary files into grayscale images and extracting gist 
texture features for malware classification. Su et al. [21] proposed a lightweight 
solution utilizing shallow convolutional neural networks to detect IoT malware. 
Both malware and benign samples were classified by inputting grayscale images 
into the network. However, the shallow convolutional neural network in their 
study had limited model learning capability, resulting in an accuracy of only 
81.8% in classifying benign software and two types of IoT malware. Karanja et al. 
[22] employed Haralick image texture features of malware gray-scale images in 
combination with machine learning methods for IoT malware classification. 
They achieved an accuracy of 95% using a random forest classifier. However, 
their dataset was relatively small, with only 133 Gafygt class samples and 125 
Mirai class samples. Wang et al. [12] proposed a lightweight attention module 
called DEAM to enhance the application of the channel attention model in mal-
ware detection. Their method, combined with DenseNet, improved malware de-
tection by focusing on malware features. However, their method was specifically 
applied to a Windows malware dataset, making it challenging to extrapolate its 
performance to heterogeneous malware datasets. Yuan et al. [23] introduced a 
method for IoT malware classification using lightweight convolutional neural 
networks and multidimensional Markov images. This approach demonstrated 
an average accuracy higher than 95% on an IoT malware dataset. However, the 
multidimensional Markov image used in their method is a three-channel image 
of 256 × 256 pixels, which is larger than the size of many IoT software, resulting 
in redundant information. 

Static low-level feature-based analysis does not require consideration of dif-
ferent opcodes and instruction sets, making it applicable to various platforms. 
However, shallow convolutional neural networks and traditional machine learning 
methods tend to have lower accuracy. On the other hand, complex models that 
achieve high accuracy often rely on significant computational and storage re-
sources, making them challenging to employ in the IoT context. 

2.2. Dynamic Features-Based Methods 

Dynamic code analysis, as a part of code debugging, involves analyzing the be-
havior of an application during its execution. This approach allows for thorough 
testing of the program under various scenarios, eliminating the need to create 
artificial inputs or situations that may introduce unexpected errors. By scruti-
nizing the program’s behavior at runtime, dynamic code analysis can identify 
unforeseen issues and un-cover required functionalities that may not have been 
apparent during the design stage. While it is impossible to account for all poten-
tial scenarios, dynamic code analysis is a standard procedure that reduces testing 
costs and time while facilitating maintenance activities. 
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Chen et al. [24] developed an automated virtual machine-based analysis sys-
tem to collect IoT malware behaviors, including API calls and system calls. Mul-
tiple API calls were aggregated into a family behavior graph for further analysis. 
Jeon et al. [25] analyzed IoT malware on a cloud platform, extracting data on 
behaviors related to memory, network, virtual file system, processes, and system 
calls. The behavioral data was then transformed into IoT malware behavioral 
images and classified using convolutional neural networks. However, this ap-
proach relies on the cloud platform and cannot be directly deployed on IoT de-
vices. There are several sandboxing tools available for IoT malware analysis [26] 
[27] [28]. These automated sandbox analysis tools allow malware to be executed 
in a controlled and isolated environment, generating malware analysis reports 
automatically. However, the challenge with sandboxing is the need to simulate 
the underlying environment in which IoT malware operates. Currently, there are 
no sandbox analysis tools that can support all CPU architectures of IoT samples. 

While dynamic analysis methods tend to be more accurate, they require the 
development of specific analysis tools for different platforms as IoT devices run 
on different CPU architectures. Dynamic analysis also consumes more compu-
ting re-sources and storage space compared to static analysis. Additionally, dy-
namic analysis is time-consuming, which can be considered a disadvantage. 

3. Proposed Method 

To solve the problem of low accuracy and recognition speed of small models in 
IoT malware detection and family classification, we propose a lightweight mal-
ware detection and family classification method for IoT based on visual explana-
tions. The general framework of our proposed method is illustrated in Figure 1.  
 

 
Figure 1. The framework of malware detection and family classification for IoT. 
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In this section, we will provide a detailed introduction to our proposed model. 
In malware detection, it is often not necessary to traverse all the information of 
the software to determine if it has malicious functions. By focusing on local and 
key information, we can improve the efficiency of detection. We start by con-
verting IoT software into gray-scale images. A large-scale model is trained on 
this dataset, and we utilize the gradient-weighted class-activated mapping me-
thod to visualize and count the high-frequency locations of key codes that influ-
ence the model’s decisions. We then intercept these key location codes and re-
construct grayscale images to train the light-weight model. This approach ad-
dresses the limited feature extraction capabilities of small models, thereby en-
hancing their accuracy and speed in malware detection and classification. 

In malware family classification, preserving as much original information 
about the malware as possible is crucial for improving classification accuracy. In 
our method, we convert IoT malware binary files into grayscale images, which 
can be executed on different CPU architectures. By employing the technique of 
multi-teacher knowledge distillation, we train a student model called LMDNet to 
enhance its accuracy in malware family classification. 

3.1. Targeting Malicious Code Locations by Gard-CAM 

Malware detection poses challenges in identifying the location of malicious code 
solely through human analysis because not all code within malware exhibits ma-
licious functions, and a significant portion of the malware consists of benign in-
formation. Therefore, isolating the malicious code portion and providing it to 
the model for learning, we can enhance the accuracy, training speed, and recog-
nition speed of the model. In this paper, we convert IoT software into grayscale 
images for malware detection. These images are used to train a ResNet-34 mod-
el. We employ the Grad-CAM [29] technique to visualize and count the regions 
that contribute to the decisions made by the convolutional neural network. This 
visualization and counting process helps us identify the regions of interest in the 
malware images. We then transform the local binary code, which contains the 
focused information, into grayscale images to create a new dataset. The process 
is depicted in Figure 2. 

Grad-CAM is a technique for interpreting decisions in convolutional neural 
net-works. It is possible to visualize the results of decisions in a convolutional 
neural network as to which regions of the image contributed to the decision. To 
generate a Grad-CAM, the first step is to perform a forward pass of the input 
image through the CNN and obtain the prediction probabilities for different 
classes. Then, the gradients of the predicted class with respect to the feature 
maps of the last convolutional layer are computed using back propagation. 
These gradients represent the importance of each feature map in the final pre-
diction. Next, the global average pooling is applied to the gradients, resulting in 
a weighted combination of the gradients for each feature map. This step helps to 
aggregate the importance of different spatial locations within each feature map. 
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After obtaining the weighted combination, a heat map is generated by linearly 
combining the feature maps with their corresponding weights. This heat map 
represents the saliency or relevance of each pixel in the input image to the pre-
dicted class. By overlaying the heat map on the original input image, Grad-CAM 
produces a visual explanation of the decision-making process of the CNN. The 
regions in the image that are highlighted by the heat map indicate the areas that 
strongly contribute to the network’s prediction. This helps us to understand the 
decision-making process and the basis of the model. This is shown in Figure 3. 
In malware image classification, the network is first forward propagated to ob-
tain the feature layer A and the model prediction y. If we want to look at the re-
gions where the model is particularly interested in benign samples, we first de-
rive the logits of the model for benign samples by training, cy . The backward 
propagation is then performed on cy  to obtain the gradient information A′  
at the feature layer A. By calculating the weights that determine the influence of 
each channel in the feature layer A on the final decision, a weighted summation  
 

 
Figure 2. Targeting malicious code locations by Gard-CAM and converting important location codes to grey-scale images. 

 

 
Figure 3. Generating heatmaps by Gard-CAM. 
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is computed. The corresponding class activation map for each category is ob-
tained using ReLU activation. The process of gradient-weighted class activation 
mapping can be represented as follows: 

Grad-GAM ReLUC c k
k

k
L Aα 

=  
 
∑                     (1) 

1  
c

c
k k

i j ij

y
Z A

α ∂
=

∂∑∑                         (2) 

A represents a specific feature layer. In convolutional neural networks, 
high-level semantic features are extracted by deep convolutional layers [30]. 
These deep convolutional layers also contain information in both the spatial di-
mensions (length and width). Hence, in this study, we selected the feature layer 
output from the last convolutional layer of the model. k represents the kth 
channel in feature layer A; c represents a specific class; kA  represents the data 
of channel k in feature layer A; c

kα  represents the weights applied to kA ; cy  
represents the logits of the network for class c. These logits refer to the predicted 
probability for class c without being passed through the Softmax activation func-
tion; k

ijA  represents the data at position ( ),i j  in channel k of feature layer A. 
Z represents the size of the feature layer. 

In this paper, we focus on extracting key positions within the feature layer A, 
which is obtained from the last convolutional layer output of the ResNet-34 
model. The feature map size of layer A is 7 × 7. By applying the Grad-CAM 
technique, we generate a class activation map that is also a 7 × 7 two-dimensional 
array. Due to the highly abstract nature of gray-scale images, it is difficult to vi-
sually assess the magnitude of the impact of heatmaps on model decisions. 
Therefore, we conducted extensive experiments on natural image classification 
datasets. Through experiments, we identified positions with heatmap values 
greater than 0.8 as critical locations influencing model decisions. As an example, 
Figure 4 illustrates the significant regions of interest when the model recognizes 
malware. The portion of the heatmap with values greater than 0.8 corresponds to 
the location of the malware. Specifically, we count the frequency of the 49 posi-
tions in the array where the element values exceed a threshold of 0.8. These posi-
tions correspond to regions in the grayscale image that have a strong impact on 
the model’s decision-making process. After counting the frequency of occur-
rence, we sort the 49 coordinate points based on the frequency of their asso-
ciated key codes. This sorting process allows us to identify the key positions that 
have a higher frequency of occurrence and therefore have a more significant in-
fluence on the model’s decision. By focusing on these key positions, we can ef-
fectively extract the essential features from the malware images and improve the 
accuracy and performance of the lightweight model for malware detection and 
classification. 

3.2. Design of Lightweight Convolutional Neural Network (LMDNet) 

The design of LMDNet relies on deepwise separable convolution and group  
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Figure 4. The decision basis for malware recognition using Grad-CAM. 

 
convolution to reduce the number of floating-point operations and the number 
of parameters in the model. Channel shuffle and ECA module are used to en-
hance the model’s channel feature learning capability. 

3.2.1. Deepwise Separable Convolution and Group Convolution 
Deepwise separable convolution consists of two processes: depthwise convolu-
tion and pointwise convolution. Depthwise convolution involves convolving the 
input features with the convolutional kernel on a per-channel basis to obtain 
spatial information. Subsequently, the output features of the depthwise convolu-
tion are used as input features for the next layer, where pointwise convolution is 
performed. Point-wise convolution employs a 1 × 1 convolutional kernel to 
convolve the output features of the depthwise convolution to obtain channel in-
formation. The decomposition of standard convolution into depthwise convolu-
tion and pointwise convolution is shown in Figure 5. k kD D×  is the convolu-
tion kernel size, and M and N are the number of input and output channels. 

Number of parameters and floating point operations for standard convolution 
with depthwise separable convolution: 

1 k kP D D M N= × × ×                       (3) 

1 k k F FC D D M N D D= × × × × ×                  (4) 
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Figure 5. Standard convolution and depthwise separable convolution. 

 
2 k kP D D M M N= × × + ×                     (5) 

2 k k F F F FC D D M D D M N D D= × × × × + × × ×            (6) 

2
2

1

1 1

k

P
P N D

= +                         (7) 

2
2

1

1 1 
k

C
C N D

= +                         (8) 

In the formula, 1P  and 1C  denote the number of parameters and floating 
point operations for standard convolution, 2P  and 2C  denote the number of 
parameters and floating point operations for depth-separable convolution, and 

F FD D×  means the feature map size. Equation (7) and (8) show that the num-
ber of parameters and floating-point operations of the depth-separable convolu-  

tion is 2
1 1

kN D
+  of that of the standard convolution. In this paper, the size of  

the convolution kernel for the depth-wise convolution operation is 3 × 3, so the 
number of deepwise separable convolution parameters and the number of float-
ing-point operations is about 1/9 of the number of standard convolution para-
meters. 

3.2.2. Channel Shuffle and ECA Module 
Group convolution divides the input feature map into G groups by channel. The 
convolution kernel performs the convolution operation on the input features of 
the same group only, and then concatenates the output results of each group to 
obtain the final output features. Number of covariates for group convolution: 

3 k k
MP D D N
G

= × × ×                        (9) 

where 3P  means the number of parameters of the grouped convolution. Group 
convolution has only 1/G of the number of parameters of standard convolution, 
so grouped convolution has some lightweighting effect. The idea of grouped 
convolution has its roots in LeNet-5 [31] and AlexNet [32]. Because of the limi-
tation of early GPU storage, splitting the model and training it through two 
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GPUs can solve this problem. 
In group convolution, the convolutional kernel operates only on the inputs 

within its group, resulting in relatively isolated feature information between dif-
ferent groups. This isolation leads to the inability to capture information from 
all input features in the output feature maps. To address this issue, we introduce 
channel shuffle, a technique that reorganizes feature information across different 
groups, allowing for better integration among the groups without increasing 
computational complexity. The detailed processes of grouped convolution and 
channel shuffle are illustrated in Figure 6. 

In 2020 Wang [33] et al. proposed an efficient channel attention (ECA) mod-
ule, which can effectively capture the information of cross-channel interactions 
and achieve the effect of channel feature enhancement. As depicted in Figure 7, 
the Efficient Channel Attention (ECA) module operates by performing a 
one-dimensional local convolution operation among the original channel data, 
enabling the fusion of local channel information. Subsequently, an appropriate 
activation function is applied. This approach effectively mitigates the computa-
tional and parameter increase issues encountered with the fully connected layers 
employed in SENet [34]. The ECA module, as a lightweight and readily applica-
ble component, significantly enhances network performance while ensuring a 
lightweight design. 

The output of the ECA module does not alter the size of the feature maps. 
During the learning process of channel features, a 1 × 1 convolutional kernel is 
employed, where the length of the convolutional kernel remains fixed for the  
 

 
Figure 6. Group convolution and channel shuffle. 

 

 
Figure 7. Efficient Channel Attention (ECA) module. 
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high and low-dimensional channels, while the size of the convolutional kernel 
for the remaining channels is set to 1 × 1 L. The value of L adapts and changes 
based on the number of input feature map channels. 

( ) ( )2log

odd

M bL M
a a

ϕ= = +                   (10) 

In the publicity, odd means that L can only take odd numbers. a and b are 
used to adjust the ratio of the number of channels M to the length L of the 1 × 1 
convolution kernel. 

3.2.3. The Overall Structure of LMDNet 
The basic unit and structure of the proposed lightweight student network, 
LMDNet, is shown in Figure 8. 

In LMDNet, the input grayscale images derived from malicious binary files 
are treated as three-channel images instead of single-channel. This means that 
the gray-scale image is replicated across all three channels to create a 
three-channel representation. This approach has been experimentally shown to 
improve the classification accuracy. The decision to treat grayscale images as 
three-channel images is motivated by previous research studies in different do-
mains, such as the work of Kalash et al. [35] and medical image classification 
[36]. These studies have observed that reading grayscale images as three-channel 
images can result in better classification performance. In the initial stage of  
 

 
Figure 8. The basic unit and structure of LMDNet. 
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LMDNet, we perform a 3 × 3 convolution followed by max pooling. This helps 
introduce initial non-linear feature transformations and gradually increasing re-
ceptive fields, providing richer input features for subsequent depth-wise separa-
ble convolution modules. The LMDNet basic unit is then used for feature ex-
traction. Initially, the feature maps are downsampled and divided into multiple 
groups using grouped convolution. Channel shuffling is applied to alternate the 
feature maps along the channel dimension, enhancing interaction between the 
groups. The feature maps are then processed using depth-wise separable convo-
lution to combine local spatial and channel information, and an ECA (Efficient 
Channel Attention) module is employed to enhance long-range dependencies 
between channels. Finally, a 1 × 1 grouped convolution is used for dimensional-
ity increase. In the experiments, the addition of channel shuffling after the last 
grouped convolution has only a slight impact on the results, so it is not included 
after the grouped convolution. The first half of the basic unit performs down-
sampling, while the second half is responsible for feature extraction. Specifically, 
the output channel numbers of the three basic units are set as 120, 240, and 480. 
The fully connected layers in the network are adjusted accordingly based on the 
number of classes required for the classification task. 

3.3. Malware Image Classification Using Multi-Teacher  
Knowledge Distillation 

In traditional malware image classification studies, complex models exhibit good 
performance and generalization capabilities. However, they often come with a 
large number of parameters, requiring significant storage and computational 
resources. This limitation hinders the direct application of traditional malware 
detection and family classification methods in the IoT environment. 

Knowledge distillation provides a solution by transferring the knowledge from 
a large teacher model to a lightweight student model. This approach compen-
sates for the accuracy limitations of the student model caused by its smaller 
network size, resulting in improved performance. By leveraging knowledge dis-
tillation, the student model can benefit from the expertise of the larger model 
while maintaining a smaller footprint. 

The concept of knowledge distillation was formally introduced by Hinton et 
al. in 2015. In the training process of knowledge distillation, the student model 
learns from the output of the teacher model at the Softmax layer. By introducing 
a distillation temperature, denoted as T, soft labels are generated. These soft la-
bels are then used to train the student network, allowing the network to learn 
additional knowledge by exposing the information related to non-correct class 
probabilities more thoroughly. 

In this paper, we employ a multi-teacher knowledge distillation approach to 
enhance the effectiveness of distillation by integrating predictions from multiple 
teachers. The efficacy of multi-teacher knowledge distillation has been demon-
strated in various studies [37] [38] [39]. The process of multi-teacher knowledge 
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distillation can be represented by the following formula: 
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where represents the logits of the teacher model, iz  represents the logits of the 
student model, T

ip  and T
iq  refer to the softened outputs of the teacher and 

student models, respectively, under the temperature T. softL  represents the 
cross-entropy between the student model and a single teacher model’s softened 
labels at temperature T. N denotes the total number of labels. iQ  represents the 
weights assigned to different teacher models during the knowledge distillation 
process. mkdL  represents the cross-entropy between the student model and 
multiple teacher models with different weights, resulting in softened labels at 
temperature T. 

The overall loss of knowledge distillation can be divided into two components: 
distillation loss and student loss. The distillation loss is partially derived from 
the cross-entropy loss between the student network’s output and the soft labels 
generated by the teacher network using the temperature T. The student loss, on 
the other hand, is computed using the cross-entropy loss between the student 
network’s output and the true labels. The total loss is a weighted sum of these 
two losses. 

Specifically, the process of knowledge distillation involves two aspects. Firstly, 
the student model is trained to fit the soft label information generated by the 
teacher network, enabling the student network to learn underlying semantic in-
formation and capture the experience of the teacher network. Secondly, the stu-
dent network is trained with the cross-entropy loss using the true hard labels, 
allowing it to understand the differences in real data. The total loss is obtained 
by combining these two losses with appropriate weights. 

The cross-entropy loss between the Softmax output of the student model, un-
der the condition of introducing the temperature parameter T = 1, and the true 
labels forms the second part of the overall loss function, hardL . 
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Knowledge distillation utilizes a weighted combination of soft and hard label 
cross-entropy loss functions to train the student model. The parameter Q 
represents the proportion of distillation loss. The overall weighted function can 
be expressed as: 

1mkd hardLoss Q L Q L= × + − ×                  (17) 

The proposed LMDNet structure in this paper is simple and has fewer traina-
ble parameters, resulting in limited accuracy. Therefore, this paper adopts a 
multi-teacher knowledge distillation approach to enhance the accuracy of 
LMDNet. LMDNet is used as the student model, while ResNet-34 and VGG-16 
are employed as the teacher models. The multi-teacher knowledge distillation 
structure used in this paper is illustrated in Figure 9. 

4. Experimental Results and Analysis 
4.1. Data Preprocessing 

This paper utilizes three datasets: the IoT malware detection dataset, the IoT 
malware family classification dataset, and the Malimg dataset. As shown in Ta-
ble 1, the Malimg dataset consists of 9339 malicious samples, distributed among 
25 malicious families. The IoT malware detection dataset comprises 11,499 be-
nign and malicious samples across various architectures such as MIPS, x86, 
SUPERH, etc., with an equal number of samples for each category. The IoT 
malware family classification dataset consists of 11,499 samples from three mali-
cious families, selected from the detection dataset. Further details can be found 
in Table 2 and Table 3. 
 

 
Figure 9. Multi-teacher knowledge distillation framework. 
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Table 1. MalImg: distribution of samples. 

No. Family Number of samples 

1 Adialer. C 122 

2 Agent. FYI 116 

3 Allaple. A 2949 

4 Allaple. L 1591 

5 Alueron. gen!J 198 

6 Autorun. K 106 

7 C2LOP. gen!g 200 

8 C2LOP. P 146 

9 Dialplatform. B 177 

10 Dontovo. A 162 

11 Fakerean 381 

12 Instantaccess 431 

13 Lolyda. AA1 213 

14 Lolyda. AA2 184 

15 Lolyda. AA3 123 

16 Lolyda. AT 159 

17 Malex. gen!J 136 

18 Obfuscator. AD 142 

19 Rbot!gen 158 

20 Skintrim. N 80 

21 Swizzor. gen!E 128 

22 Swizzor. gen!I 132 

23 VB. AT 408 

24 Wintrim. BX 97 

25 Yuner. A 800 

Total  9339 

 
Table 2. Sample distribution of IoT malware detection dataset. 

No. Family Number of samples 

1 Benign samples 11,499 

2 Malware 11,499 

Total  22,998 
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Table 3. Sample distribution of IoT malware family classification dataset. 

No. Family Number of samples 

1 Gafgyt 1848 

2 Generic 1651 

3 Mirai 8000 

Total  11,499 

 
The samples in the IoT malware dataset used in this paper are derived from 

the real captures of IoT honeypots, namely IoTPOT [40] and X-Pot [41], span-
ning from 2016 to 2020. This dataset is the first publicly released dataset for IoT 
malware [22], although it is not openly available and requires permission from 
the authors for its usage. The benign software samples were collected from 
projects on GitHub [42]. As the IoT software dataset does not provide data la-
bels, this paper employs VirusTotal [43] to query and label the IoT software 
samples. The detailed process is illustrated in Figure 10. 

4.2. Experimental Environment 

The experiments were conducted on the Kaggle cloud platform using the fol-
lowing equipment specifications: Ubuntu 20.04.4 system, Intel(R) Xeon(R) CPU 
@ 2.20 GHz, and NVIDIA Tesla P100 PCIe 16GB. The programming language 
used was Python 3.7, and the neural network framework PyTorch was utilized 
for creating and training the neural networks. 

Regarding the key parameters of the neural network, the settings were as fol-
lows: epochs = 50, batch size = 128, optimizer = Adam, and learning rate = 
0.001. Additionally, the values of a = 2, b = 1, G = 3, and T = 2 were used, and Q 
= 0.5 represented the weights assigned to different teacher models in the know-
ledge distillation process based on their accuracy. The three datasets were split 
into training and testing sets in a 7:3 ratio. 

4.3. Evaluation Indicators 

This study evaluates the performance of the models using widely employed me-
trics such as accuracy, precision, recall, and F1 score. Additionally, to better 
align with the IoT application environment, parameters like the number of pa-
rameters, model size, training time per epoch, and inference time per image are 
introduced as evaluation metrics. Model size encompasses not only the number 
of parameters but also includes information about the network architecture, op-
timizer details, and other relevant factors. These metrics provide a comprehen-
sive assessment of the model’s efficiency and suitability for IoT applications. 

4.4. Experimental Results 

In the detection process, the IoT software is first transformed into grayscale  
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Figure 10. Acquisition of sample grayscale image. 

 
images. ResNet-34 is then trained on this dataset, and gradient-weighted class 
activation mapping is used to generate square heatmaps of size 7 × 7, 
representing the key locations influencing the model’s decision. The heatmaps 
are analyzed to identify the “important” positions where the heatmap values are 
greater than 0.8. These positions are then mapped back to the corresponding re-
gions in the original software structure. 

Through statistical analysis, it is determined that the grayscale images of the 
software contribute significantly to the detection task, ranging from 2.04% to 
28.57% and from 87.75% to 97.95%. Therefore, in the next experiments, only the 
portions of the binary code are converted into gray-scale images. 

Table 4 shows the experimental results using LMDNet on the initial and op-
timized datasets for IoT malware detection. It can be observed that LMDNet 
achieves a 0.61% improvement in accuracy and a 23.68% increase in recognition 
speed, demonstrating the effectiveness of the proposed method. 

In the task of malicious software family classification, the use of the mul-
ti-teacher knowledge distillation method effectively improves the accuracy of 
lightweight models in the classification task. To better select the teacher models, 
we carefully observed the specific classification performance of each model and 
plotted the distribution of classification accuracies for each model on the malimg 
dataset. The results are shown in Figure 11. 

From Figure 11, it can be observed that VGG-16 and ResNet-34 have rela-
tively high accuracies, and each of them excels in different categories. This is 
beneficial for the student model to learn from their respective strengths. In the 
C2LOP.P, Swizzor.gen!E, and Swizzor.gen!I malware families, ResNet-34 
achieves higher accuracies, while VGG-16 performs better in the C2LOP.gen!g 
family. On the other hand, AlexNet and LMDNet have relatively lower accura-
cies, with both models achieving 0 accuracy in the classification task of the Au-
torun.K family. Considering all these factors, this paper selects VGG-16 and 
ResNet-34 as the teacher models, as they are well-performing convolutional 
neural network models with promising performance. 
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Table 4. IoT malware detection dataset test results. 

Model Acc Pre Rec F1 Params Model size 
Time of one 

epoch 
Time of  

inference 
Dataset 

LMDNet 0.9831 0.9835 0.9831 0.9831 0.0852M 0.39M 69.09s 0.0038s initial 

LMDNet 0.9892 0.9894 0.9893 0.9893 0.0852M 0.39M 54.13s 0.0029s upgrade 

 

 
Figure 11. Accuracy of each model for each category in the malimg dataset. 

 
The experimental results for malicious software family classification are 

shown in Table 5 and Table 6. In these tables, KD-LMDNet represents the stu-
dent model after multi-teacher knowledge distillation. Although the student 
model in this paper is small, its initial accuracy is not low. After undergoing 
multi-teacher knowledge distillation, the accuracy in “weak” classification cate-
gories shows a significant improvement, leading to an overall improvement in 
the model’s accuracy. 

As shown in Figure 12, in the classification task of the Autorun.K family, the 
accuracy of the student model LMDNet is 0. However, by learning from the two 
teachers, KD-LMDNet achieves the same level of accuracy as the two teachers, 
reaching 100% accuracy in this category. 

In addition, to validate the effectiveness of multi-teacher knowledge distilla-
tion, we compared the accuracy of the multi-teacher knowledge distillation me-
thod with the accuracy obtained using single-teacher knowledge distillation me-
thods. The experimental results using single teachers, VGG, and ResNet-34, are 
shown in Figure 13 and Figure 14. In the figures, T-VGG represents the student 
model distilled using only VGG-16 as the teacher, and T-RES represents the 
student model distilled using only ResNet-34 as the teacher. In the malimg data-
set, many classes are relatively easy for the student model, and the student model 
achieves a perfect score before the “apprenticeship learning” process. To make 
the experimental results clearer, we selected only 8 difficult LMDNet classifica-
tion families, such as Alueron.gen!J, for demonstration. 
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Table 5. Malimg dataset family classification test results. 

Model Acc Pre Rec F1 Params Model size 
Time of one 

epoch 
Time of  

inference 

ResNet-34 0.9935 0.9850 0.9847 0.9849 21.2975M 85.34M 54.64s 0.0066s 

VGG-16 0.9910 0.9767 0.9760 0.9762 134.3630M 537.47M 86.48s 0.0071s 

LMDNet 0.9804 0.9361 0.9397 0.9375 0.0963M 0.45M 36.46s 0.0051s 

KD-LMDNet 0.9925 0.9814 0.9801 0.9799 0.0963M 0.45M 54.81s 0.0051s 

 
Table 6. IoT malware family classification dataset test results. 

Model Acc Pre Rec F1 Params Model size 
Time of one 

epoch 
Time of  

inference 

ResNet-34 0.9666 0.9566 0.9428 0.9495 21.2862M 85.30M 49.03s 0.0443s 

VGG-16 0.9797 0.9756 0.9609 0.9681 134.2728M 537.11M 89.75s 0.0059s 

LMDNet 0.9579 0.9396 0.9333 0.9363 0.0867M 0.40M 35.39s 0.0037s 

KD-LMDNet 0.9620 0.9421 0.9439 0.9429 0.0867M 0.40M 58.72s 0.0037s 

 

 
Figure 12. Accuracy improvement of KD-LMDNet in malimg. 

 

 
Figure 13. Single-teacher VGG knowledge distillation. 
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Figure 14. Single-teacher ResNet-34 knowledge distillation. 

 

 
Figure 15. Comparison of accuracy between multi-teacher knowledge distillation and 
single-teacher knowledge distillation. 

 

 
Figure 16. Accuracy of each model for each category in the IoT malware family classifi-
cation dataset. 
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Table 7. Comparison of the detection results on the Malimg dataset. 

Method Acc Pre Rec F1 

DEAM + DenseNet [12] 0.985 0.969 0.966 0.967 

IMCFN [44] 0.9827 0.9825 0.9819 0.9820 

[45] 0.9450 0.9460 0.9450 0.9455 

VGG19 [46] 0.9872 0.9761 0.9875 0.9661 

Ours 0.9907 0.9749 0.9752 0.9749 

 
The results of the comparison of the accuracy of single-teacher knowledge 

distillation and multi-teacher knowledge distillation are shown in Figure 15. 
The performance of the student model KD-LMDNet trained by multi-teacher 
knowledge distillation in each family classification is not lower than T-VGG and 
T-RES has the highest accuracy. 

In the task of malicious software family classification in the IoT domain, 
KD-LMDNet, the student model after knowledge distillation, shows a significant 
improvement in accuracy compared to LMDNet in the Generic family classifica-
tion category. The results are shown in Figure 16. 

4.5. Comparison with the State-of-the-Art Malware Classification 
Methods 

To validate the effectiveness of the proposed method, it was compared with tra-
ditional machine learning methods and deep learning methods based on mali-
cious software images. The results are shown in Table 7. 

From Table 7, it can be observed that the proposed method achieves higher 
accuracy compared to existing literature, and the model has fewer parameters 
and a smaller size. Traditional machine learning methods mostly rely on ex-
tracting features based on texture similarity, which requires significant compu-
tational resources to extract complex texture features from malicious software 
images, making it less efficient. Deep learning methods based on malicious soft-
ware images often require deploying large neural networks, which are challeng-
ing to apply in the resource-constrained IoT domain with limited computational 
and storage resources. In contrast, the proposed model is simple and efficient. 
Through the use of multi-teacher knowledge distillation, the accuracy is further 
improved, achieving high accuracy with a small number of trainable parameters. 

5. Conclusions 

This paper introduces a lightweight malware detection and family classification 
method for IoT based on visual explanations. The proposed method offers sev-
eral key advantages, including a small model size, high accuracy, fast recogni-
tion, and compatibility with multiple platforms. In malware detection, a gra-
dient-weighted class activation mapping technique is employed to identify the 
crucial locations recognized by the convolutional neural network. Only these key 
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locations are considered for detection, thereby improving the efficiency of the 
model. The design of LMDNet incorporates lightweight convolutional neural 
network design techniques and incorporates the ECA module for simplicity and 
efficiency. In family classification, the student models are trained using mul-
ti-teacher knowledge distillation, resulting in improved accuracy rates. In com-
parison to methods relying on static low-level features, the models proposed in 
this paper demonstrate higher accuracy and smaller size, making them suitable 
for the IoT environment. 

Although the model presented in this paper performs well in known malware 
recognition, it suffers from overfitting when faced with unknown malware. In 
future work, we will consider combining the model proposed in this paper with 
few-shot learning techniques to build a more robust detection system that 
achieves accurate detection of unknown malware samples. This will help address 
the increasingly complex and evolving malware threats in the IoT domain. 
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