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Abstract 
One-class classification problem has become a popular problem in many 
fields, with a wide range of applications in anomaly detection, fault diagnosis, 
and face recognition. We investigate the one-class classification problem for 
second-order tensor data. Traditional vector-based one-class classification me-
thods such as one-class support vector machine (OCSVM) and least squares 
one-class support vector machine (LSOCSVM) have limitations when tensor 
is used as input data, so we propose a new tensor one-class classification me-
thod, LSOCSTM, which directly uses tensor as input data. On one hand, us-
ing tensor as input data not only enables to classify tensor data, but also for 
vector data, classifying it after high dimensionalizing it into tensor still im-
proves the classification accuracy and overcomes the over-fitting problem. On 
the other hand, different from one-class support tensor machine (OCSTM), we 
use squared loss instead of the original loss function so that we solve a series 
of linear equations instead of quadratic programming problems. Therefore, 
we use the distance to the hyperplane as a metric for classification, and the 
proposed method is more accurate and faster compared to existing methods. 
The experimental results show the high efficiency of the proposed method 
compared with several state-of-the-art methods. 
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1. Introduction 

The classification problem is an important component of data mining and has 
been discussed very extensively in fields such as machine learning and pattern 
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recognition. As a result, many kinds of classification methods have emerged. 
Although deep learning has the advantages of high accuracy and adaptivity, clas-
sification models based on deep learning are usually large-sample models and 
have a long training time, thus, this paper focuses on small-sample machine 
learning classification methods. In machine learning, fully supervised classifica-
tion has been one of the main focuses of research. For example, support vector 
machine (SVM) [1], which is a statistical learning method with an important role 
in machine learning, statistical analysis, classification and regression. Like SVM, 
most of the existing methods are for multi-class classification. However, in many 
real cases, there may be only one type of data available for collection. This is due 
to the high cost of acquiring data information from other categories than the 
target category, or the difficulty of portraying data information. In this paper, we 
focus on the one-class classification algorithm, which differs most from the mul-
ti-class classification algorithm in that it uses information from only one class. 

One-class classification problems [2] [3] [4] are common in real-life areas, 
such as face recognition, text classification, novelty detection, and anomaly de-
tection, among others. One-class support vector machine (OCSVM) [5] is an 
extension of SVM, which finds a hyperplane in the sense of maximum margins 
that separate most samples from the origin. Another method derived from SVM 
is support vector domain description (SVDD) [6]. Unlike OCSVM, SVDD maps 
the data to a high-dimensional feature space and then finds a hypersphere to 
surround most of the samples. Similar to OCSVM, a one-class mini-max proba-
bility machine (OCMPM) [7] tries to maximize the distance between the origin 
and learned hyper-place with the objective of arriving at a tighter lower bound to 
the data. Generalized one-class discriminative Sub-spaces (GODS) [8] extends 
OCSVM formulation into two separating hyper-planes. The least square one-class 
support vector machine (LSOCSVM) [9] is also a variant of OCSVM that rep-
laces the original loss with a squared loss. LSOCSVM finds the hyperplane by 
solving a system of linear equations instead of using quadratic programming 
(QP) solutions like OCSVM. 

Each of the above vector methods has its own advantages in dealing with the 
vector one-class classification problem. However, in many fields such as image 
processing, machine learning and pattern recognition, raw data are presented as 
multidimensional arrays. If we downscale the tensor data into vectors for classi-
fication, not only it will cause overfitting problems due to increased data dimen-
sionality, but also a large amount of structural information in the data will be 
lost, resulting in a decrease in classification accuracy. In addition, vector data 
upscaling into tensor data is a more popular scheme. When one-dimensional 
vector data is elevated to multi-dimensional, the original linking relationships 
are preserved while the probability is high that the linking of other dimensions 
in the data is also added. During the upscaling process, connections between 
vector elements may be identified, thus enhancing the classification accuracy [10] 
[11] [12]. Therefore, it is necessary to explore the tensor classification methods. 
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Based on the support vector machine(SVM) learning framework and com-
bining the ideas of alternate projection and multiple linear algebra operations, 
Tao et al. proposed a supervised tensor learning (STL) framework [13] with 
tensors as input data. Under this framework, linear models based on tensor clas-
sification were first proposed [14] [15]. Since data is usually not linearly separa-
ble in real life, kernel methods were represented in the tensor datasets [16] [17]. 
Kernel support tensor regression [18] and kernelized support tensor machines 
[19] [20] were suitable for nonlinear regression and nonlinear separable classifi-
cation problems. Cai et al. proposed a support tensor machine (STM) [21] based 
on the STL framework and the alternating projection algorithm. Similar to 
OCSVM, which was the one-class extension model of SVM, Chen et al. proposed 
the One-Class Support Tensor Machine (OCSTM) [22]. Maboudou-Tchao [23] 
proposed support tensor data description (STDD). These tensor one-class classi-
fication methods were based on the hinge loss function, thus requiring the solu-
tion of a quadratic programming problem, so these methods were time con-
suming. 

In this paper, we propose a novel one-class tensor classification method, called 
the least squares one-class support tensor machine (LSOCSTM), which com-
bines the advantages of LSOCSVM and OCSTM. On one hand, the proposed 
LSOCSTM is based on tensor space, which takes tensors directly as inputs. Ob-
taining a classifier in tensor space not only preserves the data structure informa-
tion, but also helps to overcome the over-fitting problem caused by vectorization. 
On the other hand, compared to OCSTM, LSOCSTM solves a system of learning 
equations in each iteration instead of QP problems. These iterations eventually 
converge to the optimal solution after several iterations, greatly saving computa-
tional time and complexity. The key contributions of this work are summarized 
as follows: 
• We propose a new one-class classification method called LSOCSTM for second 

order tensors. 
• Upscaling of the vector data to tensor can effectively solve the data over-fitting 

problem and improve the classification accuracy. 
• The proposed method solves a system of learning equations in each iteration 

instead of QP problems, which has a time advantage in comparison with ex-
isting tensor methods. 

• We develop the corresponding algorithm and prove its convergence by theo-
retical analysis and experiments. 

• We have done a lot of comparative experiments to prove the effectiveness of 
the method in this paper by comparing it with the existing tensor-based and 
vector-based methods. 

The rest of this paper is organized as follows. In section 2, we give a brief 
overview of least squares one-class support vector machine, one-class support 
tensor machine and the kernel function for tensors. The proposed least squares 
one-class support tensor machine is described in section 3. The experimental 
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results are presented in section 4. Finally, some concluding remarks and sugges-
tions for future work are given in section 5. 

2. Preliminaries 
2.1. Tensor Kernel Function  

In practical problems, the datasets are usually nonlinearly separable, so a nonli-
near mapping function ( )Φ ⋅  is needed to map the original dataset to a high- 
dimensional Hilbert space, i.e., ( )x x→Φ . Thus, the nonlinear problem in the 
original space can be transformed into a linear classification problem in a high- 
dimensional Hilbert space, and then go on to find the optimal hyperplane. The 
kernel function is defined as follows: 

( ) ( ) ( )( ), , ,K = Φ ΦX Y X Y                    (1) 

where ( ),  denotes the inner product of Hilbert spaces, each sample  
1 2, n n∈ ⊗X Y   . 

Gao et al. [18] proposed a kernel function in which the input data are tensors. 
This function ( )Φ X  is a nonlinear mapping that maps X to a high-dimensional 
feature space. Similar to Gao et al. [18], we define ( )Φ X  as: 

( )
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where kx  is the kth row of X. Correspondingly, the following ky  is the kth 
row of Y. Therefore, this kernel function can be defined as 
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2.2. Least Square One-Class Support Vector Machine  

Choi derived least square one-class support vector machine (LSOCSVM) [9] 
which is a least squares version of standard One-Class Support Vector Machine 
(OCSVM) [5]. Suppose the training samples are { }: 1,2, ,i i l=x  , and n

i ∈x  . 
LSOCSVM can be formulated as the following optimization problem: 

( )

2 2

, , 1

1min ,
2 2

s.t. ,

l

i
i

i i

C
ρ ξ

ρ ξ

φ ρ ξ
=

− +

⋅ = −

∑
x

ω
ω

ω
                     (4) 
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where ω  is the normal vector of the hyperplane and ρ  is the intercept of the 
hyperplane. C is the penalty parameter. Unlike OCSVM [5], the restriction on 
slack variable 0iξ ≥  no longer exists. Optimization problem (4) tries to find a  

hyperplane which has the maximal distance 2
ρ
ω

 from the origin, and with re-  

spect to this distance, 2
iξ  are minimized. To solve the optimization problem, 

Lagrangian multipliers , 1,2, ,i i lα =   are introduced for these equality con-
strains. The Lagrangian function can be written as follows: 

( ) ( )( )2 2

1 =1

1, , , .
2 2

l l

i i i i
i i

CL ρ ξ α ρ ξ α φ ρ ξ
=

= − + − ⋅ − +∑ ∑ xω ω ω       (5) 

Setting the derivatives with respect to the primal variables , , ,iρ ξ αω  equal to 
zero, and then simplifying, which gives 

( ) ( )
1

0.
l

i
j i j

j C
αα φ φ ρ

=

− + =∑ x x                   (6) 

Unlike OCSVM, LSOCSVM does not have a decision function. Instead, the 
hyperplane in (6) itself represents the optimal hyperplane in a regularized least 
squares sense, where most of training objects may reside. Least squares mini-
mizes the sum of squared errors and establishes an equilibrium between the er-
rors of the individual equations, thus preventing one extreme error from gaining 
dominance. The computational process is clear and convenient as only the par-
tial derivatives are required to solve the system of linear equations. However, the 
LSOCSVM method is not directly adaptive to tensor data. 

2.3. One-Class Support Tensor Machine 

Chen developed the one-class support tensor machine (OCSTM) [22], which 
separates most samples of interested class from the origin in the tensor space, 
with maximal margin. Suppose the training samples { }: 1,2, ,i i l=X  , every 
sample 1 2n n

i ∈ ⊗X    which is the data point in 2nd-order tensor space. The 
decision function of an one-class classifier in the tensor space can be represented 
as follows: 

( ) ( )( ) 1 2T , , ,n nf sgn ρ= Φ − ∈ ∈X X  u v u v             (7) 

where Φ  is a nonlinear mapping function noted in Section 2.1. OCSTM can be 
denoted as the following optimization problem: 

( )

2T

, , , 1
T

1min ,
2 2

s.t. ,
0, 1,2, , ,

l

i
i

i i

i

C

i l

ρ ξ
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ρ ξ
ξ

=

− +

Φ ≥ −

≥ =

∑

X


u v
uv

u v                    (8) 

where u  and v  can be obtained by iteratively solving the optimization prob-
lems. 

Although OCSTM is a one-class classification method for tensor, solving op-
timization problems requires solving quadratic programming problems itera-
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tively, so it is very time-consuming. 

3. Least Square One-Class Support Tensor Machine 
3.1. Overview  

Based on the two existing methods in Section 2, we utilize the idea of LSOCSVM 
to improve OCSTM and propose a new tensor one-class classification method 
called LSOCSTM. Specifically, we change the loss term in the objective function 
to a least squares loss, which allows us to replace the QP problem in the solution 
process with solving a system of linear equations. We use an alternating iteration 
algorithm, which greatly reduces the number of decision variables. These fea-
tures make LSOCSTM particularly suitable when it comes to small sample size 
problems. 

3.2. Methodology  

Suppose { }: 1,2, ,i i l=X   is the training samples, where 1 2n n
i ∈ ⊗X    

which is the data point in 2nd-order tensor space. Based on this, LSOCSTM can 
be formulated as the following optimization problem: 

( )

2T 2

, , , 1
T

1min ,
2 2

s.t. ,

l

i
i

i i

C
ρ ξ

ρ ξ

ρ ξ
=

− +

Φ = −

∑

X

u v
uv

u v
                    (9) 

where C is a trade-off parameter between the margin maximization and empiri-
cal error minimization, iξ  is a slack variable. Unlike the hinge loss function of 
the OCSTM, the loss in our optimization problem is the least squares loss, which 
is easier to solve. At the same time, like LSOCSVM, the restriction on slack va-
riable 0iξ ≥  no longer exists. Optimization problem (9) tries to find a hyper-  

plane which has the maximal distance 2T

ρ

uv
 from the origin, and with respect 

to this distance, 2
iξ  are minimized. 

To solve the optimization problem (9), we introduce Lagrangian multipliers 
, 1,2, ,i i lα =   for these equality constrains. The Lagrangian function can be 

written as follows: 

( ) ( )( )2T 2 T

1 1

1, , , , .
2 2

l l

i i i i
i i

CL ρ ξ α ρ ξ α ρ ξ
= =

= − + − Φ − +∑ ∑ Xu v uv u v    (10) 

Setting the derivatives with respect to the primal variables , , ,ρ ξu v  equal to 
zero, we have 

( )2
1

10 ,
l

i i
i

L α
=

∂
= ⇒ = Φ

∂ ∑ Xu v
u v

                 (11) 
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i i
i
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1
0 1.

l

i
i

L α
ρ =

∂
= ⇒ =

∂ ∑                      (14) 

It can be seen from (11) and (12), u  and v  are interdependent and cannot 
be solved independently of each other. We develop alternating projection algo-
rithm to solve our problem, and the specific solution procedure is as follows: 

First, we fix u  and then let 2
1µ = u . After that, we denote that  

( )T
i ix = Φ X u . Optimization problem (9) can be rewritten in the following 

form: 
2 2

1, , 1
T

1min
2 2

s.t.

l

i
i

i i

C

x

ρ ξ
µ ρ ξ

ρ ξ
=

− +

= −

∑
v

v

v
                  (15) 

The Lagrangian function can be rewritten as follows: 

( ) ( ) ( )T 2 T
1

1 1

1, , , .
2 2

l l

i i i i
i i

CL xρ ξ α ρ ξ α ρ ξ
= =

= − + − − +∑ ∑v v v vµ      (16) 

By setting the derivatives with respect to the primal variables , , ,ρ ξ αv  equal 
to zero, we have 

( )T
2

11

10 ,
l

i i
i

L α
=

∂
= ⇒ = Φ

∂ ∑ Xv u
v µ

               (17) 

0 ,i
i

i

L
C
αξ

ξ
∂

= ⇒ =
∂

                     (18) 

1
0 1,

l

i
i

L α
ρ =

∂
= ⇒ =

∂ ∑                      (19) 

T0 0.i i
i

L x ρ ξ
α
∂

= ⇒ − + =
∂

v                   (20) 

Substituting (17) and (18) into (20), we get 

( )T

11

1 , 0.
l

i
j j i

j
K

C
αα ρ

µ =

− + =∑ X Xu u               (21) 

Coupled with the constraint in (19), equations in (21) can be reduced to the 
following system of linear equations to solve: 

T

1

0 1
,

C

ρ

µ

 
−     =    +      

0

e
M Ie a

                  (22) 

where vectors e  and 0 represent all one and all zero column vectors of l di-
mension, I is the identity matrix, a  is the column vector of Lagrangian multip-
liers [ ]1, , lα α  and M denotes a new matrix which ( )T ,ij j iK= X XM u u . 

After simple algebraic operations, we can get 
1

1*
1

T

1

,
C

C

µ

µ

−

−

 
+ 

 =
 

+ 
 

I M e
a

I Me e
                     (23) 
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( )T*

11

1 ,
l

i i
i
α

=

= Φ∑ Xv u
µ

                     (24) 

( )2 * * T
2

, 11

1 , .
l

i j i j
i j

Kα α
=

= ∑ X Xv u u
µ

                 (25) 

Secondly, to calculate u , let 2
2µ = v  and ( )i ix′ = Φ X v . The optimal 

problem for u  can be constructed as follow: 

2 2
2, , 1

T

1min ,
2 2

s.t. .

l

i
i

i i

C

x

ρ ξ
µ ρ ξ

ρ ξ
=

− +

′ = −

∑
u

u

u
                   (26) 

As with the arithmetic procedure from (15) to (21), we can get 

T

12

1 0.
l

i
j j i

j
x x

C
αα ρ

µ =

′ ′ − + =∑                    (27) 

Similar to the treatment of (21), equations in (27) can be reduced as follow linear 
equation: 

T

2

0 1
,

C

ρ

µ

 
−     =    +      

0

e
Q Ie a

                   (28) 

where vectors e  and 0  represent all one and all zero column vectors of l di-
mension, and Q  denotes a new matrix which  

( ) ( )T
1 1, ,l l

ij p j i qp qK K
= =

= ∑ ∑X X X XQ u u . 
By solving the linear equation in (28), we can get 

1

2
1

T

2

ˆ ,
C

C

µ

µ

−

−

 
+ 

 =
 

+ 
 

I Q e
a

I Qe e
                     (29) 

and then we can update newu  by 

( ) ( )*

1 , 12 1 2

1 1ˆ ˆ , .
l l

new i i i j i j
i i j

Kα α α
µ µ µ= =

= Φ =∑ ∑X X Xu v u         (30) 

Thus, u  and v  can be obtained iteratively. We mention training samples 
with non-zero *

iα  are support tensors, labeled as _i sX . Therefore, ρ  and 
( )f X  can be calculated as follow: 

( )* T
_ _

11

1 ,
l

i s i i i s
i

mean Kρ α
=

 
=  

 
∑ X Xu u

µ
              (31) 

( ) ( )* T

11

1 ,
l

i i
i

f Kα ρ
=

= −∑X X Xu u
µ

               (32) 

The maximum value of ( )_i sf X  is the threshold for distinguishing whether 
it is a target class or not. Substitute the test sample X into f . If it is less than 
this maximum value, the test sample belongs to the target class. 

Substitute f  for X in the training set and compare the minimum values of 
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these f  with f  in the test set. 
LSOCSTM is a new tensor based one-class classification method that has two 

advantages. One is that it can directly use tensor data as input to avoid structural 
information loss and overfitting problems caused by vectorization. Secondly, it 
replaces the loss function with the least squares loss, thereby transforming the 
optimization problem into solving a system of linear equations, greatly reducing 
the complexity and time consumption of operations.  

3.3. Convergence 

Lemma 1. The iterative process of the optimization problems (15) and (26) will 

make 
2T 2

1

1
2 2

l
ii

Cρ ξ
=

− + ∑uv  in the optimization problem (9) monotonically 

decreasing, and thus the LSOCSTM algorithm converges. 
Proof. Define the function as follows: 

( )
2T 2

1
,

2

l

i
i

Cf ρ ξ
=

= − + ∑u v uv                  (33) 

Since LSOCSVM is convex optimization, the optimization problems (15) and 
(26) are also convex optimization problems. Therefore, their solutions are glo-
bally optimal. Assume that the initial value of u  is 0u , and solve the optimiza-
tion problem (15) to obtain the initial value of v  as 0v , and then solve the op-
timization problem (26) to obtain the solution 1u  for one iteration. Thus we 
can obtain: 

( ) ( )0 0 1 0, ,f f≥u v u v                     (34) 

Repeating the above procedure gives: 

( ) ( ) ( ) ( )0 0 1 0 1 1 2 1, , , ,f f f f≥ ≥ ≥ ≥u v u v u v u v          (35) 

And since f is constantly greater than or equal to 0, f converges. 

4. Experimental Results 
4.1. Datasets and Parameters  

In this section, we present our experimental results and compare the perfor-
mance of least squares one-class support tensor machine (LSOCSTM) with three 
methods: OCSTM, LSOCSVM and OCSVM. All of our datasets are downloaded 
from UCI repository. Parameter m presents the total sample size, n presents the 
dimensionality of the vector sample and 1 2n n×  shows the tensor size of our 
datasets. For each dateset, features are scaled to [−1, 1]. Since we consider 
one-class classification problem, our focus is only on the one target class. Table 
1 summarizes the information of the datasets. 

We choose Radial Basis Function (RBF) kernel function for the proposed me-
thod since it has been proven that RBF kernel function performs better than the 
other kernels [24]. For each classification problem, ten independent runs are 
performed and the average classification accuracy (ACC) and AUC [25] on the  
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Table 1. Information of datasets. 

Dataset m n 1 2n n×  Class Sample size 

BREAST-CANCER 286 9 3 × 3 1 201 

    2 85 

IRIS 150 4 2 × 2 1 50 

    2 50 

SONAR 208 60 8 × 8 1 97 

    2 111 

IONOSPHERE 351 34 6 × 6 1 225 

    2 126 

USPS 300 256 16 × 16 1 100 

    2 100 

Letter Recognition 155 16 4 × 4 1 79 

 
sets can be calculated and then averaged. It is well known that tensor methods 
have obvious advantages when dealing with small sample problems [26], thus, 
our training sample size l is set to two cases: 3l = , 6l = . All the algorithms 
have been implemented in MATLAB R2019b on Windows 11 running on a PC 
with system configuration AMD Ryzen 7 5800H (3.2 GHz) and 16 GB of RAM. 

4.2. Sensitivity Analysis 
4.2.1. Hyperparametric Sensitivity Analysis 
There is only one hyper-parameter in our work, so for each test, we train every 
machine by choosing C from {0.001, 0.01, 0.1, 1, 10, 100} for 3 times, and then 
the best C for every test could be found. In Table 2, for example, in Iris Dataset 
Class 1, 0.01 is the optimal value. 

4.2.2. Tensor Size Sensitivity Analysis 
In this subsection, we focus on the size selection of tensors. For example, for 
each sample nx∈ , a suitable tensor size needs to be found. In our work, we 
transform the vectors into second-order tensors 1 2n nX ∈ ×   ( 1 2n n n× ≈ ). 
Cai [21] provided a method to establish 1n  and 2n , which was simplified as 
minimizing 1 2n n+  while ( )1 2 1 21n n n n n− × ≤ ≤ × . Under such conditions, 
there are still many choices of 1n  and 2n . For example, in Ionosphere Dataset, 
there are 5 choices of sizes available. Generally all these types can be used. 
Therefore, it is worth finding out which one is the best. Table 3 below shows the 
performance of these 5 choices. These experiments suggest that, 1n  and 2n  
should be as close as possible. In the meanwhile, 1 2n n≤  can be a good choice 
and it is particularly suitable for small sample size problem. 
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4.2.3. Convergence Test 
Figure 1 is the 2-norm of the differences of u  between two adjacent iterations 
from Sonar Dataset Class 1. It can be seen that after 20 iterations, the value con-
verges to 0. This also verifies that Lemma 1 is valid. 
 
Table 2. Accuracy and ACC in different parameter C from iris dataset class 1 when l = 3. 

C ACC AUC 

0.001 0.918 0.9316 

0.01 0.923 0.9387 

0.1 0.911 0.9323 

1 0.897 0.9236 

10 0.895 0.9191 

 
Table 3. Accuracy and ACC in different tensor size from ionosphere dataset class 1. 

Size ACC AUC 

2 × 18 0.6618 0.7815 

4 × 9 0.6681 0.7902 

6 × 6 0.7025 0.8199 

9 × 4 0.6427 0.6777 

18 × 2 0.6356 0.6309 

 

 
Figure 1. The 2-norm of the differences of u between two adjacent iterations from sonar 
dataset class 1. 

https://doi.org/10.4236/jcc.2024.124014


K. W. Zhao, Y. L. Fan 
 

 

DOI: 10.4236/jcc.2024.124014 197 Journal of Computer and Communications 
 

4.3. Comparison Experiments  

In this subsection, we compared our method with the three methods mentioned 
in the first subsection. The performance of the four methods with training set 
sample sizes of 3 and 6 is shown in the following Table 4 and Table 5. 

 
Table 4. Accuracy and ACC in different methods when l = 3. 

2* Datasets 
2* Target 

Class 

LSOCSTM OCSTM LSOCSVM OCSVM 

ACC AUC ACC AUC ACC AUC ACC AUC 

IRIS 1 0.923 0.9387 0.881 0.9078 0.9104 0.9165 0.9022 0.9028 

 2 0.8361 0.8813 0.822 0.8661 0.8331 0.8762 0.8327 0.8751 

BREAST-CANCER 1 0.6552 0.6011 0.6291 0.5833 0.6489 0.5918 0.6042 0.5746 

 2 0.6972 0.7167 0.6811 0.7012 0.6901 0.7118 0.6844 0.7086 

SONAR 1 0.6298 0.6557 0.5865 0.6423 0.5947 0.6441 0.5812 0.6397 

 2 0.5337 0.7668 0.5596 0.7812 0.5218 0.7421 0.5315 0.7512 

IONOSPHERE 1 0.7025 0.8132 0.6615 0.7961 0.6487 0.7772 0.6348 0.7661 

 2 0.6387 0.6789 0.5256 0.5667 0.5987 0.6214 0.6061 0.6217 

USPS 1 0.9223 0.9467 0.9128 0.9378 0.8992 0.9216 0.9026 0.9274 

 2 0.9358 0.9552 0.9366 0.9598 0.9085 0.9377 0.9102 0.9401 

Letter Recognition 1 0.7390 0.7761 0.7168 0.7561 0.7069 0.7372 0.7143 0.7278 

 
Table 5. Accuracy and ACC in different methods when l = 6. 

2* Datasets 
2* Target 

Class 

LSOCSTM OCSTM LSOCSVM OCSVM 

ACC AUC ACC AUC ACC AUC ACC AUC 

IRIS 1 0.97 0.9723 0.944 0.9483 0.956 0.9608 0.953 0.9512 

 2 0.8711 0.9013 0.8590 0.8827 0.8733 0.9036 0.8691 0.8801 

BREAST-CANCER 1 0.6941 0.6064 0.6796 0.6246 0.6881 0.5971 0.6957 0.6090 

 2 0.7227 0.7389 0.7286 0.7442 0.7201 0.7298 0.7115 0.7213 

SONAR 1 0.6298 0.6557 0.5865 0.6109 0.6123 0.6513 0.6112 0.6291 

 2 0.5368 0.7701 0.5571 0.7793 0.5316 0.7613 0.5328 0.7591 

IONOSPHERE 1 0.6998 0.7984 0.6716 0.7893 0.6553 0.7712 0.6524 0.7698 

 2 0.6437 0.6869 0.5443 0.5874 0.6073 0.6354 0.5551 0.5982 

USPS 1 0.9386 0.9558 0.9354 0.9493 0.9176 0.9325 0.9092 0.9301 

 2 0.9578 0.9677 0.9411 0.9712 0.9228 0.9496 0.9242 0.9502 

LETTER 
RECOGNITION 

1 0.7688 0.7879 0.7598 0.7764 0.7284 0.7453 0.7159 0.7332 
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Table 6. Time (in second) of different methods when l = 3. 

Datasets Target Class LSOCSTM OCSTM LSOCSVM OCSVM 

IRIS 1 11 196 2 8 

 2 12 189 2 7 

BREAST-CANCER 1 36 120 4 10 

 2 37 128 4 10 

SONAR 1 139 280 8 14 

 2 144 281 11 15 

IONOSPHERE 1 186 393 10 16 

 2 178 366 11 16 

USPS 1 774 2412 21 37 

 2 789 2433 22 39 

LETTER RECOGNITION 1 25 108 4 9 

 
From the two tables, we can find that our method has the best results in most 

cases. Meanwhile, the two tensor classification methods are significantly better 
than the vector methods. From the tendency of the averaged test accuracy (ACC) 
and AUC, we can conclude that tensor based classifiers LSOCSTM and OCSTM 
have significant advantages over all vector based classifiers in all datasets, espe-
cially for small training sample size cases. It also supports the conclusion that 
tensor-based methods are suitable for dealing with small sample problems. 

Table 6 summarized the time required for each method. From Table 6, it can 
be found that the proposed method has a significant advantage over the ten-
sor-based method OCSTM in terms of time duration. Although the proposed 
method takes more time than the vector-based method due to iteration and 
computation involved kernel functions, the accuracy of classification is also sig-
nificantly higher than theirs. 

5. Conclusion 

This article combines the two one-class classification methods LSOCSVM and 
OCSTM, and then proposes a new one-class classification method LSOCSTM 
for tensors. It is verified that tensor methods perform better than vector me-
thods in general, and tensor methods are more suitable for small sample size 
one-class classification problems. Compared with the existing tensor methods, 
the proposed method extracts the hyperplane where most of the training objects 
may lie nearby, while OCSTM extracts the hyperplane where most of the train-
ing objects may cross. By using least squares loss, the optimization process for 
the proposed method no longer requires solving quadratic programming prob-
lems as in OCSTM, but rather a system of linear equations. Therefore, the pro-
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posed method is faster and more efficient compared to OCSTM. A possible fu-
ture research direction is to extend the proposed method to deal with one-class 
classification for third-order or higher order tensor datasets. In addition, when 
datasets contain outliers, the improvement of robustness is also another future 
research direction. 
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