
Journal of Computer and Communications, 2024, 12, 151-170 
https://www.scirp.org/journal/jcc 

ISSN Online: 2327-5227 
ISSN Print: 2327-5219 

 

DOI: 10.4236/jcc.2024.1212010  Dec. 30, 2024 151 Journal of Computer and Communications 
 

 
 
 

Arctic Puffin Optimization Algorithm Based on 
Multi-Strategy Blending 

Ling Sun, Bo Wang* 

College of Science, Shenyang University of Technology, Shenyang, China 

 
 
 

Abstract 
A hybrid strategy is proposed to solve the problems of poor population diver-
sity, insufficient convergence accuracy and susceptibility to local optimal val-
ues in the original Arctic Puffin Optimization (APO) algorithm, Enhanced 
Tangent Flight Adaptive Arctic Puffin Optimization with Elite initialization 
and Adaptive t-distribution Mutation (ETAAPO). Elite initialization improves 
initial population quality and accelerates convergence. Tangent Flight of the 
Tangent search algorithm replaces Levy Flight to balance local search and 
global exploration. The adaptive t-distribution mutation strategy enhances the 
optimization ability. ETAAPO was tested on CEC2021 functions, Wilcoxon 
rank-sum tests, and engineering problems, demonstrating superior optimiza-
tion performance and faster convergence. 
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1. Introduction 

Optimization algorithms, as a key interdisciplinary technology, have demonstrated 
extensive application value and profound impact across various fields, both domes-
tically and internationally. In China, their applications have penetrated into key 
areas such as intelligent transportation [1], financial investment [2], intelligent 
manufacturing [3], and energy management [4], significantly enhancing system 
efficiency, reducing costs, and promoting green and sustainable development. On 
the global stage, optimization algorithms play an indispensable role in cutting-
edge fields such as aerospace, bioinformatics, e-commerce, and environmental 
protection, driving technological progress and societal development. Therefore, 
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mastering and delving into the study of optimization algorithms is of great signif-
icance for advancing scientific and technological innovation and fostering socio-
economic development. 

In recent years, with the remarkable improvement in computer performance 
and the rapid evolution of electronic information technology, the field of optimi-
zation algorithms has ushered in opportunities for vigorous growth. Numerous 
innovative optimization algorithms have emerged, including but not limited to 
genetic algorithms [5], particle swarm optimization [6], firefly optimization algo-
rithm [7], salp swarm optimization algorithm [8], artificial bee colony optimiza-
tion algorithm [9], butterfly optimization algorithm [10], and sparrow search algo-
rithm [11]. These algorithms have achieved significant research outcomes within 
their respective domains and have demonstrated powerful performance in practi-
cal applications. With the continuous advancement of computational capabilities 
and algorithmic theory, these algorithms are expected to be applied and developed 
in more fields in the future. 

However, faced with increasingly complex and large-scale optimization prob-
lems, original optimization algorithms have gradually revealed limitations such 
as insufficient convergence accuracy, slow convergence speed, and susceptibility 
to local optima, which fail to meet the efficient optimization demands in prac-
tical applications. To overcome these challenges, domestic researchers have ac-
tively explored and implemented various improvement strategies. For instance, 
Ma et al. [12] optimized the key parameters A and the position update mecha-
nism in the whale optimization algorithm by introducing a nonlinear conver-
gence factor and adaptive inertia weight, effectively balancing the algorithm’s 
global search and local exploration capabilities and significantly enhancing con-
vergence speed. Bodah et al. [13], addressing the particle swarm optimization’s 
propensity to fall into local optima, ingeniously utilized the Levy flight’s char-
acteristic of frequent short-distance movements and occasional long-distance 
jumps to innovatively improve the velocity update formula, effectively enhanc-
ing the algorithm’s ability to escape local extremum points and strengthening 
the robustness of global search. Zhang et al. [14] enhanced the global search 
capability of the salp swarm optimization algorithm by introducing global search 
strategies from the butterfly optimization algorithm, thereby improving the al-
gorithm’s optimization performance. 

The Arctic Puffin Optimization (APO) algorithm [15] was proposed by Wang 
et al. in September 2024. Originating from the survival strategies of Arctic puffins 
in nature, the APO algorithm is inspired by their flight and foraging behaviors. 
The APO algorithm boasts strong optimization capabilities, few parameters, and 
a simple principle, making it highly competitive in performance compared to 
other intelligent optimization algorithms. However, it also has certain drawbacks 
such as susceptibility to local optima, an imbalance between global search and 
local exploitation, and unstable solution capabilities, thus leaving room for further 
improvement. 

https://doi.org/10.4236/jcc.2024.1212010


L. Sun, B. Wang 
 

 

DOI: 10.4236/jcc.2024.1212010 153 Journal of Computer and Communications 
 

2. Arctic Puffin Optimization 

The mathematical model of the APO algorithm is primarily composed of three 
stages: the population initialization phase, the aerial flight phase, and the under-
water foraging phase. 

2.1. Initial Population 

The specific behaviors of Arctic puffins in the air and on the water form the basis 
for the design of the APO algorithm. The APO algorithm initializes the population 
using the following formula: 

( ) , 1, 2,3, ,t
iX rand ub lb lb i N= ∗ − + =


              (1) 

where t
iX


 represents the position of the ith Arctic Puffin; rand is a random 
number between 0 and 1; ub and lb represent the upper and lower bounds, respec-
tively; N is the population size. 

2.2. Aerial Flight Stage 

The Arctic puffins rely on unique flying and foraging strategies to cope with their 
challenging survival. In their daily lives, they must adapt flexibly between the 
ocean and the air, meet their nutritional needs, and adjust to different environ-
ments. During the aerial foraging phase, the Arctic Puffin employs two key strat-
egies to address different situations, namely the aerial search strategy and the 
swooping predation strategy. 
 The first strategy is aerial search 

The aerial search strategy simulates the behavior of the Arctic Puffin searching 
for suitable foraging waters while in the air, utilizing Levy flight as its powerful 
wings to change position. When encountering predators such as seagulls, it em-
ploys a spiral flight strategy to evade the predators. The following is the position 
update formula: 

( ) ( )1t t t t
i i i rY X X X L D R+ = + − ∗ +
   

                (2) 

( )( )0.5 0.5R round rand α= ∗ + ∗                 (3) 

( )~ 0,1Normalα                        (4) 

where r is a random integer between 1 and N − 1, excluding i; t
iX


 represents the 
current ith candidate solution in the population; t

rX


 is a candidate solution ran-
domly selected from the current population, with t t

i rX X≠
 

; L(D) denotes a ran-
dom number generated through Levy flight; D is the dimensionality; α  is a ran-
dom number following a standard normal distribution. 
 The second strategy is swooping predation 

The swooping predation strategy simulates the behavior of the Arctic Puffin 
rapidly changing its flight direction to dive and feed upon spotting prey. To ensure 
their survival, they must ensure faster and more successful capture of their prey. 
To simulate this diving behavior, the algorithm introduces a velocity coefficient S 
to adjust the displacement of the Arctic Puffin during the dive process. The 
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following is the position update formula: 
1 1t t

i iZ Y S+ += ∗
 

                          (5) 

( )( )tan 0.5S rand π= − ∗                      (6) 

To achieve the best results under various conditions, the algorithm combines 
the candidate positions generated by the two strategies, sorts them based on their 
fitness values, and selects the top N individuals with the best fitness values to form 
a new population. The equation describing this process is as follows: 

1 1 1t t t
i i iP Y Z+ + +=
  

                         (7) 

( )1t
inew sort P +=


                        (8) 

( )1 1:t
iX new N+ =


                        (9) 

2.3. Underwater Foraging Stage 

The survival strategy of the Arctic puffin involves two crucial aspects: aerial flight 
and underwater foraging. The underwater foraging phase consists of three main 
strategies, each employed under specific circumstances to enhance predation effi-
ciency. These three strategies are gathering foraging, intensifying search, and 
avoiding predators.  
 The first strategy is gathering foraging 

The gathering foraging strategy simulates the cooperative foraging behavior of 
Arctic puffins, and the following equation describes the location update: 

( ) ( )
( )

1 2 3

1 2 3

1
  0.5

             0.5

t t t
r r rt

i t t t
r r r

X F L D X X rand
W

X F X X rand
+
 + ∗ ∗ − ≥


+ ∗ − <

  



  

           (10) 

where F represents the cooperative factor, adjusting the predation behavior of 
Arctic puffins. In this paper, F = 0.5. The variables 1 2 3, ,r r r  are random integers 

between 1 and N – 1 (excluding i), and 
1 2 3
, ,t t t

r r rX X X
  

 are candidate solutions ran-

domly selected from the current population, and 1 2 3r r r≠ ≠ , 
2 3

t t
r rX X≠
 

. 

In equation (10), when 0.5rand <  is present, it represents the cooperative 
foraging behavior of the Arctic Puffin with other members, utilizing a cooperation 
factor F and engaging in random motion to explore the surrounding environment. 
When 0.5rand ≥  is present, it signifies a more complex food search strategy 
where the Arctic Puffin initially follows other members and, upon discovering a 
school of fish, quickly swims to join a more advantageous predatory group. 
 The second strategy is intensifying search 

The intensified search strategy describes a situation where, as predation pro-
ceeds, the food resources in the current foraging area gradually become depleted. 
To continue meeting their needs, Arctic Puffins must change their underwater 
position to seek out new food sources. The position update equation for this phase 
is as follows: 

( )1 1 1t t
i iY W f+ += ∗ +
 

                      (11) 
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( ) ( )
0.1 1

T t
f rand

T
−

= ∗ − ∗                    (12) 

where f is an adaptive factor used to adjust the position of the Arctic puffin in the 
water. T represents the total number of iterations, and t denotes the current iter-
ation count. 
 The third strategy is avoiding predators 

The avoiding predator strategy is used to describe the behavior of an Arctic 
puffin when it spots a nearby predator, and here is the location update equation 
used for this strategy: 

( ) ( )
( )

1 1 2

1 1 2

1
  0.5

              0.5

t t t
r r rt

i t t t
r r r

X F L D X X rand
Z

X X X randβ
+
 + ∗ ∗ − ≥


+ ∗ − <

  



  

           (13) 

where β is a uniformly distributed number between 0 and 1. 
To achieve the best results under various conditions, the algorithm merges the 

candidate positions generated by the three strategies, sorts them based on their 
fitness values, and selects the top N individuals with the superior fitness values to 
form a new population. The equation describing this process is as follows: 

1 1 1 1t t t t
i i i iP W Y Z+ + + += ∪ ∪
   

                    (14) 

( )1t
inew sort P +=


                       (15) 

( )1 1:t
iX new N+ =


                       (16) 

2.4. Behavior Conversion Factor B 

The APO algorithm favors aerial foraging for global search in the early stages of 
iteration and underwater foraging for local exploitation in the later stages. This 
search mechanism is derived from the natural behavior of the Arctic Puffin, which 
initially searches for suitable foraging waters in the air and then primarily forages 
underwater. To achieve a smooth transition from global search to local exploita-
tion, the algorithm incorporates a behavior conversion factor, denoted as B. Here 
is its definition: 

12 log 1 tB
rand T

   = ∗ ∗ −   
   

                   (17) 

The value of B can be dynamically adjusted as the iterations progress to accom-
modate the exploration needs at different stages. Additionally, a parameter C is 
introduced within the algorithm to determine the strategy to be executed at the 
current iteration stage by comparing the values of B and C. In the paper, the pa-
rameter C is set to 0.5. 

3. Improved Arctic Puffin Optimization Algorithm 
3.1. The Elite Reverse Learning Strategy 

The Elite Reverse Learning Strategy [16] significantly enhances the performance 
of optimization algorithms by introducing elite particles and a reverse learning 
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mechanism. This strategy endows algorithms with stronger global search capabil-
ities and higher solution accuracy when tackling complex optimization problems 
and has been widely applied to the improvement of various optimization algo-
rithms. 

The optimization performance of an algorithm is greatly influenced by the 
quality of the initial solutions; a high-quality initial population can accelerate the 
convergence of the algorithm and facilitate the discovery of the global optimum. 
However, the APO algorithm uses random initialization for population, which 
can lead to poor population diversity and slow convergence. To address this issue, 
this paper applies the Elite Reverse Learning Strategy to the population initializa-
tion phase of the algorithm to improve the quality of initial solutions and enhance 
global search capabilities. 

The basic steps for initializing the population using the Elite Reverse Learning 
Strategy are as follows: 

1) Randomly initialize the population S, and select the top N/2 individuals with 
better fitness values to form the elite population E; 

2) Determine the reverse population OE of the elite population E; 
3) Merge the populations S and OE to form a new population, and select N 

individuals with better fitness values to constitute the initial population. 

3.2. Tangential Flight Strategy 

The Tangent Search Algorithm (TSA) [17], proposed in 2021, is a novel optimi-
zation algorithm that introduces a new step size based on a tangent function, de-
noted as ( )tanstep θ∗ , which is akin to the Levy flight function and is referred to 
as tangent flight. The search equation that combines global and local wandering 
for the tangent flight function is as follows: 

( )1 tant tX X step θ+ = + ×                    (18) 

In this paper, the tangent flight function is used to replace the levy flight func-
tion in the original APO algorithm, and Equation (2) becomes (19): 

( ) ( )1t t t t
i i i rY X X X T D R+ = + − ∗ +
   

                (19) 

Equation (10) becomes (20): 

( ) ( )
( )

1 2 3

1 2 3

1
  0.5

              0.5

t t t
r r rt

i t t t
r r r

X F T D X X rand
W

X F X X rand
+
 + ∗ ∗ − ≥


+ ∗ − <

  



  

           (20) 

Equation (13) becomes (21): 

( ) ( )
( )

1 1 2

1 1 2

1
  0.5

              0.5

t t t
r r rt

i t t t
r r r

X F T D X X rand
Z

X X X randβ
+
 + ∗ ∗ − ≥


+ ∗ − <

  



  

           (21) 

Optimizing the step size is also crucial for algorithm optimization; a large step 
size is conducive to exploration, while a small step size is beneficial for exploita-
tion. Figure 1 and Figure 2 illustrate the random walks of 1000 Levy flights and 
tangent flights simulated using the Mantegna method [18]. 
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Figure 1. Schematic diagram of the Levy flight random walk. 

 

 
Figure 2. Schematic diagram of the random walk of tangent flight. 

 
From the figures, it can be observed that the step sizes generated by Levy flight 

exhibit poor randomness and a narrow range, which can lead to the algorithm 
searching with too small a distance in the early iterations and too large a distance 
in the later iterations. This results in prolonged optimization iteration cycles and 
insufficient precision. In contrast, tangent flight has a higher probability of pro-
ducing large steps and a lower probability of producing small steps. This indicates 
that tangent flight avoids the issues of search distances being either too large or 
too small. Therefore, tangent flight is more conducive to helping the algorithm 
escape from local optima and conduct extensive searches, thereby providing the 
Arctic Puffin with more opportunities for predation. 

The reasons for choosing the tangent flight function over other strategies are: 
 The tangent flight function is designed in the Tangent Search Algorithm (TSA) to 

balance exploration and exploitation, allowing the algorithm to find a good bal-
ance between exploration and utilization. This balance helps avoid getting trapped 
in local optima and enables effective exploration of the entire search space. 

 The parameters are simple and flexible, making the algorithm highly adaptable 
and versatile for different problems. 

 The adaptive mechanism allows the algorithm to dynamically adjust the step 
size at different stages, thereby improving search efficiency. 

Thus, replacing the Levy flight function in the original APO algorithm with the 
tangent flight function allows the improved algorithm to not only avoid insuffi-
cient local exploitation but also to further enhance the global search capability of 
the APO algorithm. 
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3.3. Adaptive t-Distribution Variation Strategy 

The t-distribution, also known as the student distribution, has a probability den-
sity function of: 

( )
1

2 2

1
2 1

2
2

mm
xp x

mmπ

+
−

+ Γ    = + 
   Γ 
 

                 (22) 

In the formula, Γ  represents the gamma function, m is the degrees of freedom 
parameter, and x is the random variable. The degrees of freedom parameter m 
influence the shape of the curve. As m approaches infinity, the curve manifests as 
a Gaussian distribution ( )0,1N . When m approaches 1, the curve resembles a 
Cauchy distribution ( )0,1C . The Gaussian and Cauchy distributions are two 
boundary special cases of the t-distribution. The density function distributions of 
the three are illustrated in Figure 3. 
 

 
Figure 3. Density function distribution of Gaussian, Cauchy, and t-distribution. 

 
The introduction of Gaussian and Cauchy mutations in algorithms has been 

proven to effectively enhance their performance. Since the Gaussian and Cauchy 
distributions are two special forms of the t-distribution, incorporating t-distribu-
tion mutation into algorithms can combine the advantages of both Gaussian and 
Cauchy mutations. Therefore, an adaptive t-distribution mutation strategy as 
shown in Equation (24) is applied to the positions of individuals during the Arctic 
Puffin’s predator avoidance phase: 
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 ( )new i iZ X X t A= + ×                       (23) 

1
1 , 0.5
=

, 0.5

t
t i
i

new

Z rand
Z

Z rand

+
+  <


≥





                      (24) 

here, newZ  denotes the new position after t-distribution mutation, and ( )t A  is 
the t-distribution with the number of iterations of the APO algorithm as its de-
grees of freedom. In the early stages of iteration, when the number of iterations is 
small, the t-distribution mutation resembles Cauchy mutation, which helps main-
tain population diversity and enhances the algorithm’s global exploration capa-
bility. In the later stages of iteration, when the number of iterations is large, the t-
distribution mutation resembles Gaussian mutation, which is conducive to fine 
and stable local exploration around the optimal solution, thereby improving con-
vergence accuracy. The flowchart of ETAAPO algorithm as shown in Figure 4. 
 

 
Figure 4. Flowchart of ETAAPO algorithm. 
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3.4. The Pseudo Code of the ETAAPO 

The pseudo code of the ETAAPO is described as follows: 
 

Pseudo (ETAAPO) 

Input: N, T, D, F and C 
Output: the best 1t

iX +  and its fitness value 
initialization the population 
define initial parameter (N, T, F, C) 
while (t < T) 

Calculate the behavior factor B using Eq. (2) 
if B > C 

for (i = 1:N) 
update the current solution using Eq. (19) 
update the current solution using Eq. (5)  
Select N excellent populations as the new population 1t

iX +  using Eqs. (7)-(9) 
end for 

else 
for (i = 1:N) 

update the current solution using Eq. (20) 
update the current solution using Eq. (11) 
update the current solution using Eq. (24) 
Select N excellent populations as the new population 1t

iX +  using Eqs. (14)-(16) 

Evaluate the puffins, 1t
iX + , and replace t

iX


 with, 1t
iX +  is the better 

t = t + 1 
end for 

end if 
end while 
return 1t

iX +  

3.5. Time Complexity Analysis 

Time complexity is an important measure of an algorithm’s operational efficiency. 
The time complexity of an algorithm primarily depends on the population size 
(N), the maximum number of iterations (T), and the dimension (dim). In the APO 
algorithm, there is an outer loop that runs T times, and within each iteration, an 
inner loop performs ( )dimO N +  operations for each individual, plus an ( )O N
operation for updating the global optimum. Therefore, the overall time complex-
ity of the APO algorithm is ( )( )dimO T N N∗ ∗ + . 

In the ETAAPO algorithm, the time complexity of the population initialization 
phase is ( )dimO N + . After initializing the population, the algorithm needs to 
find the global optimum within the current population, which requires traversing 
the entire population to determine the best fitness value, making the time com-
plexity of this step ( )O N . The core of the algorithm consists of T iterations, with 
each iteration including a traversal of N individuals, thus the time complexity for 
this part is ( )O T N∗ . At the end of each iteration, the algorithm needs to update 
the global optimum. The time complexity of this step is ( )O N  as it requires 
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traversing the entire population to identify the best fitness value. Combining the 
above analysis, the overall time complexity of the ETAAPO algorithm is  

( )( )dimO T N N∗ ∗ + .  
Therefore, the ETAAPO algorithm proposed in this paper does not increase the 

time complexity and remains consistent with the APO algorithm. 

4. Simulation Experiments and Results Analysis 
4.1. Simulation Experiment Environment 

The simulation experimental environment for this study is as follows: the operat-
ing system is Windows 10, 64-bit operating system, the processor is AMD Ryzen 
7 4800H with Radeon Graphics 2.90 GHz, the memory is 16.0GB, and the simu-
lation software is MATLAB R2022a. 

4.2. Test the Function 

To thoroughly validate the performance of the ETAAPO algorithm, this study se-
lects the Grey Wolf Optimizer (GWO) [19], Whale Optimization Algorithm 
(WOA) [20], Harris Hawks Optimization (HHO) [21], and the newly published 
Rime optimization algorithm (RIME) [22] in 2024, which have broad application 
scopes and good performance in recent years, as comparative algorithms based on 
the CEC2021 benchmark functions. The ETAAPO algorithm is compared with 
the original Arctic Puffin Optimization (APO) algorithm and the aforementioned 
comparative algorithms. 

The unimodal test benchmark functions within the test suite are used to assess 
the local exploitation capabilities of the algorithms, while the multimodal test 
functions are employed to evaluate their global search capabilities. The specific 
function details are presented in Table 1. 
 
Table 1. CEC2021 benchmark functions. 

Function 
CEC2021 

name minf  

F1 shifted and rotated bent cigar function 100 

F2 shifted and rotated Schwefel’s function 1100 

F3 shifted and rotated lunacek bi-rastrigin function 700 

F4 expanded Rosenbrock’s plus Griewangk’s function 1900 

F5 hybird function 1 1700 

F6 hybird function 2 1600 

F7 hybird function 3 2100 

F8 composition function 1 (N = 3) 2200 

F9 composition function 2 (N = 4) 2400 

F10 composition function 2 (N = 5) 2500 

Range [−100, 100] 
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4.3. Comparative Analysis of the Experimental Results 

Table 2. CEC2021 comparison of test function optimization results. 

Function Stats GWO WOA HHO RIME APO ETAAPO 

F1 

min 3.02E−40 3.14E−93 2.93E−117 6.16E+04 0.6627 2.05E−256 

std 1.34E−37 8.14E−75 5.91E−92 1.57E+05 4.1965 0 

avg 7.96E−38 1.58E−75 1.08E−92 2.17E+05 5.1174 2.05E−237 

F2 

min 2.87E−38 7.84E−85 2.39E−102 1.68E+05 3.9132 2.91E−246 

std 6.21E−37 4.46E−74 3.24E−91 8.77E+05 18.4295 6.14E−236 

avg 1.82E−12 0 0 15.3475 260.2252 0 

F3 

min 142.8004 573.8061 0 204.4301 474.7374 0 

std 36.6794 150.1930 0 336.0613 2.03E+03 0 

avg 1.3118 0 0 352.3584 2.04E+03 0 

F4 

min 776.2944 2.45E+03 0 886.5738 2.60E+03 0 

std 0 0 0 15.2339 45.9227 0 

avg 57.8367 12.6166 0 10.2774 17.5953 0 

F5 

min 63.5773 2.3035 0 48.0059 90.0743 0 

std 75.6839 0 0 47.3602 90.0400 0 

avg 185.3820 69.1040 0 68.6764 134.0148 0 

F6 

min 0 0 0 2.4509 5.5541 0 

std 1.2481 0.1669 0 0.9749 0.9668 0 

avg 0.6094 0.0345 0 3.8099 8.3090 0 

F7 

min 0.0781 0 0 3.5886 8.5715 0 

std 5.1828 0.9094 0 6.8215 9.7805 0 

avg 3.83E−23 2.73E−84 3.02E−107 190.1351 22.4542 2.95E−219 

F8 

min 5.4379 1.23E−22 6.46E−88 279.9718 103.4684 5.60E−128 

std 2.8957 4.90E−23 1.69E−88 771.9838 135.2563 1.26E−128 

avg 0.1200 3.85E−71 1.04E−96 763.4462 109.0658 1.50E−182 

F9 

min 26.1986 5.26E−22 3.33E−87 1.34E+03 333.4823 2.99E−127 

std 0.0723 0.0098 −2.22E−16 6.0269 1.8839 −2.22E−16 

avg 6.3075 58.2043 4.90E−04 64.9233 25.7704 3.38E−17 

F10 

min 3.2727 11.1101 1.25E−04 59.0575 16.2282 −2.10E−16 

std 0.9594 0.2935 3.34E−08 22.5467 9.4593 −2.22E−16 

avg 30.8849 319.2658 0.0026 254.0639 141.5075 −1.09E−16 

 
The ETAAPO algorithm proposed in this paper was performance tested against 
APO, GWO, WOA, HHO, and RIME on the ten benchmark test functions listed 
in Table 1. In MATLAB R2022a, each experiment was independently executed 30 
times with a dimensionality setting of 20 and an iteration count of 500. The 

https://doi.org/10.4236/jcc.2024.1212010


L. Sun, B. Wang 
 

 

DOI: 10.4236/jcc.2024.1212010 163 Journal of Computer and Communications 
 

evaluation criteria were based on the optimal values, standard deviations, and av-
erage values of the results. 

Table 2 compiles the test results for the six algorithms, with the best results 
highlighted in bold. Correspondingly, the average fitness convergence curves for 
each algorithm are depicted in Figure 5. 

The test results presented in Table 2 demonstrate that the ETAAPO algorithm 
achieved a 100% optimization effectiveness on functions F3 to F7. Although it did 
not directly find the optimal values when solving other functions, its optimization 
accuracy still surpassed that of other comparative algorithms. Compared to other 
comparative algorithms, the ETAAPO algorithm exhibited a standard deviation 
of 0 on functions F1, F3 to F7, indicating its strong robustness. Additionally, 
whether for unimodal or multimodal test functions, the ETAAPO outperformed 
the other five algorithms not only in terms of optimization accuracy but also in 
stability. 

4.4. Convergence Curve Analysis 
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Figure 5. Algorithm convergence curve. 

 
The performance of an algorithm can be intuitively demonstrated through its 
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convergence curves, which showcase the convergence speed and stability of the 
algorithm. Figures 5(a)-(j) present a comparison of the convergence curves for 
six algorithms, including GWO, WOA, HHO, RIME, APO, and ETAAPO, when 
applied to the aforementioned ten benchmark functions under a 20-dimensional 
setting. Observing the convergence curves of the aforementioned algorithms, it 
can be seen that the convergence curve of ETAAPO declines faster than the other 
five algorithms, and its convergence accuracy is also the best among these six al-
gorithms. This not only indicates that ETAAPO converges faster and has better 
global search capabilities than the other algorithms, but also that it is less likely to 
get trapped in local optima, balancing global search capabilities and local devel-
opment capabilities. 

4.5. Wilcoxon Rank-Sum Test 

When assessing the performance of an algorithm, it is insufficient to rely solely 
on the best values, standard deviations, and average values to measure the perfor-
mance of the improved algorithm. Further statistical testing is required to demon-
strate the effectiveness of the Arctic Puffin Optimization algorithm improved with 
a mixture of strategies and to prove its significant advantages over other existing 
algorithms. Therefore, this paper employs the Wilcoxon rank-sum test [23] at a 
significance level of p = 5% and with a dimension of 20. 
 
Table 3. Wilcoxon rank-sum test results. 

Function 
WOA GWO HHO RIME APO 

p h p h p h p h p h 

f1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 

f2 0.010994 1 1.2019e−12 1 NaN 0 0.010994 1 1.2019e−12 1 

f3 0.16074 0 1.2118e−12 1 NaN 0 0.16074 0 1.2118e−12 1 

f4 0.021577 1 5.772e−11 1 NaN 0 0.021577 1 5.772e−11 1 

f5 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 

f6 3.018e−11 1 3.018e−11 1 2.9803e−11 1 3.018e−11 1 3.018e−11 1 

f7 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 

f8 0.33371 0 NaN 0 NaN 0 0.33371 0 NaN 0 

f9 1.9545e−11 1 1.5262e−11 1 3.0199e−11 1 1.9545e−11 1 1.5262e−11 1 

f10 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 3.0199e−11 1 

1/=/0 8/0/2 9/1/0 6/4/0 10/0/0 10/0/0 

 
Table 3 presents the results of the Wilcoxon rank-sum test comparing the op-

timal values obtained from 30 independent runs of the ETAAPO algorithm with 
those of the Whale Optimization Algorithm (WOA), Grey Wolf Optimizer 
(GWO), Harris Hawk Optimizer (HHO), Recursive Interdiction Model for En-
ergy (RIME), and the original APO algorithm. The p-value indicates the test 
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result, and h denotes the significance judgment outcome. When 0.05p < , it sig-
nifies that the ETAAPO algorithm outperforms the compared algorithm; when 

0.05p > , it indicates that the ETAAPO algorithm performs worse than the com-
pared algorithm; “NaN” implies inapplicability, meaning that a significance judg-
ment cannot be made. From the statistical results in the table, it can be observed 
that for most of the 10 benchmark test functions, the p-values are less than 0.05, 
indicating a significant difference between the ETAAPO and the compared algo-
rithms, with the ETAAPO demonstrating markedly superior performance. 

4.6. Engineering Problem and Results Discussion 

To validate the avant-garde nature of the ETAAPO algorithm and its superiority 
in practical engineering applications, this study selects the gear reducer design 
problem [24] for comparison with several improved algorithms that have demon-
strated significant enhancements in recent years. These include the Adaptive Spi-
ral Flight Sparrow Search Algorithm (ASFSSA) [25], the Grey Wolf Optimizer 
with enhanced convergence factors and proportional weights (CGWO) [26], the 
Nonlinear Chaotic Harris Hawk Optimization (NCHHO) [27], and the original 
APO algorithm. 

This problem is a relatively classic engineering optimization design challenge, 
where the optimization objective is to identify a set of seven decision variables that 
satisfy a range of constraints, including gear bending stress, contact stress, shaft 
torsional deformation, and stress. The decision variables are as follows: gear width 
( 1x ), gear modulus ( 2x ), number of teeth on the small gear ( 3x ), length of bearing 
1 ( 4x ), length of bearing 2 ( 5x ), diameter of shaft 1 ( 6x ), and diameter of shaft 2 
( 7x ), with the goal of minimizing the weight of the reducer. This problem is a 
mixed-integer programming problem, with variable ( 3x ) being an integer and all 
other variables being continuous. The mathematical model of this problem is de-
scribed as follows: 

( ) ( ) ( )
( ) ( )

2 2 2 3
1 2 3 3 6 7

3 3 2 2
6 7 4 6 5 7

min 0.7854 3.3333 14.9334 43.0934 1.508

              7.4777 0.7854

f x x x x x x x

x x x x x x

= + − − +

+ + + +
 

( )

( )

( )

( )

( )
( )

1 2
1 2 3

2 2 2
1 2 3

3
4

3 4
2 6 3

3
5

4 4
2 7 3

1/22 6
4 2 3

5 3
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        1 0

745 16.9 10
        1 0
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s t g x
x x x

g x
x x x

xg x
x x x

x
g x

x x x

x x x
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x
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( )
( )

( )

( )

( )

( )
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5 2 3
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2 3
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2
8

1

1
9

2

6
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4

7
11

5

745 157.5 10
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        1 0
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        1 0
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x
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1

2

3

4 5

6 7

2.6 3.6
0.7 0.8
17 28
7.3 , 8.3
2.9 3.9 5.0 5.5

x
x

x
x x
x x

≤ ≤
≤ ≤
≤ ≤

≤ ≤

≤ ≤ ≤ ≤

 

 

Table 4. Experimental results of reducer problems. 

Algorithm 
Results 

Min Avg Std 

ASFSSA 2999.2989 3.0068e+03 6.9048 

CGWO 3286.0921 3.8369e+96 8.9462e+96 

NCHHO 3000.0966 3.0177e+03 16.1871 

APO 3000.2771 3.0029e+03 1.7754 

ETAAPO 2997.1834 3.0008e+03 1.4746 

 
The solution results are presented in Table 4, which compares the outcomes of 

the ETAAPO algorithm with those of three other improved algorithms and the 
original algorithm. From the table, it can be observed that in solving the gear re-
ducer design problem, the best values, mean values, and standard deviations of 
the ETAAPO are all lower than those of the other four improved algorithms. This 
indicates that the ETAAPO algorithm has higher solution accuracy and better sta-
bility in addressing such problems. 

5. Conclusions and Implications 

Addressing the shortcomings of the Arctic Puffin Optimization (APO) algorithm, 
such as susceptibility to local optima, imbalance between global search and local 
exploitation, and unstable solution capabilities, this paper proposes a multi-strat-
egy improved Arctic Puffin Optimization algorithm. By employing an elite reverse 
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learning strategy for population initialization, the diversity of the population is 
enhanced, and the convergence speed of the algorithm is accelerated. The original 
algorithm’s Levy flight function is replaced with a tangent flight function, which 
increases the probability of taking larger steps during random walks, thereby im-
proving the algorithm’s global search capability while avoiding insufficient local 
development. An adaptive t-distribution mutation strategy is utilized to ensure 
population diversity in the early stages of iteration, which is conducive to global 
search, and to perform more refined and stable local exploitation in the later 
stages.  

In summary, the Improved Arctic Puffin optimization algorithm (ETAAPO) 
proposed in this study addresses the limitations of the original APO algorithm by 
enhancing population diversity, accelerating convergence speed, and improving 
the balance between global search and local development. 

Application results on 10 benchmark test functions, Wilcoxon rank-sum tests, 
and engineering optimization problems demonstrate that the Enhanced Tangent 
Arctic Puffin Optimization (ETAAPO) algorithm has faster convergence speed, 
higher convergence accuracy, and a stronger ability to escape from local optima. 
Future work will continue to improve the performance of the Arctic Puffin algo-
rithm, enhancing its optimization accuracy, convergence speed, and convergence 
stability. On this basis, the ETAAPO algorithm will be considered for application 
in solving complex multi-objective problems and practical engineering case stud-
ies. 
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