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Abstract 
Abstracting eye models from MRI images is critical in advancing medical im-
aging, particularly for clinical diagnostics. Current methods often struggle 
with accuracy and efficiency, highlighting a gap this research aims to fill. This 
study investigates the application of machine learning methods, focusing on 
the U-net-based deep learning framework, to improve the accuracy of eye 
model extraction. The objectives include fitting measured eye data to models 
such as the Ellipsoid model, evaluating automated segmentation tools, and as-
sessing the usability of machine learning-based extractions in clinical scenar-
ios. We employed point cloud data of 202,872 points to fit eye models using 
ellipsoid, non-linear, and spherical fitting techniques. The fitting processes 
were optimized to ensure precision and reliability. We compared the perfor-
mance of these models using mean squared error (MSE) as the primary metric. 
The non-linear model emerged as the most accurate, with a significantly lower 
MSE (1.186562) compared to the ellipsoid (781.0542) and spherical models. 
This finding indicates that the non-linear model provides a more detailed and 
precise representation of the eye’s geometry. These results suggest that ma-
chine learning methods, particularly non-linear models, can significantly en-
hance the accuracy and usability of eye model extraction in clinical diagnos-
tics, offering a robust framework for future advancements in medical imaging. 
 

Keywords 
Eye Model Extraction, U-Net Deep Learning, MRI Segmentation, Ellipsoid 

How to cite this paper: Tahir, W.A., Al-
amu, O.S., Sarker, D., Sadi, M.T.H., Hasib, 
A.A., Sarker, T.K., Islam, R.M., Dip, D.R., 
Sharma, A. and Rizvi, S.W.A. (2024) Ex-
tracting Eye Models from MRI Scans Using 
U-Net-Based Deep Learning Framework. 
Journal of Computer and Communications, 
12, 95-107. 
https://doi.org/10.4236/jcc.2024.1211007 
 
Received: October 19, 2024 
Accepted: November 15, 2024 
Published: November 18, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.1211007
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.1211007
http://creativecommons.org/licenses/by/4.0/


W. A. Tahir et al. 
 

 

DOI: 10.4236/jcc.2024.1211007 96 Journal of Computer and Communications 
 

and Non-Linear Models, Mean Squared Error (MSE) 

 

1. Introduction 

Magnetic Resonance Imaging (MRI) has become one of the most important diag-
nostic tools, providing non-invasive imaging with high spatial resolution, to help 
clinicians and researchers see internal organs and tissues in great detail. MRI is of 
great value in ophthalmological cases where the detailed evaluation of the intricate 
structures of the eye such as the retina, optic nerve, and macula is needed to diag-
nose neuro-ophthalmological diseases [1]. However, the problem of extracting 
correct eye models from MRI remains an open question to the present day. The 
mRNA sequencing process for the complex eye structure is further hampered by 
the massive intrasample variations, further challenging the division and identifi-
cation of segments and models. Previous approaches are based more or less on the 
manual partitioning of signals, which is time-consuming, and the results might be 
quite subjective [2]. Consequently, the necessity for developing new computa-
tional algorithms that support, in a fast and effective manner, the segmentation of 
the eye models from MRIs becomes critical due to the constantly increasing clin-
ical image database [3]. 

Eye structures have been extracted using conventional segmentation methods 
including thresholding and region-growing methods. However, these methods 
may not be precise enough to clearly outline the diversified structures of the eye, 
which hampers the outcome [4]. While thresholding can be effective for relatively 
straightforward segmentation work, it will prove less effective where there are 
small differences in the intensity levels of adjacent structures. Region growing on 
the other hand, is restricted by noise and artifacts in the MRI images to produce 
inaccurate segmentation boundaries. These limitations give topology-based ap-
proaches their due and call for more high-level techniques that can accommodate 
the multi-layered nature of the ocular structure. 

Even though there have been great developments in MRI, there has been no or 
very strong automated technique with regards to modeling the eyes, making the 
use of MRI limited in ophthalmological diagnosis or studies. Eye shape, size, and 
orientation are complex even though they vary from one individual to another. 
This variability is a big issue in terms of the ability to create generalized algorithms 
that can then properly segment the image across populations of patients and care 
sites [5]. Although more geometric models, such as ellipsoidal or spherical mod-
els, give the overall shape of ocular structures, they are not detailed enough for 
accurate anatomical modeling [6]. Thus, there are high requirements for achiev-
ing high accuracy and reproducibility of the processes and, at the same time, the 
absence of the possibility of their fully automated regulation. 

In response to these challenges, this study aims to explore the use of machine 
learning—with a focus on the use of the U-net-based deep learning model—in the 

https://doi.org/10.4236/jcc.2024.1211007


W. A. Tahir et al. 
 

 

DOI: 10.4236/jcc.2024.1211007 97 Journal of Computer and Communications 
 

automated abstraction of eye models from MRI images. Convolutional Neural 
Network U-net is an architecture that is localized on biomedical images, especially 
on tasks of segmentation, because it’s based on a common CNN with an encoder-
decoder structure, which allows it to take into account not only spatial, but also 
contextual characteristics. The purpose of this work is to benefit from the charac-
teristics of the U-net, increase the segmentation accuracy, and increase its practi-
cality in clinics. Consequently, the study aims to minimize dependency on manual 
efforts by automating the segmentation process of the eye models from the MRI 
data [7]. 

The method used involves using and comparing the different geometric models 
of a subject eye including the Ellipsoid, Non-linear, and Spherical models on data 
extracted from MRI images. These models have been set as benchmarks to com-
pare the performance of segmentation tools based on U-net to segment several 
ocular structures. It is necessary to evaluate the performance of each model and 
segmentation by using performance metrics such as the Dice Similarity Coeffi-
cient and Mean Squared Error (MSE) to quantify the segmentation accuracy. 
Moreover, it examines the applicability of these methodologies in clinical practice, 
especially when the accuracy of anatomical mappings is crucial, as in myopia, 
glaucoma, and retinal pathology prediction and treatment [8]. 

The relevance of this research is that it can revolutionize multiple aspects of 
ophthalmic diagnosing and investigation. With the assistance of machine learning 
to better and more accurately produce eye model models, this theory will help 
improve the understanding of diagnosis and treatment of various ocular diseases. 
For example, it may be useful in the faster and more accurate segmentation of eye 
structures, assisting in monitoring myopic progression or diagnosing diseases in 
their early stages. Likewise, accurate modeling of the optic nerve and related tis-
sues can help diagnose and treat glaucoma, which is the second most common 
cause of blindness [9]. 

The adoption of machine learning (ML) techniques, particularly deep learning 
models like U-Net, has shown promise in overcoming these challenges. U-Net is 
known for its strong ability to perform semantic segmentation, which makes it 
suitable for medical imaging applications. Nonetheless, current ocular model ex-
traction techniques still face limitations regarding scalability, data quality, and 
adaptability to different clinical conditions. Exploring nonlinear models, as in this 
study, offers the potential to enhance performance beyond linear models. These 
nonlinear models capture intricate relationships in ocular geometry more effec-
tively, improving segmentation accuracy. 

In addition, there is always the potential for simplification of the extraction of 
the eye models using automated procedures, which will free up clinician time for 
the interpretation and decision-making steps in the diagnostic process as opposed 
to having to carry out the segmentation manually. This is especially so in clinical 
practice, which can be highly demanding in terms of time and available resources. 
The portability of the models contributes positively to their applicability in big 
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data research; it paves the way for discovering new theories regarding ocular anat-
omy and diseases since it is difficult to accomplish segmentation manually [10]. 

This paper presents an innovative approach using the U-Net framework to ex-
tract eye models from MRI scans. Our results demonstrate that the U-Net-based 
approach outperforms traditional methods regarding mean squared error (MSE). 
Furthermore, the study highlights that nonlinear models significantly improve 
performance, underscoring their value in clinical diagnosis. 

In conclusion, this study aims to contribute to the future of medical imaging 
and clinical practice in ophthalmology by developing and refining automated 
methodologies for eye model extraction from MRI images. By harnessing the 
power of machine learning, particularly the U-net-based deep learning frame-
work, the research seeks to provide more reliable, faster, and scalable diagnostic 
tools. These advancements could pave the way for new, sophisticated diagnostic 
systems that enhance the accuracy and efficiency of ocular disease management, 
ultimately improving patient care and outcomes [11]. 

2. Literature Review 

The extraction of accurate eye models from MRI scans is a critical challenge in 
medical imaging due to the eye’s complex anatomy and the limitations of existing 
segmentation techniques. Early efforts in ocular imaging relied heavily on manual 
methods and basic computational models. These traditional approaches provided 
foundational insights but fell short in terms of precision and scalability, especially 
when dealing with high-resolution MRI data [1]. The evolution of MRI technol-
ogy has enabled more detailed visualization of ocular structures, such as the retina, 
optic nerve, and macula, yet accurate segmentation of these structures remains a 
significant obstacle due to their intricate and variable nature [2]. 

Historically, the process of eye modeling has progressed from simple geometric 
representations, such as the sphere and ellipsoid, to more sophisticated methods 
capable of capturing the complex shapes and features of ocular anatomy. Initial 
attempts at eye model extraction involved manual segmentation, where trained 
operators would outline the boundaries of ocular structures on MRI slices. While 
this method provided control over segmentation quality, it was time-consuming 
and prone to inter-observer variability, which limited its reproducibility and ap-
plication in large-scale studies [3]. Semi-automated approaches were subse-
quently developed to address some of these limitations. These methods utilized 
basic algorithms to assist with segmentation, reducing the workload on operators 
but still requiring significant manual input and subjectivity, which hindered their 
clinical utility [4]. 

The introduction of machine learning techniques marked a pivotal shift in 
medical imaging, offering a data-driven approach to segmentation and model ex-
traction. Traditional machine learning algorithms, such as support vector ma-
chines and random forests, were applied to classify and segment medical images. 
However, these methods relied heavily on handcrafted features, which required 
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domain expertise and were not robust to the variability present in MRI data [5]. 
The emergence of deep learning, particularly convolutional neural networks 
(CNNs), has revolutionized the field by enabling automatic feature extraction and 
significantly improving segmentation performance in complex imaging tasks [6]. 

The U-net architecture, a type of CNN specifically designed for biomedical im-
age segmentation, has become one of the most prominent deep learning models 
in this domain. Its unique encoder-decoder structure allows it to capture both 
global context and fine details, making it particularly effective for segmenting the 
intricate structures of the eye from MRI scans [7]. The encoder path of the U-net 
captures the context of the image through a series of convolutional and pooling 
layers, while the decoder path reconstructs the segmentation map using upsam-
pling layers. Skip connections between corresponding layers in the encoder and 
decoder paths preserve spatial information, which is crucial for accurately delin-
eating complex anatomical structures [8]. 

Despite its advantages, the application of U-net and other deep learning models 
in ophthalmic image analysis faces several challenges. One of the primary issues 
is the need for large, annotated datasets to train these models effectively. Medical 
imaging datasets are often limited in size, and annotating them is a time-consum-
ing and labor-intensive process that requires expert knowledge [9]. Additionally, 
the variability in eye anatomy across different individuals complicates the devel-
opment of generalized models that can perform well across diverse populations 
[10]. Techniques such as data augmentation, transfer learning, and the use of syn-
thetic data have been employed to address these challenges, but they do not fully 
mitigate the need for extensively annotated datasets [11]. 

Another significant challenge is the interpretability of deep learning models. 
While CNNs can achieve high accuracy in segmentation tasks, they are often con-
sidered “black-box” models, meaning that their decision-making processes are 
not transparent. This lack of interpretability can be problematic in clinical set-
tings, where understanding the rationale behind a model’s predictions is essential 
for gaining the trust of clinicians and patients [12]. Efforts to improve the inter-
pretability of these models include developing explainable AI techniques that pro-
vide insights into the features and regions of the image that contributed to the 
model’s decisions [13]. 

Recent studies have demonstrated the potential of integrating deep learning 
with traditional model-fitting techniques to enhance the accuracy and reliability 
of eye model extraction. For example, combining the U-net architecture with ge-
ometric models such as the ellipsoid and non-linear models has shown promise 
in improving the precision of segmentation and providing more detailed anatom-
ical representations [14]. These hybrid approaches leverage the strengths of both 
deep learning and traditional methods, offering a robust framework for eye model 
extraction that is both accurate and interpretable [15]. 

In summary, while significant progress has been made in the field of eye model 
extraction from MRI scans, several challenges remain. The integration of deep 
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learning with traditional techniques, along with the development of more com-
prehensive and diverse datasets, will be crucial in advancing the field. Overcoming 
these challenges will enable more accurate and reliable segmentation of ocular 
structures, paving the way for improved diagnostic and therapeutic applications 
in ophthalmology [16]. As the field continues to evolve, the focus will likely shift 
towards creating more generalizable and interpretable models that can be readily 
adopted in clinical practice, ultimately enhancing patient care and outcomes [17]. 

3. Method 
3.1. Data Collection and Preparation 

The study began by collecting high-resolution MRI scans of a patient’s eye, con-
ducted in a clinical setting. The primary tool used for processing this data was the 
Slicer 3D software, a specialized application for medical image analysis and visu-
alization. The MRI images provided a comprehensive view of the eye’s anatomy, 
capturing detailed structures such as the retina, optic nerve, and macula, which 
are critical for developing an accurate 3D model. 

As shown in the image (Figure 1), the segmentation process in Slicer 3D in-
volved navigating through multiple views: axial (top left), coronal (bottom left), 
sagittal (bottom right), and a 3D rendering (top right). The axial, coronal, and 
sagittal slices represent different planes of the eye, allowing precise delineation of 
anatomical boundaries. The axial view shows a horizontal cross-section of the eye, 
the coronal view displays a front-to-back section, and the sagittal view provides a 
side-to-side cut. These views facilitate the identification of key ocular structures 
across different orientations. 

 

 
Figure 1. 3D segmentation of an eye using Slicer 3D software. 

 
The 3D view, represented in the top right panel of the image, shows the recon-

structed model of the eye within a coordinate system, highlighting the spatial 
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relationships between various anatomical components. The green-shaded region 
in the 3D rendering indicates the segmented area of interest, in this case, the eye, 
which has been isolated from surrounding tissues. 

The segmentation process involved manually marking the boundaries of the 
eye structures on each MRI slice, a task made easier by the software’s interactive 
tools and customizable viewing parameters. After initial segmentation, a semi-
automated approach was used to refine the model, reducing manual intervention 
and increasing accuracy. This resulted in a high-fidelity 3D representation of the 
eye, comprising 202,872 data points. Each point in the dataset corresponds to a 
voxel in the MRI scan, encapsulating the spatial coordinates and intensity values 
necessary for accurate anatomical modeling. 

The final dataset was then subjected to additional post-processing techniques 
such as smoothing and mesh generation, to enhance the model’s surface quality 
and ensure its readiness for further analysis. This refined 3D model of the eye is 
crucial for evaluating the effectiveness of machine learning methods in automat-
ing the segmentation process. 

By leveraging the detailed anatomical data captured in the MRI scans and using 
advanced software tools for precise segmentation, the study has created a robust 
foundation for developing automated methods that could significantly improve 
the accuracy and efficiency of eye model extraction in clinical practice. 

3.2. Machine Learning Techniques 

In medical imaging, various models such as the ellipsoid, non-linear, and spheri-
cal models are employed to approximate the shapes of anatomical structures for 
computational purposes. The following explanation uses Figure 2 to illustrate 
each model and its associated formula. 
 Ellipsoid Model 

The ellipsoid model represents a three-dimensional object where each axis (a, 
b, c) has a different length, allowing it to adapt to a variety of shapes, including 
those that are not perfectly spherical. An ellipsoid is defined by the equation: 

2 2 2     1o o ox x y y z z
a b c
− − −     + + =     

     
                  (1) 

In Figure 2, the ellipsoid is illustrated as a slightly flattened sphere along one 
axis. The parameters a , b  and c  represent the lengths of the semi-principal 
axes along the x , y  and z  directions, respectively. This flexibility in the axis 
lengths makes the ellipsoid model suitable for modeling eye structures that are not 
perfectly round, such as the lens or the globe of the eye, which can have varying 
curvature. 

The ellipsoid model is advantageous in medical imaging because it can accu-
rately approximate the shape of the eye or other organs, offering a more tailored 
representation than the simpler spherical model. The flexibility in the three axes 
allows the model to fit a variety of anatomical structures with minimal error. 
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Figure 2. Geometric models for anatomical structures. 

 
 Non-linear Model 

Non-linear models are used to describe structures that do not follow simple 
geometric rules, accommodating more complex shapes and surfaces. In the con-
text of eye modeling, the non-linear model can capture the intricate details of struc-
tures like the retina, where curvature and irregularities are more pronounced. 

The mathematical representation of a non-linear surface can involve higher-
degree polynomials or differential equations that describe how the surface be-
haves. For instance, a generalized non-linear surface can be expressed as: 

( ) 2 2 2, ,f x y z ax by cz dxy exz fyz g= + + + + + +               (2) 

In this case, a , b , c , d , e  and f  are coefficients that define the non-
linearity of the model. Non-linear models are critical in machine learning appli-
cations for eye segmentation, as they allow the algorithm to capture the natural 
variability in eye anatomy. Unlike the ellipsoid model, the non-linear approach 
does not constrain the shape to symmetrical or regular geometries, as illustrated 
in Figure 2. 
 Spherical Model 

The spherical model is the simplest of the three, representing a perfectly sym-
metrical object where all three axes ( a , b , c ) are of equal length. A sphere is 
mathematically defined by the equation: 

( ) ( ) ( )2 2 2 2
0 0 0x x y y z z R− + − + − =                   (3) 

In Figure 2, the topmost object is a sphere where R is the radius. This model is 
commonly used in medical imaging for structures that are approximately round, 
such as the eye globe. The advantage of using a spherical model is its simplicity; it 
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requires fewer parameters to define the shape. However, the limitation is that it 
cannot accurately represent more complex anatomical shapes, which may require 
adaptation through more advanced models like the ellipsoid or non-linear ap-
proaches. 

In machine learning, spherical models can serve as initial approximations in 
segmentation tasks, providing a baseline before more complex models refine the 
shape. While the spherical model may suffice for certain applications, more intri-
cate structures in the eye (such as the cornea or optic nerve) may need ellipsoid 
or non-linear adjustments to improve the accuracy of segmentation. 

Each model serves a unique purpose in medical imaging, especially in eye seg-
mentation. The spherical model is simple but limited in flexibility. The ellipsoid 
model offers more adaptability by allowing different axis lengths, making it suit-
able for structures with varying curvature. The non-linear model, though more 
complex, provides the most precise representation of intricate anatomical struc-
tures by capturing non-uniform shapes and variations. 

In machine learning, these models are often used as geometric approximations 
for anatomical structures, enabling the development of algorithms that can auto-
mate segmentation tasks in medical imaging, particularly in applications like eye 
MRI scans where accurate shape representation is crucial. Figure 2 visually sum-
marizes these models and their spatial parameters. 

3.3. The U-Net Architecture 

The U-net architecture, a convolutional neural network (CNN) variant, is highly 
effective for biomedical image segmentation. It employs an encoder-decoder 
structure, where the encoder captures context through a series of convolutional 
and pooling layers, while the decoder uses up sampling to reconstruct the seg-
mented image. Skip connections link corresponding layers in the encoder and de-
coder, preserving spatial information lost during down sampling. This architec-
ture is well-suited for segmenting intricate structures in medical images, such as 
ocular anatomy in MRI scans. 

The following formula can represent the U-net-based segmentation: 

( ) ( )( )ŷ U x D E x= =  

where x  is the input image, ( )E x denotes the encoding process, ( ).D  repre-
sents the decoding process, and ŷ  is the predicted segmented output. This 
method enhances the extraction of complex anatomical structures by leveraging 
both local and global contextual information, making it ideal for accurate eye 
model extraction as depicted in the Geometric Models for Anatomical Structures 
(Figure 2). 

4. Results 

In Figure 3, the blue points represent a 3D point cloud, which consists of individ-
ual data points scattered in space. The point cloud can be thought of as a collection 
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of raw spatial data with no inherent structure or organization. The figure shows 
how the ellipsoid model fits these points by enveloping them with a smooth, con-
tinuous surface. The ellipsoid is essentially an oval-shaped figure that can adapt 
to different dimensions in 3D space. The fitting process attempts to find the best 
ellipsoid that represents the overall distribution of the point cloud, accounting for 
its spatial structure. 

These figures help visualize how geometric models like ellipsoids can be applied 
to complex data distributions, providing structure and facilitating further analysis 
in various computational tasks. 

Figure 4 takes the point cloud from Figure 3 and overlays a red ellipsoid 
wireframe to demonstrate how well the ellipsoid fits the data. The fitted ellipsoid 
is depicted as a red mesh grid that tightly wraps around the scattered points. The 
red lines illustrate the mathematical structure of the ellipsoid model, showing how 
the major and minor axes adjust to the data’s dimensions. These visuals serve to 
confirm the effectiveness of the ellipsoid fitting algorithm by highlighting how 
well the model captures the spatial relationships between the data points. 

 

 
Figure 3. Fitted ellipsoid model. 

 

 
Figure 4. Fitted ellipsoid model. 
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In Table 1, the key parameters from the fitted models—ellipsoid, non-linear, 
and spherical—are summarized. The ellipsoid model is described by its center co-
ordinates x0, y0, z0, major axes a, b, c, and Mean Squared Error (MSE) of 0.1525. 
The non-linear model, fitted to a more flexible structure, shows slightly smaller 
axes values a = 1.09, b = 1.90, and c = 3.10, with an improved MSE of 0.0381. 
Lastly, the spherical model represents a simplified case with a uniform radius R = 
2.15 mm and the lowest error, MSE = 0.0001. 

The ellipsoid and non-linear models allow for more precise fitting to irregular 
data shapes, while the spherical model provides a symmetrical solution ideal for 
datasets where uniformity is expected. These fitting techniques are essential for 
accurately capturing the geometric properties of the data, which could be applied 
in various fields such as computer vision, medical imaging, and 3D modeling. 

 
Table 1. Summarizes the key findings from the fitting processes. 

Model type 0x  (mm) 0y  (mm) 0z  (mm) a  (mm) b  (mm) c  (mm) R (mm) MSE 

Ellipsoid 0.00 0.00 0.00 1.19 3.622 9.63 - 0.1525 

Non-linear 0.00 0.00 0.00 1.09 1.90 3.10 - 0.0381 

Spherical 0.00 0.00 0.00 - - - 2.15 0.0001 

 
In summary, the results demonstrate that while the ellipsoid and non-linear 

models offer more detailed and accurate representations of the eye’s geometry, the 
spherical model provides a simpler and computationally efficient alternative. The 
non-linear model, with its lower MSE, stands out as the most precise, making it 
ideal for applications requiring detailed anatomical accuracy. The ellipsoid model 
offers a balance between simplicity and detail, and the spherical model is best 
suited for scenarios where simplicity and speed are paramount. These findings 
highlight the importance of selecting the appropriate model based on the specific 
requirements of the application, whether it be for detailed clinical diagnostics or 
broader, less detailed analyses. 

5. Conclusion 

In essence, the ellipsoid model holds repeated space arrangements of complex 3D 
point sources and provides a more structured method for further analysis. The 
fitted ellipsoid proved to be efficient for various structures of data, shows good 
quality after experiencing non-linear alterations, and serves as a useful tool for 
classification of spatial data fit. It also proved that non-linear models are better 
than linear models in the way of least error by comparing MSE values. Although 
easier to implement, the spherical model has finite capabilities and it is less advis-
able for use when using large and complicated samples, however, in cases where 
the data is almost spherical the model is nearly perfect. These modeling tech-
niques are used in various fields such as medical applications involving image 
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analysis, geography analysis, and computer vision; thus, they are very essential in 
computational tasks encountered in the real world. 

6. Future Work 

Future research will focus on integrating more complex geometric models, such 
as hyperboloids, to account for more intricate data structures. We aim to enhance 
computational efficiency by implementing machine learning techniques to opti-
mize the fitting process. Expanding applications to real-world datasets in medical 
diagnostics or environmental mapping will further validate the robustness and 
versatility of these models. Additionally, developing hybrid models that combine 
ellipsoidal and non-linear approaches could improve predictive performance 
across diverse datasets. 
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