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Abstract 
Due to the presence of turbid media, such as microdust and water vapor in the 
environment, outdoor pictures taken under hazy weather circumstances are 
typically degraded. To enhance the quality of such images, this work proposes 
a new hybrid 2-0 penalty model for image dehazing. This model performs a 

weighted fusion of two distinct transmission maps, generated by imposing 2 

and 0 norm penalties on the approximate regression coefficients of the trans-
mission map. This approach effectively balances the sparsity and smoothness 
associated with the 0 and 2 norms, thereby optimizing the transmittance 

map. Specifically, when the 2 norm is penalized in the model, an updated 

guided image is obtained after implementing 0 penalty. The resulting opti-
mization problem is effectively solved using the least square method and the 
alternating direction algorithm. The dehazing framework combines the ad-
vantages of 2 and 0 norms, enhancing sparse and smoothness, resulting in 
higher quality images with clearer details and preserved edges. 
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1. Introduction 

Larger particles alter light absorption, emission, and scattering in the atmosphere, 
which are the primary cause of natural phenomena including haze, smoke, and 
fog. The quality of images taken in haze weather is significantly degraded: clarity, 
contrast, and visibility are greatly reduced, the image details are blurred, and color 
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deviation and distortion are produced [1]. Therefore, it is crucial to remove the 
undesired blurred visual effects from the captured images. The dehazing algo-
rithm plays an important role in it and it can be broadly categorized into two cat-
egories: one is based on image enhancement and the other is based on image res-
toration. 

The image enhancement method focuses on reducing specific information in 
the image based on particular needs. It involves processing image features such as 
contrast, edges, and contours to enhance visual appearance. However, this method 
does not prioritize image fidelity or consider the physical causes behind the image 
characteristics. Techniques in this category include histogram equalization [2] [3], 
which expands the dynamic range to boost image contrast. The homomorphic 
filtering proposed by Stockman [4] enhances the image contrast by enhancing the 
high-frequency components and weakening the low-frequency components. Im-
age enhancement based on wavelet is similar to homomorphic filtering, and Russo 
[5] uses wavelet transform to equalize images and gets good results. Retinex [6] 
proposed by Land enhanced the image by eliminating the influence of the reflec-
tion component in the image, which was improved by later Jobson and Rahman, 
who proposed Single Scale Retinex and Multi Scale Retinex [7] [8]. 

The physical model-based dehazing approach, also known as the image resto-
ration-based haze removal method, builds a model of hazy picture degradation by 
investigating the causes of hazy image degradation and addresses the inverse pro-
cess of image degradation to restore clear images. Fattal et al. [9] posited that there 
is no correlation between scene transmission and surface shading in their hypoth-
esis. They used the independent component analysis (ICA) algorithm combined 
with a Markov random field model to estimate scene transmission. However, this 
method often falls short in conditions of dense haze. Tan et al. [10] improved the 
local contrast of hazy images using a Markov random field model, restoring some 
texture and structure but frequently over-enhancing the contrast. Tarel et al. [11] 
proposed a method of dehazing using median filtering to estimate atmospheric 
map and transmission map, which requires less processing time, but often has 
poor processing results for images with dense haze. A dehazing approach suited 
for vast sky regions has been proposed by Meng et al. [12], and the transmission 
map was estimated using the boundary constraint hypothesis and contextual op-
timization. While the method effectively removes haze, it tends to distort objects 
whose colors resemble atmospheric light. Li et al. [13] introduced a weighted 
guided image filter for dehazing, which reduces halo artifacts in both flat and 
sharp regions while preserving edge information more effectively. However, this 
approach still results in over-smoothing in sharp areas due to the use of a local 
linear model and a fixed regularization parameter. Additionally, Li et al. [14] pro-
posed an efficient single image haze removal approach based on edge-preserving 
decomposition, and the edge-preserving smoothing method is used to estimate 
the transmission map. However, the over-smoothing effect persists in the sharp 
regions. To address this, some global optimization-based filters like the weighted 
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least square (WLS) [15] and fast weighted least square (FWLS) [16] have been 
introduced. These techniques avoid the edge-smoothing effect but are more time-
consuming due to the increased number of iterations required. Zhu et al. [17] 
proposed a fusion-based algorithm for solving the image dehazing problem with-
out considering the degradation mechanism. They utilized the guide filter to de-
compose the unexposed image into local and global components. The method of-
fers several advantages, including computational efficiency, clear detail, good 
color quality, and satisfactory results. Raikwar et al. [18] rearranged the atmos-
pheric scattering model to estimate the transmission map by calculating the dif-
ference of minimum color channels. This approach aims to enhance visibility res-
toration. Similarly, Zhao et al. [19] developed a single image dehazing method 
that analyzes the prior information of local dehazed patches. They accurately es-
timated the transmission based on these local patches. To improve the quality of 
the transmission map, they applied weighted interpolation and guided filtering to 
enhance the edges and details. P.S. Baiju et al. [20] proposed an optimization 
framework using weighted kernel norm minimization, which preserves promi-
nent edges and detailed structures to obtain a finer transmission map. A scale-
aware weighting-based effective edge-preserving gradient domain guided image 
filter was proposed by Yadav et al. [21], in which sharp and flat regions retained 
edge information while removing image artifacts. Padmini et al. [22] proposed a 
method of 0 smoothing after guided filtering. Still, this method can’t remove 
pixel-clustering artifacts, so Joongchol Shin et al. [23] present a new structure-
guided 0-norm that removes various artifacts while counting the global gradients 
of an image. 

He et al. [24] proposed a dehazing algorithm based on dark channel priors; and 
improved the transmission map using soft matting, resulting in clearer restored 
images. However, this approach had a large computational cost and exhibited gra-
dient reversal and halo artifacts in smooth and sharp regions. To address these 
issues, He et al. [25] introduced guided filtering with 2 norm penalty as an alter-
native to soft matting. This optimization reduced the algorithm’s complexity, mit-
igated artifact problems, and enhanced the naturalness of the dehazing effect. 
However, the use of 2 norm penalty may hinder the retention of edge infor-
mation in sharp regions. Xu et al. [26] proposed using the 0 gradient minimiza-
tion model for image processing. The model optimizes the sparsity of gradient by 
controlling the number of non-zero gradients, resulting in sharper protruding 
edges and effective eliminating of low-amplitude structures. The advantage of this 
method is that it does not depend on local features but instead globally positioning 
image to suppress the halo. In previous studies [27] [28], it has been demonstrated 
that the 0 norm induces stronger sparsity compared to the 1 and 2 norms. 
However, relying solely on the 0 norm has been found to have limited effective-
ness in preventing overfitting of the model. In addition, it is proved in [29] that 
combining the 0 norm with additional 1 or 2 penalties leads to improved per-
formance. Motivated by these findings, this paper adopts a penalty term that 
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combines the 0 and 2 norms. 
In this paper, we propose a dehazing algorithm for a hybrid 2-0 penalty model 

based on the atmospheric scattering model and the dark channel principle. This 
algorithm is inspired by the guided filtering with the 2 penalty and the 0 gradi-
ent minimization. It weighted sums the coefficients obtained from the 2 and 0 
penalties, preventing the loss of edge information in sharp regions from the 2 
norm penalty and avoiding an excessively smooth image from the 0 norm pen-
alty. The model has an update of the guidance image using the 2 norm penalty. 
This update includes the initial transmission map obtained by applying the dark 
channel prior, as well as the new regression coefficient image obtained after ap-
plying the 0 norm penalty to the regression coefficients. The results demonstrate 
that this model can preserve more detailed information while preserving edges, 
resulting in higher quality dehazing images. 

This paper is organized as follows: the background of the image dehazing is 
introduced concisely in Section 2; the proposed dehazing scheme is presented in 
Section 3, followed by the experimental results in Section 4, and Section 5 con-
cludes this work with discussions. 

2. Background 
2.1. Atmospheric Scattering Model 

According to the rule of conservation of energy, the proportion of atmospheric 
light scattered to the light sensor should be equal to the proportion of the scattered 
light reflected by the target object [30]. Therefore, by utilizing the physical haze 
model, a haze-free image can be reconstructed from an image degraded by haze. 
The model is expressed as: 

 ( ) ( ) ( ) ( )( )1I x J x t x A t x= + −  (1) 

where ( )I x  is the original image, ( )J x  is the haze-free image, ( ),x x y=  is 
the pixel coordinate, A  is the atmospheric light, and t  is the scene transmis-
sion map. 

2.2. Estimation of Atmosphere Light 

When estimating the atmospheric light value A , a common approach is to select 
the top 0.1% brightest pixels from the dark channel, mapping them to the input 
image to identify the corresponding pixel point, and take the maximum value in 
the RGB channels corresponding to this point as the predicted value for atmos-
pheric light intensity A . However, if the value of A  is excessively high, the 
dehazed image may appear partially distorted, while if it is too low, the image may 
be overexposed. To enhance the reliability of estimating the atmospheric light, we 
use the improved quadtree search algorithm proposed in [23]. 

The atmosphere light is then estimated as 

 ( )( )min ,A mean Q I I=  (2) 
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where ( )
{ }

min

R,G,B

min c

c

I I
∈

= , ( )minQ I  denotes the quadtree operation using minI  to  

return the pixel locations for atmosphere light, and ( )mean ⋅  computes the aver-
age of the original pixel values in the atmospheric region. 

2.3. Guided Filtering with 2 Penalty Estimates the Coarse  
Transmission  

He et al. [25] proposed using guided filtering to refine the transmission map to 
optimize the “block effect” caused by an excessively large depth of field during the 
dehazing process. The key assumption of the guided filter is a local linear model 
between the guidance image and the filtering output image. The guiding image 
can either be distinct from or identical to the input image. When the guiding im-
age is identical to the input image, the filtering operation becomes one that pre-
serves edges, which is beneficial for image dehazing. In the proposed method, the 
initial transmission map it′  is selected as the same guiding and input images. The 
linear relationship is shown as: 

 ,i k i k kT a t b i ω′= + ∀ ∈   (3) 

where kω  is a square window of radius r  centered at the pixel k  and 
( ),k ka b  are linear coefficients assumed to be constant in kω , it′  is the trans-
mission map after refining by the Dark channel prior theory [24], iT ′  is the out-
put image. 

To ensure the guided image filtering has the best outcome, the difference be-
tween the input and output images must be minimized. Consequently, the cost 
function ( ),k kE a b  uses 2 norm penalty and defined as follows: 

 ( ) 2 22 2
2 2min ,

k k
k k i i k k i k i k

i i
E a b T t a a t b t a

ω ω
ε ε

∈ ∈

   ′ ′ ′ ′= − + = + − +   ∑ ∑  (4) 

where ε  is a regularization parameter penalizing large, Equation (4) is the linear 
ride regression [31] model and its solution is given by 

 ( )
2

2 ; 1k
k k k i

k

a b a tσ
σ ε

′= = −
+

  (5) 

where it′  is the mean of it′  in kω , 2
kσ  is the variance of it′  in kω . 

2.4. 0 Gradient Minimization 

In guided filtering, the primary benefit of using it as a local filter lies in its capa-
bility to preserve the edges of the image while optimizing the “block effect”. How-
ever, this filter eliminates halos at the boundaries of the image, which results in 
the significant edges of the image being penalized, weakened and lost. To address 
the issue of edge loss during transmission optimization, we introduce the 0 gra-
dient minimization filter optimization method proposed by Xu et al. [26].  

Taking the regression coefficient ka  as an example, the established 0 model 
is as follows: 
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 ( )
0

2
0 02min ka

a a C aλ− +


 

  (6) 

where 0a


 is output, ka  is the input of regression coefficient, the regression 
coefficient 0b



 also has the same minimization problem. 
( ) { }0 0 0# | 0x yC a p a a= ∂ + ∂ ≠
  

 is the gradient measure of 0a


, λ  is a 
weight to control the level of detail. The first term in Equation (6) represents fi-
delity, while the second term aims to constrain the sparsity of the gradient mag-
nitude of the output. 

To solve the objective function, rewrite the objective function as: 

 ( ) ( ) ( )( ){ }
0

222
0 0 02, ,

min ,
x y

k x y x x y ya
a a C a a

δ δ
λ δ δ β δ δ− + + ∂ − + ∂ −



  

 (7) 

where δ  is an auxiliary vector to deal with gradient of 0a


 and Includes two 
components: xδ  and yδ , β  controls the similarity between δ  and gradient 
of 0a



. Equation (7) is solved through alternatively minimizing ( ),x yδ δ  and 

0a


. 

3. A New Hybrid 2-0 Model for Sparse Solutions with  
Optimizing Transmission Map 

To balance the sparsity and the smoothness, the model with hybrid 2-0 penalty 
is proposed as follows: 

 1 2 2 0T t tµ µ= +
 

 (8) 

where 1µ  and 2µ  are the weight parameters, 2t


 is the transmission map ob-
tained by combining regression coefficients after 2 norm punishment, 0t



 is the 
transmission map obtained by combining the regression coefficients after the 0 
norm penalty. 

Initially, we apply 2 norm penalty to both the guided image I  and the input 
image p , which results in obtaining two regression coefficients ( ),k ka b : 

 
( ) 22 2 2

2 2min ,
k k

k k k k k k
i i

E a b T p a a I b p a

I p t
ω ω

ε ε
∈ ∈

  ′= − + = + − +   

′= =

∑ ∑
 (9) 

Next, we use these regression coefficients to apply 0 norm penalty to obtain 

0 0,a b
 

: 

 
( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ }

0

0

222
0 0 02, ,

222
0 0 02, ,

min ,

min ,

x y

x y

k x y x x y ya

k x y x x y yb

a a C a a

b b C b b

δ δ

δ δ

λ δ δ β δ δ

λ δ δ β δ δ

− + + ∂ − + ∂ −

− + + ∂ − + ∂ −





  

  

 (10) 

where 0a


 and 0b


 is smoothed ka  and kb  with 0 norm, respectively. 
Finally, we update the guided image I  using the regression coefficients ob-

tained by the 0 norm penalty, I  and p  also undergo 2 norm punishment to 
obtain 2 2,a b

 

: 
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( ) 2 22 2
1 1 2 1 1 1 12 2

2 1 1

0

min ,

,

k ki i

k

E a b a p a a I b p a

a a I b

I a p a

ω ω
ε ε

∈ ∈

   = − + = + − +   

= +

= =

∑ ∑






 (11) 

 

( ) 2 22 2
2 2 2 2 2 2 22 2

2 2 2

0

min ,

,

k ki i

k

E a b b p a a I b p a

b a I b

I b p b

ω ω
ε ε

∈ ∈

   = − + = + − +   

= +

= =

∑ ∑






 (12) 

where 2a


 is obtained from the 2 penalty of ka  with 0a


 as the guiding im-
age and 2b



 is obtained from the 2 penalty of kb  with 0b


 as the guiding im-
age. 

Therefore, by combining the outcomes from the aforementioned steps, we ar-
rive at the following result: 

 
( ) ( )

1 2 2 0

1 2 2 2 0 0

T t t
a t b a t b

µ µ

µ µ

= +

′ ′= ∗ + + ∗ +
 

   

 (13) 

After refinement of the transmission map, we transform Equation (1) to obtain 
the haze-free image J  in Equation (14): 

 ( ) ( )I x A
J x A

T
−

= +   (14) 

For a more intuitive observation of the scheme proposed in this paper, the flow 
chart is shown in Figure 1. 
 

 

Figure 1. Flow chart of the dehazing proposal. 
 

Figure 2 presents the transmission map and haze-free images obtained through 
image dehazing using 2 penalty and combined 2-0 penalty. The figure clearly 
demonstrates that increasing the 0 penalty effectively preserves the obvious edges 
in the transmission map. Additionally, the resulting haze-free image successfully 
retains the fine details. 

a a1 a2 a12

b b1 b2 b12

Input Dark Channel Prior Initial Transmission Map Improved Transmission Map Dehaze Output

Initial
Transmission 
Map

Improved 
Transmission 
Map

Use (5) to get a and b By imposing the L0 norm penalty
on a and b to get a1 and b1

The L2 norm penalty is used with b as the input and b1 as the guidance to get b2

The L2 norm penalty is used with a as the input and a1 as the guidance to get a2

The weighted sum of a1 and a2, b1 and b2

a12×Initial Transmission Map+b12
=Improved Transmission Map

(14) 
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Figure 2. The transmission map and haze-free images obtained by adding different penalty 
terms, where the upper left image shows a larger picture of the red box. (a) the transmission 
map obtained by applying 2 penalty, (b) the haze-free image obtained by applying 2 pen-

alty, (c) the transmission map obtained by applying 2-0 penalty, (d) the haze-free image 

obtained by applying 2-0 penalty. 

4. Experimental Results 

To verify the effectiveness of our proposed method, we conduct two sets of exper-
iments. Using the ground truth of the Berkeley segmentation data set [32], we 
generated synthetic haze images in the first set of simulation experiments with 
varying haze densities, such as low, medium, and dense haze, by changing the 
scattering coefficient β  in accordance with Equation (15) in accordance with 
the atmospheric scattering model [33]. We selected three images of varying scenes 
from the data set and added haze of different densities to conduct the experiment. 
Additionally, we conducted the second set of experiments using eight real world 
images that already had haze present in different scenes. Then, we compared it 
with some various existing dehazing methods, namely, Tarel [11], Meng [12], He 
[25], RRO [23], Zhu [17], Ralkwar [18], Zhao [19]. In the experiments, the pa-
rameters are manually tuned for all methods to ensure the best results. 

 ( ) ( ) ( ) ( )( )e 1 ed x d xI x J x Aβ β− −= + −  (15) 

4.1. Evaluation Criteria 

Image quality assessment (IQA) plays a crucial role in detecting the image dehaz-
ing effect. It can be categorized into subjective evaluation and objective evaluation. 
Objective evaluation encompasses various evaluation indicators such as full refer-
ence, semi-reference, and no reference [34]-[40]. For synthetic images in the ex-
periment, the performance of image dehazing is evaluated by calculating PSNR, 
SSIM and CIEDE2000. PSNR [41] measures the distortion between a haze-free 
image and its ground truth, while SSIM [42] represents the similarity between the 
ideal and restored images. Higher values of these metrics indicate better dehazing 
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performance. CIEDE2000 [43] measures color distortion using the Lab color 
model, with lower scores signify reduced color distortion. 

For the real-world images in the experiment, there is without the corresponding 
ground truth haze-free images, so we use several non-reference image quality eval-
uation indexes, including contrast, information entropy, average gradient, FADE 
(Fog Aware Density Evaluator) [44], BIQI (Better Image Quality Index) [45] and 
Blind Contrast Enhancement Assessment to evaluate [46]. Entropy is a measure 
of the amount of information in an image, a higher entropy value indicates richer 
color detail. On the other hand, the contrast value reflects the brightness and clar-
ity of the restored image. Higher contrast values indicate a cleaner image. Addi-
tionally, the average gradient represents the ability in recover the image to express 
the contrast of tiny features. A larger average gradient value signifies more layers 
within the image and a stronger capacity to express contrasts in fine details, con-
sequently, this results in a clearer image. FADE, a fog-aware density evaluator 
metric, can assess the visibility of restored images by analyzing the spatial domain 
deviation between hazy and haze free images, a smaller FADE value indicates a 
lesser amount of residual haze present in the dehazed result. The BIQI quantifies 
the quality of distorted images based on perceptual and natural image qualities. A 
lower score implies a more effective haze removal method. The blind evaluation 
index is based on the contrast assessment of the visible edges before and after res-
toration, and it utilizes three descriptors: rate of new visible edges ( e ), the gain of 
visibility level ( r ), and saturated pixel ration (σ ). A higher value of e  and r  
indicates a better quality of a dehazed image in terms of preserving edges and 
enhancing contrast, moreover a smaller value of σ  is an indication that the 
dehazed image has fewer saturated pixels or color distortions compared to the 
hazy image. 

4.2. Synthetic Images 
4.2.1. Result 
The ground truth is shown in Figure 3. Figures 4-6 display the dehazing results 
with varying densities of haze added to Figure 3. Table 1 presents the evaluation 
indicators for three different haze levels in different environments. 
 

 

Figure 3. Ground truth (a) Figure 4, (b) Figure 5, (c) Figure 6. 
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Table 1. Comparison of PSNR, SSIM, CIEDE2000 values with haze condition changes. The 
1ST, 2ND winners of each measurement are display with “*” and “♣” respectively. 

Metrics Images Tarel Meng He RRO Zhu Ralkwar Zhao Our 

PSNR 

1 12.0906 14.2276 19.1677♣ 17.5710 16.9908 18.5861 17.4758 25.6626* 

2 8.4603 12.8889 11.7310 14.6325♣ 14.3163 15.4463 14.0455 20.8745* 

3 6.8901 12.0967 8.0399 12.4654 12.3562 12.4868♣ 12.4368 14.8729* 

4 10.5252 15.6673 19.9764 18.0610 14.4334 17.7421 26.9512* 21.7462♣ 

5 7.5869 13.6606 14.2213 15.0869 11.8570 13.1387 20.5683* 18.7600♣ 

6 6.4291 10.9419 8.9544 12.4301 10.7675 13.5437* 12.6572 12.9107♣ 

7 16.8665 12.6900 17.7105 20.1108♣ 17.8666 16.1226 19.1245 24.4086* 

8 11.7926 12.1959 18.1033 20.5063♣ 15.3091 14.0582 15.9377 22.5254* 

9 8.6035 12.0782 12.3380 17.8191♣ 13.2887 13.1885 14.2598 17.8298* 

SSIM 

1 0.8988 0.9439 0.9781♣ 0.9697 0.9591 0.9704 0.9716 0.9962* 

2 0.8198 0.9158 0.9106 0.9473 0.9337 0.9563♣ 0.9436 0.9795* 

3 0.7704 0.9077 0.8255 0.9240 0.9138 0.9145 0.9277♣ 0.9317* 

4 0.8336 0.9285 0.9733 0.9506 0.9199 0.9701 0.9953* 0.9811♣ 

5 0.7601 0.8916 0.9158 0.9232 0.8600 0.8854 0.9763* 0.9650♣ 

6 0.7285 0.8549 0.8210 0.8873 0.8364 0.8972♣ 0.8874 0.8985☆ 

7 0.9635 0.9420 0.9830♣ 0.9816 0.9729 0.9648 0.9826 0.9941* 

8 0.9062 0.9409 0.9742 0.9876♣ 0.9574 0.9518 0.9647 0.9927* 

9 0.8414 0.9285 0.9139 0.9764* 0.9367 0.9330 0.9518 0.9762♣ 

CIEDE 
2000 

1 11.0760 12.8238 4.3351 10.9121 8.0194 7.8610♣ 10.9879 2.1125* 

2 16.9556 17.2330 9.8924 14.3200 9.5124♣ 13.6248 16.4988 3.6882* 

3 20.1291 19.3050 15.7083 15.3984 11.3941♣ 16.7263 18.2981 7.4793* 

4 12.8323 7.4279 4.2099 4.9022 9.0671 10.6647 3.8127♣ 3.4415* 

5 17.5238 9.4118 7.0856 6.9731 10.4734 11.8321 5.4766♣ 4.5197* 

6 19.5586 11.8739 13.3066 9.3310♣ 11.8376 13.5734 9.5211 8.6101* 

7 6.8092 9.4979 5.3851 4.7616♣ 6.1957 6.4570 5.5694 2.9184* 

8 11.9938 11.1840 5.1680 5.1630♣ 7.5016 8.3372 8.3629 3.2086* 
9 16.6186 11.8780 9.6490 6.3003♣ 9.0265 10.2918 10.0992 5.5338* 

 

 

Figure 4. Dehazing results using synthetic images without the sky area: No. 1 shows the low condition, No. 2 shows the 
medium condition, and No. 3 shows the dense condition. (a) input haze image, (b) Tarel, (c) Meng, (d) He, (e) RRO, (f) Zhu, 
(g) Raikwar, (h) Zhao, (i) the proposed method. 
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Figure 5. Dehazing results using synthetic images with a large amount of sky area: No. 4 shows the low condition, 
No. 5 shows the medium condition, and No. 6 shows the dense condition. (a) input haze image, (b) Tarel, (c) Meng, 
(d) He, (e) RRO, (f) Zhu, (g) Raikwar, (h) Zhao, (i) the proposed method. 

 
The results presented in Figure 4 indicate a gradual deterioration of the dehaz-

ing effect as the level of haze increases. The results of Meng reveal significant color 
distortion, which can be attributed to the absence of distinct white objects in the 
image. This led to the selection of only the points closest to white, resulting in the 
observed phenomenon. The results of Zhu show that as the level of haze deepens, 
the color of the door demonstrates a progressive darkening. Similarly, the results 
of Zhao, RRO, and Raikwar show a gradual distortion in the color of the door, 
with instances of it appearing white and even exhibiting a purple hue. 

In Figure 5, the results of Tarel indicate that the image still contains significant 
haze, which worsen as the intensity of haze increases. The results of Meng high-
light issues such as oversaturation or excessive darkening of white clouds, possibly 
due to the selection of different white objects. Both the results of Meng and RRO 
demonstrate better dehazing outcomes in low to medium haze conditions; but 
struggle to achieve satisfactory results in denser haze scenarios. The results of Zhu 
successfully capture mountain textures; however, they also exhibit a general dark-
ening of white cloud colors. The results of Raikwar show noticeable distortion and 
alteration in the color of white clouds. On the other hand, the results of Zhao 
perform well in low haze conditions, as indicated in Table 1, showing positive 
indicators. However, as the haze intensifies, white patches become increasingly 
visible.  

In Figure 6, the results of Tarel mirror those observed in previous figures, with 
a significant amount of haze remaining unremoved. The results of Meng display 
images that are excessively bright in low and medium haze, causing the fore-
ground mountains to lose their original color input, while exhibiting excessively 
dark colors in dense haze conditions. The results of He indicate a residual amount 
of haze present during dense haze scenarios. The results of Zhu and Raikwar 
demonstrate darker images compared to those generated by other comparative 
algorithms. The results of Zhao highlight increased artifacts and halos on distant 
mountains as haze levels escalate, accompanied by patches appearing in lakes. The 
results of RRO exhibit an effective haze removal effect across various degrees of 
haze, as indicated by the data in Table 1, showing very little deviation from the 
best-performing results. 
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Figure 6. Dehazing results using synthetic images that contain mirror images (e.g., sea surface, lake surface, mirror, etc.): No. 
7 shows the low condition, No. 8 shows the medium condition, and No. 9 shows the dense condition. (a) input haze image, 
(b) Tarel, (c) Meng, (d) He, (e) RRO, (f) Zhu, (g) Raikwar, (h) Zhao, (i) the proposed method. 

 
In contrast, our proposed approach yields better results compared to these 

competing techniques. It is important to highlight that our approach not only im-
proves the visibility of distant views, but also enhances texture details without al-
tering the original color appearance. 

4.2.2. Parameter Sensitivity Analysis 
Sensitivity of the weight parameters 1µ  and 2µ  in our algorithm are discussed. 
In Equation (8), these weight parameters control the balance of the coefficient 
map after applying the l0 norm penalty and the quadratic 2 norm penalty. Com-
pared to the other parameters, the weight parameters are more sensitive to PSNR 
and SSIM. Therefore, we conduct experiments by fixing parameters of  

1 2 1 2, , , , ,r rε ε λ β  and varying 1µ  and 2µ , using PSNR and SSIM metrics to 
measure the accuracy of dehazed results. Here the regularization parameter and 
the local window radius of the improved guided filter are 1ε  and 1r ; the regu-
larization parameter and the local window radius of the guided filter with a quad-
ratic limit by the regression coefficient are 2ε  and 2r , respectively. The sum of 

1µ  and 2µ  is 1. Figure 7 shows the evaluation index values of 1µ  settings in 
the medium haze density of Figure 4. It can be observed that PSNR gradually de-
creases with the increase of 1µ , while SSIM presents an upward trend until 1µ  
of 0.16, remains stable from 0.16 to 0.19, and then starts to decline after 0.19. 
Therefore, the parameters as shown in Table 2 which includes fixed parameters 
that were carefully chosen after conducting numerous experiments. 
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Figure 7. Parameter sensitivity: PSNR and SSIM of our algorithm with respect to the weight 

1µ  in the medium haze density of Figure 4. 

 
Table 2. Parameters setting of synthetic images. 

Parameter 1ε  1r  2ε  2r  λ  β  1µ  2µ  

value 2 42 0.01 20 2 0.1 0.16 0.84 

4.3. Real World Images 
4.3.1. Results 
Figure 8 and Figure 9 show the dehazing results for real world images, and the 
evaluation indicators of various methods are shown in Table 3. 
 

 

Figure 8. Qualitative comparison of different methods on real world images. (a) input haze 
image, (b) Tarel, (c) Meng, (d) He, (e) RRO, (f) Zhu, (g) Raikwar, (h) Zhao, (i) the proposed 
method. 
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Table 3. Visual quality evaluation using Entropy, Contrast ratio, Mean gradient, FADE, 
BIQI, σ , e , r . The 1ST, 2ND winners of each measurement are display with “*” and 
“♣” respectively. 

Metrics Images Tarel Meng He RRO Zhu Ralkwar Zhao Our 

Entropy 

1 6.77 6.43 6.88 6.99♣ 7.12* 5.86 6.70 6.79 

2 7.40 7.41 7.55 7.66♣ 7.66♣ 6.45 7.57 7.70* 

3 7.07♣ 6.59 6.84 7.10* 6.78 6.71 6.71 7.00 

4 6.50 6.56 7.29♣ 7.18 6.93 6.96 7.08 7.36* 

5 7.33 6.92 7.33 7.48* 7.54 7.17 7.31 7.40♣ 

6 7.04 6.81 7.28* 7.15 7.22 7.10 7.03 7.23♣ 

7 6.85 6.91 6.71 7.04 7.17 7.25♣ 7.29* 7.12 

8 6.79 6.51 7.25 7.43♣ 7.28 6.97 7.27 7.44* 

Contrast 
ratio 

1 0.37 0.39 0.73 0.55 0.33 1.09* 0.58 0.85♣ 

2 0.45 0.53 0.40 0.64♣ 0.58 1.01* 0.46 0.62 

3 0.46 0.43 0.42 0.45 0.38 0.80* 0.63 0.71♣ 

4 0.34 0.35 0.40 0.53 0.30 0.57♣ 0.53 0.62* 

5 0.54 0.47 0.46 0.56♣ 0.44 0.46 0.45 0.58* 

6 0.37 0.43 0.46 0.49 0.36 0.61* 0.55♣ 0.50 

7 0.42 0.52 0.42 0.53 0.47 0.68* 0.46 0.61♣ 

8 0.38 0.35 0.48♣ 0.48♣ 0.40 0.39 0.30 0.51* 

Mean 
gradient 

1 5.78 3.83 6.18 5.40 9.83* 5.72 5.96 7.42♣ 

2 11.67 11.53 11.29 17.30♣ 17.48* 11.55 12.59 16.13 

3 3.29 2.95 2.84 2.92 3.61* 2.98 3.14 3.53♣ 

4 5.10 4.75 4.39 6.31 7.03* 4.93 7.01♣ 6.93 

5 11.06 8.82 9.16 10.98 12.29* 8.45 9.72 11.42♣ 

6 6.85♣ 6.80 5.14 6.11 10.87* 5.42 6.52 5.49 

7 3.13 3.71 4.31 6.46* 4.31 4.00 3.62 5.97♣ 

8 4.85♣ 4.31 4.38 4.71 6.84* 4.03 3.24 4.66 

FADE 

1 0.56 0.19 0.21 0.47 0.34 0.14* 0.26 0.15♣ 

2 0.24 0.19 0.27 0.14♣ 0.15 0.11* 0.22 0.15 

3 0.90 0.75 0.86 0.80 0.65 0.53 0.50* 0.51♣ 

4 0.82 0.44 0.84 0.40 0.48 0.29 0.28♣ 0.27* 

5 0.20 0.20 0.26 0.19♣ 0.31 0.25 0.25 0.15* 

6 0.37 0.26 0.43 0.31 0.25 0.21* 0.22♣ 0.34 

7 1.24 0.68 0.92 0.66 0.76 0.57♣ 0.68 0.50* 

8 0.79 0.75♣ 0.75♣ 0.77 0.80 0.94 1.53 0.71* 
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Continued 

BIQI 

1 46.42 25.71♣ 34.36 38.86 27.25 30.92 34.99 22.10* 

2 21.43♣ 25.09 23.22 19.21* 21.60 29.43 25.52 27.96 

3 38.63 40.70 42.81 42.44 37.00♣ 41.71 43.44 28.03* 

4 32.25 30.56 30.34 22.56* 23.03♣ 28.72 25.61 27.86 

5 19.10 18.41 17.93* 17.96♣ 21.01 18.29 18.53 18.24 

6 38.12♣ 71.59 45.63 61.36 15.76* 48.09 76.19 47.36 

7 31.09♣ 38.18 41.72 35.49 36.11 43.85 50.45 23.23* 

8 27.43 25.99♣ 27.10 26.87 37.18 26.18 27.35 25.88* 

σ  

1 0.00* 95.97 0.92 0.00* 0.00* 7.79 0.00* 0.03♣ 

2 0.00* 0.00* 0.00* 0.03 0.18 6.80 0.01♣ 0.01♣ 

3 0.00* 0.01♣ 0.04 0.02 0.02 0.16 0.07 0.00* 

4 0.00* 0.00* 0.09 0.06 0.01♣ 0.80 0.31 0.24 

5 0.00* 0.04 0.00* 0.41 0.00* 0.01♣ 0.00* 0.01♣ 

6 0.00* 0.00* 0.08 0.01♣ 0.53 0.49 0.00* 0.85 

7 0.00* 0.00* 0.05 0.03♣ 0.00* 0.18 0.21 0.00* 

8 0.00* 0.03♣ 1.12 1.02 0.20 0.13 0.00* 0.11 

e  

1 0.38 −0.54 1.41 1.08 1.37 1.52* 1.51♣ 1.51♣ 

2 0.21 0.38 0.29 0.34 0.42* 0.40♣ 0.35 0.38 

3 0.32 3.35 2.54 2.38 4.75 8.16♣ 6.47 8.24* 

4 1.84 3.56 2.24 3.86 3.15 3.88 4.56* 4.43♣ 

5 0.37* 0.07 0.07 0.05 0.12♣ 0.05 0.08 0.12♣ 

6 1.32 2.02* 1.18 1.63 1.56 1.62 1.87♣ 1.32 

7 11.65* 5.77 5.39 7.18 6.27 7.36 6.05 8.16♣ 

8 1.37* 0.20♣ 0.06 0.09 0.04 0.07 0.02 0.20♣ 

r  

1 0.42 6.65 1.80 1.54 2.85* 1.63 1.72 2.22♣ 

2 0.50 1.56 1.55 2.34♣ 2.54* 1.57 1.73 2.34♣ 

3 0.67 1.94 1.85 1.93 2.61♣ 1.90 2.09 2.63* 

4 0.71 2.27 2.04 3.01 3.45 2.35 3.62♣ 3.74* 

5 0.63 1.33 1.40 1.68 1.89♣ 1.27 1.52 1.93* 

6 0.60 2.47♣ 1.69 2.14 3.49* 1.86 2.41 1.83 

7 0.99 2.31 2.77 4.32♣ 2.70 2.43 2.22 4.43* 

8 0.85 1.40 1.39 1.47 2.24* 1.28 1.02 1.50♣ 
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Figure 9. Qualitative comparison of different methods on real world images. (a) input haze 
image, (b) Tarel, (c) Meng, (d) He, (e) RRO, (f) Zhu, (g) Raikwar, (h) Zhao, (i) the proposed 
method. 
 

The model of Tarel is not able to completely eliminate the haze effect at Nos. 1, 
4 and 6, particularly in the distant areas of Nos. 4 and 6. Additionally, it results in 
artifact halos on ships in the distant part of No. 8. According to the σ  data in 
Table 3, the results of Tarel have little distortion and supersaturated pixels. The 
results of Meng indicate that the image is too dark in Nos. 3, 4, 5 and 8, and there 
is distortion in the sky of No. 8. The results of He, RRO and Zhao demonstrate 
that the details of the scene and objects are well restored, especially in No. 2, ac-
cording to the data in Table 3, it can be seen that the results of RRO seem to have 
achieved better results in all aspect. However, both the methods of He and RRO 
still have some haze in the distant part that is not completely removed. Addition-
ally, Nos. 3 and 7 of Zhao exhibit the phenomenon of white spots, and a halo is 
generated around the tree in the foreground of No. 6. The results of Zhu indicate 
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a partial distortion in the lower left corner of Nos. 1, 6, and the contrast of No. 5 
is too low, resulting in an overall white color for the building. While his objective 
evaluation indicators perform well according to Table 3, his subjective evaluation 
is not satisfactory. On the other hand, the results of Raikwar generally appear 
darker compared to others, but they exhibit better haze removal performance, 
particularly noticeable on Nos. 1 and 2. This is reflected in their high FADE value 
and Contrast ratio value. 

The proposed method in this research has a positive impact on the dehazing 
effect and color recovery. By applying the 0 gradient minimization constraint to 
the ridge regression coefficient based on guided filtering, it better preserves edges, 
as evidenced by the average gradient and e  value in the table. 

4.3.2. Parameter Sensitivity Analysis 
Here, similar to the parameter sensitivity analysis of the synthetic image, we also 
conduct experiments by fixing parameters of 1 2 1 2, , , , ,r rε ε λ β  and varying 1µ  
and 2µ , using BIQI and e  metrics to measure the accuracy of dehazed results. 
Figure 10 shows the evaluation index values of 1µ  settings in the No. 3 of Figure 
8. The figure shows that e  generally presents an upward trend, with little differ-
ence observed when the 1µ  is between 0.88 and 0.94. Within this interval, the 
smallest BIQI values are recorded for 0.89 and 0.92. Therefore, we can choose ei-
ther of these values. The corresponding parameter settings can be found in Table 
4. 
 

 

Figure 10. Parameter sensitivity: BIQI and e  of our algorithm with respect to the weight 

1µ  on the No. 3 of Figure 8. 

 
Table 4. Parameter settings of real-world images. 

Parameter 1ε  1r  2ε  2r  λ  β  1µ  2µ  

value 0.001 4 0.001 10 2 0.004 0.92 0.08 
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5. Conclusions 

To enhance the realism of the existing haze image degradation model, we propose 
a dehazing model that integrates a hybrid 2-0 penalization approach. This 
model refines the transmission map by weighted summation of regression coeffi-
cients derived from the 2 and 0 penalties. This method effectively smooths out 
the details while preserving the edges, resulting in a more accurate outline for the 
refined transmittance map. Consequently, the dehazed image retains more edge 
information. Experimental results demonstrate that the method proposed in this 
paper yields favorable outcomes in dehazing both synthetic and real-world im-
ages, achieving higher evaluation scores. 

In future studies, we plan to enhance the transmission with new regularization 
terms, and hope to reduce the impact of noise during the dehazing process, re-
sulting in a cleaner and more optimal output image. 
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