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Abstract 
Aminoguanidine hydrazones (AGHs) are a class of compounds that have in-
teresting pharmacological activities. They are derived from the same chemical 
group as aminoguanidine, so it has mixed properties (receptor and donor) in 
the formation of hydrogen bonds. Its anticancer agent properties were re-
cently highlighted, but the molecules of this class have solubility in aqueous 
solutions that can be considered low. The identification of this class, by a 
simple, sensitive and low-cost technique, such as electrochemistry, which also 
allows the evaluation of its solubilization process through agents such as 
PAMAM dendrimer is the main objective of the work described here. The 
electrochemical response of the LQM10 (AGH derivative) was evaluated, as 
well as its behavior in different electrochemical sensors. Electrochemical ex-
periments were performed in buffered (phosphate at pH 7.02 and acetate at 
4.5). LQM10 has a reversible oxidation peak with a potential of +0.22 V. It 
was efficiently detected in different electrodes tested (glass carbon/CNT, glass 
carbon/CNT/PAMAM), which proves the viability of the electrodes for vari-
ous analyses and has the determination of the apparent constant association, 
indicating its interaction with the analysis that is higher in the presence of the 
PAMAM encapsulating agent. This was corroborated by the results for the 
modified gold electrode with MUA and PAMAM. The sum of the results 
shows the possibility of electrochemically evaluating the Aminoguanidine 
hydrazone derivative, the viability of electrodes employed and the greater so-
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lubilization of LQM10 in the presence of the PAMAM dendrimer. 
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1. Introduction 

Aminoguanidine hydrazine derivatives are bioactive compounds that have been 
intensively studied for their different (and interesting) biological activities, such 
as in the treatment of hypertension (Guanabenz) [1] [2] [3], or antiarrhythmic 
[4] [5]; nonpeptide NPFF1 Receptor Antagonists reverse opioid-induced hyper-
algesia [6]; as modulators of norfloxacin resistance in S. aureus that overexpress 
the efflux pump of NorA [7]; and anticancer [8]. 

The activity anticancer of Aminoguanidine hydrazine (AGH) of this class of 
compound a drug of considerable pharmacological interest. They are derived 
from the same chemical group as aminoguanidine, so it has mixed properties 
(receptor and donor) in the formation of hydrogen bonds. Its anticancer agent 
properties were recently highlighted, but the molecules of this class have solubil-
ity in aqueous solutions that can be considered low [8]. Studies the association of 
this class the compound with some carriers as cyclodextrin, liposomes or linear 
polymers were few reported [9]. 

In last years, polymer-based nanomedicine has received increasing attention 
because of its ability to improve therapeutic efficacy in cancer treatment [10] 
[11] [12]. Dendritic scaffold has been found to be suitable carrier for a variety of 
drugs including anticancer, anti-viral, anti-bacterial, anti-tubercular, with capac-
ity to improve solubility and bioavailability of poorly soluble drugs [10] [13]. A 
promising alternative to solubilize AGH in aqueous media is the use of dendri-
mers, which are highly branched polymers and that their physicochemical prop-
erties, such as high control in their structure, size, shape, density and surface 
groups with many functionalities, they are ideal carriers in biomedical applica-
tions such as drug transport at specific sites in the biological system [11] [14] 
[15] [16]. Among the available dendrimers, the polyamidoamine dendrimer 
(PAMAM) already studied with several antitumor drugs and the first to present 
its complete series, that is, from generation 0 to 10 (G0 - G10), the lowest gener-
ation (G0 - G3) almost has no cytotoxicity [17] [18]. 

Electrochemical technique in association with PAMAM, has already been used 
for numerous applications, including as an immobilized substrate for glassy 
carbon electrodes [19] [20] [21] and/or modification of the surface of gold elec-
trodes [21]. Recently our group related dendrimers derivatives for the construc-
tion of chemical sensors [22] and inclusion complexation of surface-confined 
with PAMAM on electrodes using cyclic voltammetry [23] [24]. These metho-
dologies will also be used here to evaluate the formation of inclusion complexes 
between LQM10 and dendrimers through electrochemistry to investigate the 
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type of interaction between Aminoguanidine hydrazone and generation 3 
PAMAM dendrimer, immobilized on a gold electrode and vitreous carbon/Carbon 
Nanotubes. 

2. Materials and Apparatus 

The analytical grade reagents were purchased from Sigma-Aldrich, Acros Chemical 
Co. or Merck. The substance LQM10  
(2E)-2-(3,5-di-tert-butyl-4-hydroxybenzylidene)hydrazinecarboximidamide was 
synthesized using a previously described procedure [8].  

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) experi-
ments were performed using a conventional undivided three-electrode cell and 
an AutolabPGSTAT-30 potentiostat (Eco Chemie, Utrecht, Netherlands) coupled 
to a microcomputer interfaced by GPES 4.9 software. The working electrodes 
were a glassy carbon (GC-diameter = 3 mm), gold bead modified electrode with 
β-CDSH and PAMAM 3G, an Ag|AgCl, Cl− (saturated) reference electrode and a 
Pt wire as the counter electrode. The GC was cleaned by polishing with alumina 
on a polishing felt. The gold bead working electrode was prepared by annealing 
the tip of a gold wire (99.999%, 0.5 mm diameter) in an oxygen gas flame and 
the voltammetric response of this electrode was established as 0.2 mol/L Na2SO4 
after modification. Inert gas was used to degas the solution and the solution was 
covered with a nitrogen blanket during some experiments. The pH was meas-
ured (QUIMIS). All experiments were conducted at room temperature (25˚C ± 
2˚C) 

The solution used in the protic media was performed using a phosphate buffer 
with pH 7.02 (ionic strength 0.2) or ethanol (EtOH) at 5% and acetate buffer 
with pH 4.5 (ionic strength 0.2). PAMAM generation 3 (Aldrich) was also added 
to the phosphate buffer in order to evaluate its interaction with LQM10 over 
time. 

2.1. Preparation of Carbon Nanotubes Modified Glassy Carbon  
Electrode (CNT) 

The glass carbon electrode was modified with CNT in two different ways. 
Method 1: 1.0 mg CNT was suspended in 1.0 mL of DMF and dispersed on 

the ultrasound for 2 h before being deposited on the surface of GC electrodes. 10 
μL were added to the solution (1 μL added at a time). The electrode was taken to 
the stove at 80˚C for 10 min (at each addition). 

Method 2: The procedure of Method 1 was repeated and then a 10 μL aliquot 
of PAMAM 3G was added to the surface of the CNT-modified electrode and 
dried over N2 gas flow before proceeding with the analysis. 

2.2. Preparation of the Gold Modified Electrode with PAMAM  
Generation 3  

Gold electrode modification with PAMAM generation 3 occurred in two stages 
and followed the methodology described in the literature [25]. After being 
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cleaned by heating in a flame, step 1 involved clean gold surfaces being functio-
nalized through thiol-linked self-assembled monolayers (SAM) of 11-mercapto- 
undecanoic acid (MUA), immersing them in 1 × 10−3 mol/L of MUA methanolic 
solutions at 25˚C for 24 h. Moving on to the Step 2, PAMAM dendrimers were 
chemically linked to the functionalized gold electrodes with MUA by promoting 
the creation of amide bonds between the COOH extremities of the MUA and the 
amine groups on the dendrimers. Such bonds were obtained by immersing the 
thiolated gold substrates in methanolic solutions containing 5 × 10−3 mol/L of 
EDC (to promote the creation of the amide bonds) and 21 × 10−6 mol/L of 
PAMAM dendrimer generation 3 for 12 h at 25˚C. Finally, the dendri-
mer-functionalized gold surfaces were then washed gently in methanol at room 
temperature.  

3. Results and Discussions 
3.1. Electrochemical Behavior of LQM10 

LQM10 (Figure 1), as well as the other Aminoguanidine hydrazones, did not 
have its electrochemical profile determined until then, so the initial analyzes 
sought to verify its behavior by cyclic voltammetry in GCE, in a protic medium, 
phosphate buffer with pH 7.02 in 10% of Ethanol PA, due to its low solubility in 
aqueous medium. The first scanning was performed from 0 to +1.2 V (oxida-
tion) and the second from −1.2 to 0 V (reduction), the last being performed in 
an atmosphere of N2 gas to avoid any interference of O2 in the reaction (Figure 
2). 

The compound being oxidized shows a pair of anodic peaks, Epa1 and Epc1, at 
+0.267 V and +0.239 V, respectively (Figure 2(a)), at 0.050 V/s. Already to be 
reduced, no signal was observed on the voltammogram, indicating that the 
LQM10 does not undergo reduction process (Figure 2(b)). 

The analysis of the electrochemical parameters, anodic peak currents, ob-
tained in the LQM10 studies showed that the mass transport to the electrode 
surface is controlled by diffusional process (spontaneous movement of the 
chemical species due to the formation of a concentration gradient of the analyte 
of interest), in accordance with the linearity between the anodic peak currents 
(Ipa1) as a function of the square root of the sweep velocity (ѵ1/2). When evaluat-
ing the values of anodic and cathodic currents it is concluded that the oxidation 
process represented in the voltammogram is reversible, according to diagnostic 
tests defined in the specific literature [26].  

The electrochemical mechanism for oxidation process may be associated 
probably the oxidation of the guanidine Hydrazone group generating the qui-
none methide derivative after oxidation process of the 2e− following the depro-
tonation step as showed in Scheme 1.  

In this work, we evaluated the electrochemical behavior of the LQM10 against 
two differently modified electrodes, whose results will be presented in the fol-
lowing sessions and are summarized in Figure 3. 
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Scheme 1. Probable oxidation mechanism of LQM10. 
 

 
Figure 1. Chemical structure of LQM10. 

 

 

Figure 2. Electrochemical profile of LQM10 by cyclic voltammetry 
(CV), in ethanolic aqueous medium (10%), phosphate buffer pH 
7.02, in GCE, 0.05 V·s−1: (a) oxidation and (b) reduction. 
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Figure 3. Schematic model with the modifications in glassy carbon electrode and gold 
and summary of the results obtained by them in the analysis of LQM10. 

3.2. Electrochemical Behavior of LQM10 with Modified GCE 
3.2.1. GCE Modified with CNT (GCE-CNT) 
There is a clear indication, in the literature, of the applicability of CNT as an ef-
ficient modifier of the glassy carbon surface due to its chemical and physical 
properties such as surface area, the possibility of adhering many functional 
groups to the surface and increasing the transfer speed of electron at the inter-
face of the electrode [27] [28] [29]. 

In GCE-CNT, it is possible to notice the increase in the current of the charac-
teristic peaks of the LQM10, with displacement to more positive potential of 
Epa1 and to potentials closer to 0V in the case of Epa2, after 50 consecutive 
sweeps, under the same conditions and with concentration of LQM10 in the 
constant medium (Figure 4(a)). Indicating the durability of the electrode and 
the facility of the oxidation process when modified with CNT [29]. 

It was possible to construct a calibration curve for LQM10 in phosphate buf-
fer of 0.2 mol/L, pH 7.02, using the GCE-CNT sensor, varying the concentration 
of LQM10 (10−6 to 8 × 10−6 mol/L) shown in Figure 4(b). With the anodic peak 
current, it was possible to determine constant stability or association by electro-
chemical experiments under these conditions (KF), using the following equation 
(derived from the isotherm of Benesi-Hildebrand) (Equation (1)): 

[ ] [ ]0 0

max max

LQM10 LQM101
I KI I

= +                  (1) 

where [LQM10]0 is the concentration of the electroactive specie; I is the peak 
current measured for each concentration of the LQM10 molecule; Imax is the 
maximum peak current; and K is the formation constant of the LQM10 mole-
cule with CNT anchored in electrode surface [23] [24] [29] [30] [31]. Having as 
the value of KF = 4.4 × 104 L/mol (Figure 4(c)).  

When correlating the current values versus the concentration analyzed, it was 
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possible to calculate the limits of detection (LD) and quantification (LQ) for 
LQM10 in GCE-CNT, respectively 0.35 × 10−6 mol/L and 1.17 × 10−6 mol/L. 

 

 

Figure 4. CV of LQM10 in mixed medium (phosphate buffer, pH 7.02, and 10% 
ethanol PA) on a modified glass carbon electrode with CNT, 0.05 V·s−1: (a) 50 
scans of LQM10 (10−4 mol/L); (b) by varying the concentrations of LQM10 
(10−6 to 8 × 10−5 mol/L); (c) graph of determination of the equilibrium con-
stant of LQM10:CNT (([LQM10]/I) × [LQM10]).  
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3.2.2. GCE Modified with CNT and PAMAM G3 (GCE/CNT/PAMAM G3) 
As previously mentioned, the presence of CNT on the surface of the electrode 
makes possible the adhesion of groups to the glassy carbon. Thus the CNT 
served as support for PAMAM 3G on the surface of the electrode in a second 
modification. The literature already reports the efficiency in the association of 
CNT and PAMAM [23] [32] [33] [34], which was characterized by van der 
Waals interactions between the surface of the CNT and the amino termination 
of PAMAM, occurring even more strongly on the electrolytic surface of glassy 
carbon and gold [35]. The use of this methodology allows the production of a 
fairly dispersive and visually uniform modification on the surface of the elec-
trode [35] [36]. 

This second modified electrode showed the same behavior as the electrode 
modified only with CNT, regarding the displacement of the potential values of 
Epa1 and Epa2. However, different from the previous case, the values of currents 
decreased as more scans were performed, the experiment occurred in the same 
conditions of medium and concentration of LQM10 as the previous one, such 
result can be explained by the occurrence of adsorption of LQM10 on surface of 
the electrode due your interaction with PAMAM G3 (Figure 5(a)) [23]. But, it is 
possible to observe that the current value in the first scan is much larger in the 
presence of PAMAM than in its absence (electrode only with CNT) and that 
even with the adsorption process, after 50 scans, the presence of the substance in 
solution is clearly visible. It is important to reaffirm the reports that this polymer 
(PAMAM) is able to increase the concentration of hydrophobic molecules in the 
interface electrode-solution [37] [38], so it is believed that it is possible to corre-
late the interaction between the dendrimer and an improvement in the solubility 
of the compounds. 

Such interaction can be measured quantitatively by the application of Equa-
tion (1) to the calibration curve obtained by the voltammograms currents of 
Figure 5(b) and Figure 5(c), where the concentrations of LQM10 ranged from 
10−6 to 8 × 10−6 mol/L, thus obtaining a KF = 1.23 × 106 L/mol, a value almost 10 
times higher than the one presented by Silva et al. [24] for a nitro compound and 
100 times higher than the electrode modified with CNT alone, which ratifies the 
hypothesis of the improvement in solubility in the presence of the dendrimer. 
Comparing the two calibration curves (Figure 6), the higher values of currents 
in the presence of PAMAM are again evidenced.  

For GCE-CNT-PAMAM G3 the values of LD and LQ were respectively 0.06 × 
10−6 mol/L and 0.2 × 10−6 mol/L, these values compared to those obtained by 
GCE-CNT electrode, ratify the higher sensitivity in the presence of PAMAM G3. 

3.3. Electrochemical Behavior of LQM10 Interaction with PAMAM  
G3 Immobilized on a Gold Electrode 

By evaluating the structure of the PAMAM dendrimer, its inner, terminal groups 
with hydrophobic regions, it is concluded that the stoichiometry of the inclusion 
complex formed with it will probably involve more than one molecule of the 

https://doi.org/10.4236/jbnb.2020.111003


M. P. G. da Silva et al. 
 

 

DOI: 10.4236/jbnb.2020.111003 41 Journal of Biomaterials and Nanobiotechnology 
 

drug for each mole of PAMAM [39]. In the literature, the Benesi-Hildebrand 
equation is applicable to interactions with 1:1 or 1:2 stoichiometry to calculate 
the equilibrium constant of a complex [40] [41]. In a previous work [24], based 
on the data of BOBROVNIK [42] and BUCZKOWSKI and collaborators [43], a 
methodology has been developed that shows that more active PAMAM sites are 
available for interaction, so that the new calculated constant takes all these fac-
tors into account. 
 

 

Figure 5. CV of LQM10 in mixed medium (phosphate buffer, pH 7.02, and 10% 
ethanol PA) on a modified glass carbon electrode with CNT + PAMAM G3, 0.05 
V·s−1: (a) 50 scans of LQM10 (10−4 mol/L); (b) by varying the concentrations of 
LQM10 (10−6 to 8 × 10−5 mol/L); (c) graph of determination of the equilibrium con-
stant of LQM10: CNT + PAMAM G3 (([LQM10]/I) × [LQM10]).  
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Figure 6. Concentration Curve × [Current]. Modified Vitreous Car-
bon Electrode: with CNT + PAMAM 3G (■) and CNT (●). 

 
The first step is to evaluate the oxidation process of LQM10 on the 

MUA-functionalized gold electrode (AU/MUA) in aqueous-ethanol medium 
(10% of ethanol P.A.), as can be observed in Figure 7(a). The concentration of 
LQM10 in solution ranged from 10−6 to 8 × 10−6 mol/L and the peak currents 
Epa2 obtained are considered to refer to a non-encapsulated substance. Since in 
Figure 7(b) it is observed the voltammograms of LQM10 at the same concen-
trations as previously, however, in this case, the PAMAM G3 is immobilized on 
the surface of the gold electrode already functionalized with MUA (AU/MUA/ 
PAMAM), as described in the methodology [24]. The difference between the 
peak currents Epa2 of the two electrodes corresponds to the LQM10 that inte-
racted with the PAMAM. Then, with this information, the binding of the num-
ber of molecules of associated ligands per 1 mole of combined receptor and the 
concentration of the substance added to the medium have a hyperbolic charac-
ter(Equation (2)) [23] [24] [42] [43]: 

[ ]
[ ]
LQM101

1 LQM10
Kn

I K
=

∆ +
                      (2) 

where ΔI is the difference between current values with the electrodes Au/MUA/ 
PAMAM and Au/MUA (IP-IM), generated by the oxidation of LQM10 in dif-
ferent concentrations, compared to Au/MUA/PAMAM (IP) and Au/MUA (IM); 
n is the number of active sites where the drug can bind in the dendrimer; K is 
the equilibrium constant of the formed complex; and [LQM10] is the concentra-
tion of LQM10. 

To facilitate the analysis of the data, the linearization of the previous equation 
(Equation (3)), known as the Scatchar-Klort equation [23] [24] [42] [43] was 
made, to which it was adapted to the electrochemical parameters [25]: 

[ ]
1 1 1
Δ LQM10I K n

= +                      (3) 

Figure 7(c) depicts the line generated by the equation from the experimental 
data used to obtain the equilibrium interaction constant of LQM10-PAMAMG3  
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(a) 

 
(b) 

 
(c) 

Figure 7. Cyclic voltammograms for LQM10 of 10−6 to 8 × 10−6 mol/L with: (a) Au/MUA; 
b) Au/MUA/PAMAM electrode; (c) Analytical curve generated by the concentration and 
current values of LQM10 with Au/MUA/PAMAM G3 electrode. Phosphate buffer, pH 
7.02, 10% ethanol, 0.05 V·s−1. 

 
in solution. The reverse current dependence (ΔI by the added LQM10 concen-
tration) (Figure 7(c)) is described by the linear equation: Y = (1.623)X + (4.857) 
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× 10−6 (R2 = 0.9961). The value of K between LQM10 and PAMAM G3 of the 
Scatchard-Klotz found through the adapted equation was 2.06 × 105 L/mol. This 
value of K confirms the importance of PAMAM in the formation of the complex 
and, consequently, in the solubility of the compound, in view of being very sim-
ilar to the value presented in previous work where the study was done with the 
nitro compound 6CN10 [24] and 10 times higher than the analysis in this system 
for quinone β-lapachone [23]. 

4. Conclusions 

The analyzed compound, (2E)-2-(3,5-di-tert-butyl-4-hydroxybenzylidene)hydr- 
azineecarboximidamide, LQM10, in protic medium by the cyclic voltammetry 
technique, shows a reversible oxidation peak. The probable mechanism involves 
the oxidation (+2e−/H+) of the Aminoguanidine hydrazone group leading to the 
quinone methide derivative. 

The LQM10 can be detected using CNT-modified glassy carbon electrode and 
when the PAMAM G3 dendrimer was also adsorbed on its surface, the response 
was more sensible due to observed current increase. Applying the methodology 
of modifying the surface of the gold electrode with PAMAM, it was possible to 
evaluate the complex LQM10:PAMAM and a formation constant can be calcu-
lated. 
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