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Abstract 
The aim of this review was to evaluate the therapeutic potential of exosomes, 
extracellular vesicles secreted by cells. They have emerged as potential thera-
peutic transporters for several diseases. This review provides an overview of 
exosomes’ therapeutic potential in cancer therapy and autoimmune condi-
tions such as Coeliac Disease. The therapeutic effect is that the phospholi-
pid-binding protein ANXA1 improves its anti-inflammatory properties. The 
review also analyzes the intricate processes of exosome production and com-
position ability to transport biomolecules such as proteins, microRNAs, and 
lipids, which promote intercellular communication and alter recipient cell 
behavior. Exosomes, linked to neurological disorders, cardiovascular disease, 
and cancer, present the means of targeted drug administration due to their 
innate specificity. Through genetic engineering and chemical modifications, 
exosomes can be tailored for specific purposes, demonstrating their versatility 
in targeted therapy. With ongoing research uncovering their therapeutic po-
tential, exosomes present a promising frontier in novel medical treatments 
across various health conditions. 
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1. Introduction 

A typical property all living cells have in common, whether prokaryotic or eu-
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karyotic cells, is the release of extracellular vesicles. These vesicles are nature’s 
delivery tool, carrying a variety of constituents from the cells that secreted them 
in the first place, such as proteins, metabolites, lipids, and nucleic acids, includ-
ing microRNAs. One of the two classifications of these extracellular vesicles is 
exosomes, which play a very critical role in cell-to-cell communication. Exosomes 
are small vesicles ranging from 40 to 160 nm in diameter and form when the in-
ternalization of the plasma membrane leads to the formation of early endosomes, 
later maturing to form multivesicular bodies or MVBs for short. These MVBs 
then undergo internal budding or invagination to form the exosomes inside them 
[1]. MVBs can fuse with other vesicles and organelles in the cell, and the fusion 
of these MVBs (late endosomes) with the plasma membrane leads to the release 
of the exosomes into the extracellular space. 

Since exosomes usually contain the cytosol of the original cell, they have many 
different cell constituents. These bioactive molecules, such as miRNA and pro-
teins, play a significant role in cell communication and may alter their biological 
response. MicroRNAs bind to complementary sequences on messenger RNAs 
and can degrade or inhibit transcription, efficiently regulating the recipient cell’s 
gene expression and behaviour. Cytosolic and cell surface proteins transport 
through the vesicles, which are heavily involved in cell signaling, tissue repair, 
homeostasis, and immune regulation. Exosomes are associated with various ail-
ments and diseases, such as Alzheimer’s, by inducing neuron apoptosis [2], in-
flammation in Cardiovascular Diseases [3], affecting intercellular communica-
tion leading to Liver failure [4] and most importantly-cancer by the intercellular 
transfer of oncogenic molecules [5]. 

2. Exosome Formation and Composition 

Exosomes are formed from the plasma membrane by two internalization processes. 
The plasma membrane is lined with an essential receptor called the Transferrin 
Receptor, composed of two 95 kDa glycoprotein chains linked together by disul-
fide chains. This receptor plays a principal role in the analysis of exosome for-
mation [6]. The first endocytosis of the lipid bilayer of the plasma membrane 
leads to the formation of the Early Sorting Endosome lined internally with the 
transferrin receptors as shown in Figure 1. The early endosome later matures 
into the late endosome, which undergoes the second internalization step, form-
ing Intra Luminal Vesicles or ILF. The endosome containing the ILF is termed 
Multivesicular Bodies (MVB). During the secondary internalization step, the 
transferrin receptors are budded along with the vesicles from the limiting mem-
brane; thus, the exosomes are lined externally with the receptors, making them 
excellent for marking [7]. The MVBs may be degraded if they fuse with lyso-
somes or autophagosomes; however, their fusion with the cell’s plasma mem-
brane will release the ILF, leading to the formation of exosomes.  

The identification of cellular proteins to understand the composition of ex-
osomes is done by using western blotting and fluorescence-activated cell sorting  
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Figure 1. The internalization pathway of exosome formation, starting with 
the early endosomes which later mature into late endosomes. They undergo 
an internalization step to form ILVs. They are released upon fusion of the 
multivesicular endosomes with the cell’s plasma membrane. 

 

of beads lined with exosomes [8]. Different cytosolic proteins such as tubulin, 
actin, and actin-binding proteins such as cofilin are detected using exosomes se-
creted from a dendritic cell. Membrane proteins and proteins that help transport 
proteins, such as annexins and RAB proteins, were also observed. Protein kinas-
es and heterotrimeric G proteins useful for signal transduction, enzymes such as 
peroxidases, enolase-1, pyruvate and lipid kinases, heat shock protein HSP70 
and HSP90, and MHC class I and class II proteins, as well as tetraspanin proteins 
are observed. 

Figure 2 shows an experiment conducted by Théry et al. [9] where the protein 
composition of dendritic cell-derived exosomes was analyzed. Essential proteins 
are identified through Western blotting and fluorescence-activated cell sorting, 
including MFG-E8, Mac-1, gag, CD9, Gi2α, hsc73, and annexin II. Additionally, 
their study highlighted the critical role of Major Histocompatibility Complex 
(MHC) proteins I and II in orchestrating immune responses. By examining ex-
osomes from spleen-derived D1 cells and bone marrow dendritic cells (BMDCs), 
Théry et al. were able to deduce that the exosomes containing the MHC loaded 
with the tumor antigen peptides by CD4+ and CD8+ T-Cells, leading to their ac-
tivation. Co-stimulatory signals by the DC-derived exosomes also improved the 
immune response. 

3. Role of Exosome Proteins in Cell-Cell Communication 

Exosomes are capable of binding to cells through receptor-ligand interactions by 
presenting antigens. They do not have to enter the cell to communicate with the  
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Figure 2. An experiment by Théry et al. (1999) which 
shows separation by SDS Page and subsequent West-
ern Blotting using antibodies for the proteins. 

 
acceptor cell. An example is found in exosomes containing MHC-peptide com-
plexes, which can interact and activate T-cell receptors on T lymphocyte cells 
[10]. Exosomes can also play a part in developing tumor cells by communicating 
between cancer cells using proteins. EGFRvIII receptors are often exchanged 
between glioma cells, which can cause tumor progression [11]. Exosomes com-
prise a lipid bilayer membrane, similar to the plasma membrane from which 
they came. They can fuse to other plasma membranes and release their contents 
into the recipient cell. The recipient cell may also internalize the vesicle through 
endocytosis, after which it may either be degraded or recycled. Hemi-fusion 
stalk formation between the lipid bilayers is carried out by SNARE or Rab pro-
teins. Integrins and adhesion molecules on the exosome also play a significant 
part in this fusion. The internalization rate usually decreases with a decrease in 
temperature and involves clathrin forming clathrin-coated vesicles [12]. Dyna-
min-2 is a protein that is heavily involved in internalization. Other exosome en-
try methods are lipid raft-associated internalization, phagocytosis, and micropi-
nocytosis. 

Intracellular Signalling. 
After being taken up by recipient cells, exosomes often undergo degradation 

by lysosomes, autophagosomes, or recycling. However, their constituents are 
typically not degraded and activate inside the new cell. For instance, Trans-
forming Growth Factor β-1 (TGFβ-1) carried by exosomes isn’t degraded by the 
acidic pH; instead, it becomes activated and induces cellular changes [13]. Since 
most experiments use membrane receptor and lipid labeling, to analyze the exo-
some transport, it is difficult to understand the fate of the constituents inside the 
vesicles, in this case, the proteins. Exosomes have been studied to regulate both 
adaptive and innate immune responses. The exosomes secreted by pathogenic 
cells usually present these pathogenic antigens associated with MHC proteins to 
interact with the recipient cell’s T-lymphocytes [1]. For tumor cells, various tu-
mor antigens are associated with MHC to interact with T-cells. These antigens 
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thus regulate different immune responses within the cell. However, in some cas-
es, these tumor cell-secreted exosomes may lead to immunosuppressive reac-
tions [14]. 

In neural cells, they facilitate the transfer of the synaptotagmin four protein 
from presynaptic to postsynaptic cells, causing a backward signal travel [15]. 
Different neurogenerative diseases such as Creutzfeldt-Jakob disease and Mad 
Cow disease may be caused by the exosome transfer of scrapie prions (denoted 
as PrPsc) to normal functioning cells [16]. The transfer of CCR5 receptors via 
exosomes secreted by monocytes to endothelial cells can facilitate HIV-1 infec-
tion [17]. 

Exosomes that contain tumor-promoting molecules or proteins, as well as 
nucleic acids, may induce tumors in cells by preventing apoptosis, macrophage 
polarization, radioresistance, immune cell exhaustion, T-cell cytotoxicity [18] or 
providing resistance to different chemotherapeutic drugs. For instance, when ex-
osomes extracted from irradiated lung cancer cells were analyzed, they exhibited 
upregulated expression of essential protein-coding genes, including ALDOA and 
ALDH3A1. This increase promotes faster growth of lung cancer cells by induc-
ing glycolysis. Thus, exosome constituents can have an increased impact on the 
cell expression and response of the recipient cells. 

4. Discussion 
4.1. Role of Exosomes in Therapy 

The field of drug delivery has undergone significant advancements in recent 
years as researchers explore various strategies to enhance targeted drug trans-
port. Ideally, transport materials with a small volume, large surface area, good 
recipient cell response, and high affinity to the drugs are ideal [19]. The vesicle 
must also have an appropriate biodegradability potential, which does not affect 
the efficacy of the adjoined drug. Exosomes are naturally secreted in the human 
body and have a high specificity, so they are suitable for use. The gene of interest 
in parent cells may be upregulated, as in the upregulation of the transmembrane 
domain of the platelet-derived growth factor receptor (PDGFR) in cells for 
breast cancer therapy [20]. Alternatively, the parent cells may be cultured and 
incubated with the therapeutic agent to produce the modified exosomes, such as 
incubating mouse brain epithelial cells with the anti-inflammatory agent curcu-
min [21]. Small hydrophobic agents can diffuse into the parent cells due to the 
lipid bilayer membrane of the cells. Electroporation, or less commonly sonica-
tion, increases cellular membrane permeability in cases where hydrophilic agents 
such as small interfering RNA (siRNA) are used as cargo [22]. Genetic engi-
neering of the surface peptides, such as PDGFR, is linked with single-chain va-
riable fragments of HIV-1. Env-specific antibodies result in these exosomes’ tar-
geted delivery to the HIV-1 infected cells [23]. Chemically engineered exosomes 
may also be used to regulate the efficacy of the exosomes, such as the addition of 
aminoethylanisamide-polyethylene glycol (AA-PEG) with paclitaxel (PTX) loaded 
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exosomes to increase the effectiveness of the chemotherapeutic agent [24]. 
Research has shown that exosomes from cancer cells prefer to fuse with other 

cancer cells [25]. Chemotherapeutic agents like cisplatin, sorafenib, 5 fluoroura-
cil, and oxiplatin can be used by exosomes along with other helper agents, such 
as the miRNA-27 inhibitor for different cancer types such as colon cancer [26]. 
They can induce cell cycle arrest and cell death in rapidly proliferating tumor 
cells. Exosomes from cancer stem cells in pancreatic cancer contain miRNA-210, 
which can carry out gemcitabine resistance in these cancer cells by activating the 
mTOR signaling [27]. In a novel pursuit of using exosomes for targeted therapy, 
they may be used in treating neurological disorders such as Alzheimer’s [22] and 
ischemic stroke [28]. Exosomes can penetrate the blood-brain barrier in both 
disease and healthy conditions. According to Ghosh et al. [29], exosomes derived 
from mesenchymal stem cells (MSCs) secrete neuroprotective factors which 
promote normal neurological function, a critical factor in their potential utiliza-
tion for post-traumatic brain injury. MHC, when interacting with the paren-
chymal cells in the brain, causes a decrease in the expression of axon inhibitory 
molecules. Neurodegenerative diseases have also been linked to proinflammato-
ry factors. 

According to Sheng et al. [30], interleukin (IL)-1, an inflammatory cytokine 
found at elevated levels in the brains of Alzheimer’s disease (AD) patients, could 
potentially play a significant role in its development. When Krstic et al. [31] 
stimulated the immune system of mice by administering polyriboinosinic-poly- 
ribocytidilic acid, it showed an increase in the levels of the proinflammatory cy-
tokine IL-1β in both plasma and brain, along with elevated levels of IL-6 specifi-
cally in the brain. IL-6 has been shown to penetrate the blood-brain barrier 
(BBB), enabling it to enter the brain. This can cause persistent and chronic neu-
roinflammation, subsequently leading to neurodegenerative disorders [32]. Hu-
man umbilical cord-derived mesenchymal stem cells (hUC-MSC) have been shown 
to inhibit the release of IL-6 by targeting the PIK3R1 gene [33]. Thus, these ex-
osomes are capable mediators of regulation that are efficient enough to be in-
volved in cell signaling and communication. 

4.2. Prospects of Harnessing Exosomes as Therapeutic Agents in  
Coeliac Disease: A Futuristic Outlook 

Coeliac Disease, an autoimmune condition affecting the small intestine, may be 
treated using exosomes. An intolerance to gluten causes it, specifically wheat, 
barley, and rye prolamins. These grains, closely related to cereals, have a high 
composition of glutamine and proline. The interaction of these peptides with 
MHC class II molecules stimulates CD4+ T helper cells. The release of Th1 and 
Th2 cytokines promotes the growth of autoreactive B cell clones and mucosal 
damage [34], leading to the erosion of the villi of the small intestine, a condition 
known as villous atrophy [35]. 

The compatibility of exosomes with the phospholipid-binding protein-ANXA1 
enhances the anti-inflammatory property by regulating the release of proinflam-
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matory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha 
(TNF-α) [36]. Formyl Peptide Receptors (FPRs), specifically FPR1 and FPR2/ALX, 
are G protein-coupled receptors expressed on the surface of immune cells, which 
interact with the peptide and induce an anti-inflammatory response. 

Exosomes transport biomolecules such as proteins, lipids, metabolites, and 
microRNAs. They can communicate with recipient cells through receptor-ligand 
interactions, which minimizes the need for cellular entry. Despite their potential 
therapeutic applications, some limitations affect their use in clinical trials. One 
such limitation is the composition differences resulting from donor metabolic 
disorders, which limits their efficacy in regenerative medicine. Exosomes con-
tribute to inflammation and metabolic dysregulation in diseases like metabolic 
syndrome and type 2 diabetes, accelerating the progression of the condition. 
Synovial fluid-derived exosomes may trigger inflammation and cartilage dege-
neration in joint diseases like osteoarthritis. Cancer-derived exosomes regulate 
the tumor microenvironment, promoting metastasis and chemotherapeutic re-
sistance and affecting the immune response. In kidney failure, they may trans-
port toxic substances, inducing inflammation and fibrosis. In addition, exosomes 
play a role in the disease progression in endometriosis by affecting cell invasion, 
angiogenesis, and infertility [37]. Despite the promising therapeutic potential, 
suitable doses and source selection remain essential for effective exosome-based 
treatments, considering their varied effects on pathological conditions. 

5. Conclusion 

Exosomes are primarily limited to diagnostic research for cancer, autoimmune, 
cardiovascular, and neurological diseases by playing a central role in biofluid 
biopsies. Their high biological stability and greater accuracy compared to con-
ventional biomarkers are the basis for their use. Depending on their constitu-
ents, exosomes secreted by immune cells can activate or decrease immunological 
responses. They are designed to deliver therapeutic constituents such as pro-
teins, siRNA, miRNA, and drugs to specific cells or organs. They also offer sev-
eral natural advantages as therapeutic agents, including bypassing cellular bar-
riers and low immunogenicity. While more studies are required to understand 
the therapeutic potential of exosomes completely, they present a promising op-
portunity for creating innovative treatments for various health conditions. The 
diverse attributes of exosomes highlight their potential as a valuable tool in fu-
ture medical treatments. 
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