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Abstract 
With the “boom” of AI, researchers have made significant progress in assist-
ing clinical disease diagnosis, prediction, and treatment. This article provides 
an overview of models built using both traditional machine learning methods 
and deep learning methods, as well as research progress on robotics in diges-
tive system diseases, aiming to provide references for further studies. An ap-
plication has been developed by domestic and foreign scholars that allows us-
ers to upload images of stool samples, which are then analyzed using big data 
to provide a score for bowel preparation, thereby improving the quality of 
bowel preparation. In some gastrointestinal diseases, such as Hp infection, 
Barrett’s esophagus and esophageal cancer, chronic atrophic gastritis and 
gastric cancer, IBD, etc., artificial intelligence possesses diagnostic capabilities 
comparable to those of professional endoscopists, and some applications can 
achieve real-time diagnosis. In the field of liver, gallbladder, and pancreatic 
diseases, artificial intelligence can assist in preoperative diagnosis using im-
aging or pathology, and robotic remote operations can be performed during 
surgery, predicting postoperative risk levels, and more. Different scholars 
have compared and analyzed various algorithm networks for different diseas-
es to find the best-performing models. On this basis, methods such as the 
MCA attention mechanism, feature selection, gradient descent, and ensemble 
models can be introduced to further improve the diagnostic performance of 
the models. In the future, AI can not only help patients self-manage single or 
multiple diseases, monitor and manage their own diseases in a standardized 
and reasonable manner, but also predict and treat digestive system diseases at 
the genetic level. 
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1. Introduction 

The three pillars of artificial intelligence (AI) are data, computing power, and 
algorithms. Data serves as the “feed” for AI algorithms and is ubiquitous in the 
era of big data. The rise of “health data science” has stimulated interdisciplinary 
thinking and methods, creating a knowledge-sharing system among computer 
science, biostatistics, epidemiology, and clinical medicine, which has propelled 
the development of AI in the field of medicine [1]. Algorithms act as the driving 
force behind AI, playing a pivotal role in clinical diagnosis, prediction, and 
treatment. AI algorithms are mainly divided into traditional machine learning 
algorithms and deep learning algorithms (DL). Traditional machine learning al-
gorithms include linear regression, support vector machines (SVM), random fo-
rests, decision trees, and logistic regression, while deep learning algorithms are 
primarily applied in deep neural networks (DNN), recurrent neural networks 
(RNN), and convolutional neural networks (CNN). Furthermore, the develop-
ment of AI in conjunction with 5G technology has also advanced the progress of 
robotics in the field of surgery [2]. This article provides an overview of models 
built using both traditional machine learning methods and deep learning me-
thods, as well as research progress on robotics in the digestive system diseases, 
aiming to provide references for further studies (Picture 1). 

2. Research Progress of AI in Bowel Preparation 

With increasing age, the detection rate of polyps exhibits an upward trend. In 
addition to high-risk populations, research has found that individuals aged 40  
 

 
Picture 1. Research applications in digestive system diseases. 
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and above in the general population also require colonoscopy [3] [4]. However,  
as many as one-fourth of the screened population experience inadequate bowel 
preparation during the colonoscopy procedure [5]. To prevent situations of 
missed diagnoses and misdiagnoses during the examination, healthcare profes-
sionals often employ written and verbal education to improve the quality of pa-
tients’ bowel preparation. With the emergence of AI technology, smartphone 
applications have become a novel educational tool, providing convenience and 
assurance for patients’ bowel cleansing preparations [6]. Furthermore, the accu-
racy of AI continues to improve with the establishment of Internet of Things 
data platforms, as sample data increases [7]. 

In recent years, scholars both domestically and internationally have developed 
an application that utilizes big data analysis on uploaded stool images to gener-
ate a score for bowel preparation. Medical professionals can then provide im-
provement suggestions based on the score to help patients enhance the quality of 
their bowel preparation. A study compared the results of seven smartphone ap-
plications in terms of bowel preparation during colonoscopy procedures. Six of 
the studies demonstrated that smartphone applications were able to improve the 
quality of bowel preparation. Additionally, five studies found that the use of 
smartphone applications significantly increased patient satisfaction during the 
perioperative period of colonoscopy [8]. Further research has been conducted by 
scholars in this field. van der Zander [9] and others developed a smartphone ap-
plication called Prepit (Ferring B V), which consists of six parts: colonoscopy 
examination date, educational tools, bowel preparation schedule, low-fiber diet 
examples, visually assisted preparation instructions, and examples of transparent 
liquid intake. They provided oral and written education to 86 patients while the 
remaining 87 patients followed the steps outlined in the smartphone application 
for bowel cleansing preparation. The research results indicated that the smart-
phone application was able to significantly improve the quality of bowel prepa-
ration, particularly in the right colon. However, no significant difference was 
observed in terms of patient satisfaction. Cho [10] and others reported that the 
application group had significantly higher BBPS scores and satisfaction levels 
compared to the control group, which was consistent with the conclusions 
reached by Madhav [6]. Furthermore, some domestically and internationally 
developed applications include an intelligent automatic scoring function for bo-
wel preparation. Researchers such as Wen Jing [11] and Xun Linjuan [12] be-
lieved that AI-assisted educational applications significantly improved the qual-
ity of bowel preparation in various segments of the intestine. Further research by 
Sheng Ruli [13] and others found that smartphone apps equipped with an 
AI-assisted bowel preparation scoring system could effectively improve the qual-
ity of bowel preparation in overweight patients. However, Jung [14] and others 
arrived at opposing conclusions using the OBPS score. The results showed that 
the average OBPS score for the non-application group vs. the application group 
was 2.79 ± 2.064 vs. 2.53 ± 1.264 (p = 0.950), and it was observed that patients 
receiving the application used a relatively lower dosage of polyethylene glycol 
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(PEG) (3713.2 ± 405.8 vs. 3979.2 ± 102.06, p = 0.001). Due to the limited num-
ber of patient cases in some studies, there may be insufficient sample sizes that 
affect the statistical reliability of the results. Additionally, factors such as patient 
age, proficiency in using the app, smartphone system, and examination equip-
ment variations can also impact the accuracy of bowel scores and polyp detec-
tion rates. Therefore, further research is needed in the future to develop a un-
iversally applicable and freely downloadable application. 

3. Research Progress of AI in Gastrointestinal Diseases 
3.1. Hp Infection 

The deep learning technology has attracted attention and research from scholars 
both domestically and internationally in the diagnosis and classification of Hp 
infection, as it utilizes information such as imaging, biology, and clinical data to 
train models for automatic detection and localization of Hp infection. 

Nakashima et al. [15] have developed an AI system using two novel laser IEE 
systems, BLI-bright and Linked Color Imaging (LCI). Compared to white light 
imaging (WLI), BLI-bright and LCI show significantly higher AUC values, while 
there is no difference in diagnostic time among these three AI systems. The re-
search group also developed a computer-assisted diagnosis (CAD) system, which 
constructs deep learning models using endoscopic still images captured by WLI 
and LCI. The results showed that LCI-CAD outperforms WLI-CAD by 9.2% in 
non-infection cases, by 5.0% in current infection cases, and by 5.0% in post-era- 
dication cases. Additionally, the diagnosis accuracy of endoscopists using LCI 
images is consistent with this [16]. Brazilian scholars Gonçalves et al. [17] be-
lieve that CNN models can detect HP infection and inflammation spectrum in 
gastric mucosal tissue pathology biopsies, and they provide the DeepHP data-
base. A study on digital pathology (DP) found that virtual slide images obtained 
by scanning Warthin-Starry (W-S) silver-stained tissues with a 20× resolution 
scanner can reliably identify HP, with an F1 score of 0.829 for the AI classifier 
[18]. Additionally, Song Xiaobin et al. [19] proposed the feasibility of construct-
ing an Hp tongue image classification model using Alexnet convolutional neural 
network by analyzing the relationship between Helicobacter pylori and tongue 
color, coating color, and moisture based on extracted characteristic information 
from tongue image, such as tongue color and shape, coating color and moisture. 
However, this is only a concept, and no specific research results have been re-
ported by other scholars at present. 

3.2. Barrett’s Esophagus and Esophageal Cancer 

Barrett’s esophagus (BE) is a precancerous condition for esophageal adenocar-
cinoma (EAC), with a cancer risk of up to 0.5%. The progression from normal 
esophageal epithelium to EAC typically involves the stages of normal esophageal 
epithelium, with or without intestinal metaplasia (IM), low-grade dysplasia, 
high-grade dysplasia, and EAC [20]. To accurately distinguish between BE and 
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early-stage EAC, Alanna et al. [21] developed a real-time deep learning artificial 
intelligence (AI) system. High et al. [22] demonstrated that in the differentiation 
between normal tissue and Barrett’s esophagus, the performance of a dual pre- 
training model, which was trained sequentially on the ImageNet and HyperKvasir 
databases, was superior to that of a single pre-training model trained solely on the 
ImageNet database. Additionally, Shahriar et al. [23] developed a ResNet101 mod-
el that exhibited good sensitivity and specificity in predicting the grade of dys-
plasia in Barrett’s esophagus, with a sensitivity of 81.3% and a specificity of 100% 
for low-grade dysplasia, and sensitivities and specificities exceeding 90% for 
nondysplastic Barrett’s esophagus and high-grade dysplasia. Furthermore, Dutch 
researchers, including Manon et al. [24], developed a classifier based on hema-
toxylin and eosin (H & E) staining imaging and a model based on mass spec-
trometry imaging (MSI), both of which were able to predict the grade of dyspla-
sia in Barrett’s esophagus. It was also found that the H & E-based classifier per-
formed well in differentiating tissue types, while the MSI-based model provided 
more accurate differentiation of dysplastic grades and progression risk. In the 
diagnosis of BE, the gastroesophageal junction (GEJ) and squamocolumnar 
junction (SCJ) are of significant importance, and a distance of ≥1 cm between 
the two is highly indicative of the presence of BE. A study utilized a fully convo-
lutional neural network (FCN) to automatically identify the range of GEJ and 
SCJ in endoscopic images, enabling targeted pathological biopsy of suspicious 
areas. The segmentation results of the BE scope developed in this study were 
consistent with the accuracy of expert manual assessment [25]. In terms of 
prognosis after BE treatment, Sharib et al. [26] generated depth maps using a 
deep learning-based depth estimator network and achieved esophageal 3D re-
construction based on 2D endoscopic images. This AI system was able to auto-
matically measure the Prague C & M criteria, quantify the Barrett’s epithelium 
area (BEA), and assess the extent of islands. For 131 BE patients, the system 
constructed esophageal 3D models for pre- and post-treatment comparisons, 
enabling effective evaluation of treatment outcomes and improved follow-up. 

Esophageal cancer, apart from adenocarcinoma, is predominantly squamous 
cell carcinoma, accounting for over 90% of cases. In the study on esophageal 
squamous cell carcinoma (ESCC), Meng et al. [27], compared the diagnostic 
performance of endoscopists with different levels of experience using CAD sys-
tems in WLI and NBI combination modes. They found that the accuracy (91.0% 
vs. 78.3%, p < 0.001), sensitivity (90.0% vs. 76.1%, p < 0.001), and specificity 
(93.0% vs. 82.5%, p = 0.002) of expert endoscopists were significantly higher 
than those of non-expert endoscopists. After referencing the CAD system, the 
differences in accuracy (88.2% vs. 93.2%, p < 0.001), sensitivity (87.6% vs. 92.3%, 
p = 0.013), and specificity (89.5% vs. 94.7%, p = 0.124) between non-experts and 
experts were significantly reduced. Zhao et al. [28] diagnosed early esophageal 
cancer and benign esophageal lesions by constructing an Inception V3 image 
classification system, and the results showed that AI-NBI had a faster diagnostic 
rate than doctors, and its sensitivity, specificity, and accuracy were consistent 
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with those of doctors. 

3.3. Chronic Atrophic Gastritis and Gastric Cancer 

Chronic atrophic gastritis (CAG) and gastric intestinal metaplasia (GIM) are 
precancerous conditions of gastric cancer [29]. Zhang et al. [30] compared the 
diagnosis results of a deep learning model with those of three experts and found 
that the CNN system had accuracies of 0.93, 0.95, and 0.99 for mild, moderate, 
and severe atrophic gastritis, respectively. They concluded that the CNN out-
performed in detecting moderate and severe atrophic gastritis compared to mild 
atrophic gastritis. This conclusion was consistent with the findings of Zhao et 
al.’s U-Net network model [31]. Wu et al. [32] conducted experiments using 
4167 electronic gastroscopy images, including early gastric cancer, chronic su-
perficial gastritis, gastric ulcers, gastric polyps, and normal images. They trained 
a CNN convolutional neural network model and verified its excellent perfor-
mance in identifying early gastric cancer and benign images. The model also 
showed good performance in accurately locating early gastric cancer and 
real-time recognition in videos. Goto et al. [33] designed an AI classifier using 
the EfficientnetB1 model for deep learning to differentiate between intramucosal 
and submucosal cancers. They tested 200 case images using the AI classifier, 
endoscopists, and a diagnostic method combining AI and endoscopic experts. 
The measured accuracy, sensitivity, specificity, and F1 score were (77% vs 72.6% 
vs 78.0%), (76% vs 53.6% vs 76.0%), (78% vs 91.6% vs 80.0%), and (0.768 vs 
0.662 vs 0.776), respectively. The study results indicated that the collaboration 
between artificial intelligence and endoscopic experts can improve the diagnostic 
capability of early gastric cancer infiltration depth. Additionally, Tang et al. [34] 
found that the NBI AI system for diagnosing early gastric cancer (EGC) outper-
formed both senior and junior endoscopists in terms of performance. 

Artificial intelligence has been widely applied in the preoperative predictive 
assessment, intraoperative treatment, and postoperative rehabilitation of cura-
tive resection for early gastric cancer. Bang et al. [35] utilized machine learning 
(ML) models to predict the likelihood of curative resection for undifferentiated 
early gastric cancer (U-EGC) with the identification of variables such as patient 
age, gender, endoscopic lesion size, morphology, and presence of ulceration 
prior to endoscopic submucosal dissection (ESD). They developed 18 models, 
with extreme gradient boosting classifiers achieving the best performance with 
an F1 score of 95.7%. In a retrospective study, Kuroda et al. [36] compared two 
types of robotic gastrectomy, namely ultrasonic shears-assisted robotic gastrec-
tomy and conventional forceps-assisted robotic gastrectomy. They found that 
the console time for the ultrasonic shears group (310 minutes [interquartile 
range (IQR), 253 - 369 minutes]) and the console time for gastrectomy (222 mi-
nutes [IQR, 177 - 266 minutes]) were significantly shorter than the conventional 
forceps group (332 minutes [IQR, 294 - 429 minutes]; p = 0.022 and 247 minutes 
[IQR, 208 - 321 minutes]; p = 0.004, respectively). Additionally, the ultrasonic 
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shears group had less blood loss compared to the conventional forceps group (20 
mL [IQR, 10 - 40 mL] vs. 30 mL [IQR, 16 - 80 mL]; p = 0.014). Shen et al. [37] 
conducted a study on 32 patients undergoing elective robotic gastrectomy and 
explored the role of “diurnal light and nocturnal darkness” theory in postopera-
tive recovery for gastric cancer using an artificial intelligence-based heart rate 
variability monitoring device. They found that maintaining the “diurnal light 
and nocturnal darkness” state was beneficial for the restoration of autonomic 
neurocircadian rhythms, alleviation of postoperative inflammation, and promo-
tion of organ function recovery in gastric cancer patients. 

3.4. IBD 

AI has shown new advantages and significant potential in gastrointestinal en-
doscopy examinations, demonstrating excellent performance in both endoscopy 
and biopsy samples. In addition, it has achieved good results in the diagnosis, 
treatment, and prediction of gastrointestinal diseases [38] [39]. For instance, in 
terms of diagnosis, endoscopy is crucial for evaluating inflammatory bowel dis-
ease (IBD). Some studies have utilized an ensemble learning method based on 
fine-tuned ResNet architecture to construct a “meta-model”. Compared to a sin-
gle ResNet model, the combined model has improved the IBD detection perfor-
mance of endoscopic imaging in distinguishing positive (pathological) samples 
from negative (healthy) samples (P vs N), distinguishing ulcerative colitis from 
Crohn’s disease samples (UC vs CD), and distinguishing ulcerative colitis from 
negative (healthy) samples (UC vs N) [40].  

Additionally, capsule endoscopy (CE) is also an accurate clinical tool for di-
agnosing and monitoring Crohn’s disease (CD). Research has used the Effi-
cientNet-B5 network to evaluate the accuracy of identifying intestinal strictures 
in Crohn’s disease patients, achieving an accuracy rate of approximately 80% 
and effectively distinguishing strictures from different grades of ulcers [41]. 
There have also been studies using CNN algorithms to automatically grade the 
severity of ulcers captured in capsule endoscopy images [42]. Moreover, Masca-
renhas et al. [43] developed and tested a CNN-based model by collecting a large 
number of CE images, discovering that deep learning algorithms can be used to 
detect and differentiate small bowel lesions with moderate to high bleeding po-
tential under the Saurin classification. 

In terms of treatment and prediction, Charilaou et al. [39] used traditional lo-
gistic regression (cLR) as a reference model and compared it with more complex 
ML models. They constructed multiple IM prediction models and surgical queue 
models, converting the best-performing QLattice model (symbolic regression 
equation) into a network-based calculator (IM-IBD calculator), which achieved 
good validation in stratifying the risk of inpatient mortality and predicting sur-
gical sub-queues. Additionally, there have been studies using machine learning 
methods to process a large number of predictive factors for predicting complica-
tions in pediatric Crohn’s disease [44]. 
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3.5. Colorectal Cancer (CRC) 

In the diagnosis and staging of colorectal cancer, two applications of artificial 
intelligence are computer-aided detection (CADe) and computer-aided diagno-
sis or differentiation (CADx). CADe is used for detecting lesions, while CADx 
characterizes the detected lesions through real-time diagnosis of tissue using 
optical biopsy, which utilizes the properties of light [45]. In the early identifica-
tion and differential diagnosis of colorectal cancer, Kudo et al. [46] trained an 
EndoBRAIN system using 69,142 endoscopic images. This system analyzes cell 
nuclei, crypt structures, and microvasculature in endoscopic images to identify 
colonic tumors. Comparative testing revealed that EndoBRAIN had higher ac-
curacy and sensitivity in both staining and NBI modes compared to resident 
endoscopists and experts. Additionally, a study based on deep learning demon-
strated that an AI CAD system can assist inexperienced endoscopists in accu-
rately predicting the histopathology of colorectal polyps, maintaining diagnostic 
accuracy of over 80% regardless of polyp size, location, and morphology [47]. 

Furthermore, the combination of AI technology and medical imaging can as-
sist radiologists in diagnosing the T stage, molecular subtype, adjuvant therapy, 
and prognosis of patients with colorectal cancer (CRC) more efficiently and ac-
curately [48]. For instance, Wang et al. [49] conducted a retrospective study in 
which they trained and validated an artificial intelligence-assisted imaging diag-
nosis system to identify positive circumferential resection margin (CRM) status 
using 12,258 high-resolution pelvic MRI T2-weighted images from 240 rectal 
cancer patients. This system employed the Faster R-CNN AI method, which is 
based on region-based convolutional neural network approach, and achieved an 
accuracy of 0.932 in determining CRM status, with an automatic image recogni-
tion time of only 0.2 seconds. Additionally, in a study utilizing the Faster R-CNN 
approach, Tong et al. [50] trained on 28,080 MRI images for identifying metas-
tatic lymph nodes, demonstrating good performance with an AUC of 0.912. 

In the field of colorectal cancer surgery, Kitaguchi et al. [51] conducted a re-
trospective study in which they annotated over 82 million frames for phase and 
action classification tasks, as well as 4000 frames for tool segmentation tasks, 
from 300 laparoscopic colorectal surgery (LCRS) videos. This led to the devel-
opment of the LapSig300 model, which encompasses nine surgical phases (P1 - 
P9), three actions (dissection, exposure, and other actions), and five target tools 
(grasper, T1; dissecting point, T2; linear cutter, T3; Maryland dissector, T4; 
scissors, T5). The overall accuracy of the multi-phase classification model was 
found to be 81.0%, with a mean intersection over union (mIoU) of 51.2% for 
tools T1 - T5. Although LapSig300 achieved high accuracy in phase, action, and 
tool recognition, there is still room for improvement in terms of recognition ac-
curacy, and the available dataset is not yet large enough, necessitating further 
research. Furthermore, Ichimasa et al. [52] proposed a novel analysis method for 
the resection of T2 colorectal cancer (CRC) after endoscopic full-thickness re-
section (EFTR). This simple and non-invasive tool, the Random Forest (RF) 
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model, was developed and validated specifically for T2 CRC, following the de-
velopment of a new predictive tool for lymph node metastasis (LNM) in T1 
CRC. However, due to the technical immaturity of EFTR, further validation is 
required for the RF model in predicting LNM metastasis in T2 CRC patients 
(Table 1). 

4. Advancements in AI Research in Biliary Diseases 
4.1. Gallstone, Cholecystitis, and Cholecystocolic Fistula 

In 2022, the first human clinical trial on single-arm robotic-assisted cholecys-
tectomy was conducted by Capital Medical University Affiliated Hospital and 
other institutions, and the surgical procedure was successful. The surgical inci-
sion was only 2.5 cm, which not only reduced surgical trauma but also alleviated 
patient pain [53]. Rasa et al. [54] conducted a retrospective study on 40 cases of 
single-port robotic cholecystectomy (SPRC), and the results showed a median 
operative time of 93.5 minutes, with an average time of 101.2 ± 27.0 minutes and 
an average hospital stay of 1.4 ± 0.6 days. Fourteen patients (35.0%) experienced 
Clavien-Dindo grade I complications, including five cases (12.5%) related to 
wound problems. Tschuor et al. [55] reviewed 26 patients who underwent ro-
botic-assisted cholecystectomy, with an intraoperative blood loss of 50 mL 
(range: 0 - 500 mL). Only mild postoperative complications (Clavien-Dindo ≤ II 
within 90 days) were observed, without any reports of major complications or 
death. 

Cholecystocolic fistula (CCF) is a rare complication of biliary disease, with a 
preoperative imaging detection rate of less than 8%. Krzeczowski et al. [56] re-
ported a case study of successful management of CCF patients using the da Vin-
ci® Xi surgical system, with a smooth surgical procedure and discharge on the 
first day postoperatively, and no complications observed during a six-month 
follow-up. Additionally, a case of CCF discovered during robotic cholecystecto-
my was reported, where the patient was initially diagnosed with CCF during the 
dissection process and subsequently underwent the surgery in a robotic manner. 
However, there is no report available regarding the postoperative condition and 
prognosis of this patient. Due to the limited number of robotic CCF surgery cas-
es and the need for further validation of the potential advantages compared to 
laparoscopic surgery, more research is required. 

4.2. Cholangiocarcinoma and Gallbladder Cancer 

Wang et al. [57] divided 65 eligible patients with extrahepatic cholangiocarci-
noma (ECC) into two groups: Group A (patients with postoperative pathological 
stage Tis, T1, or T2 ECC) and Group B (patients with postoperative pathological 
stage T3 or T4 ECC). They then used the MaZda software to delineate the re-
gions of interest (ROIs) on MRI images and analyzed the texture features of 
these regions. Finally, the selected texture features were incorporated into a bi-
nary logistic regression model using the Enter method to establish a prediction  
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Table 1. Research applications of AI in gastrointestinal diseases. 

Disease 
Type 

Study Country 
Patient 

Data 
Data Type 

AI 
Algorithm 

Performance Main Findings 

Hp 
Infection 

Nakashima 
et al., 2018 

[15] 
Japan 

222 
patients 

White-Light 
Imaging (WLI), 
BLI-bright, and 
Linked Color 

Imaging (LCI) 
endoscopic 

images 

DCNN 

WLI AUC: 0.66, 
BLI-bright AUC: 
0.96, LCI AUC: 

0.95. 

AI technology for 
image-enhanced 
endoscopy can be 

used in the 
diagnosis of Hp 

infection. 

Nakashima 
et al., 2020 

[16] 
Japan 515 cases LCI, WLI DL 

LCI-CAD: 
Uninfected AUC: 

0.90, Currently 
infected AUC: 

0.82, Eradicated 
AUC: 0.77. 

The LCI-CAD 
system is superior 

to endoscopists 
using WLI images 

and shows 
consistent 
diagnostic 

accuracy with 
endoscopists 

using LCI images. 

Gonçalves 
et al., 2022 

[17] 
Brazil 

DeepHP 
Database 
(394,926 
images) 

Gastric mucosal 
histopathology 

Whole Slide 
Imaging (WSI) 

CNN 

Best CNN model 
(VGG16) 

Accuracy: 0.98 
Specificity: 0.98 

AUC: 0.99. 

The CNN model 
can detect Hp 
infection and 
inflammation 
spectrum in 

gastric biopsies 
and provides the 

DeepHP database. 

Liscia 
et al., 2022 

[18] 
Italy 679 cases 

Warthin-Starry 
(W-S) 

silver-stained 
gastric biopsies 

DL 

Performance 
metrics for deep 

learning classifier: 
Accuracy: 0.880, 
F1 score: 0.829. 

Digital pathology 
(DP) and AI can 
reliably identify 

HP at a 20× 
resolution. 

Xiaobin 
Song 

et al., 2021 
[19] 

China - Tongue image 

Alexnet 
convolutional 

neural 
network 

- 

It is feasible to 
construct an Hp 

tongue image 
classification model 
using the Alexnet 

convolutional 
neural network. 

Barrett’s 
Esophagus 
and Early 

Esophageal 
Cancer 

Gao 
Jingwen 

et al., 2022 
[21] 

China 
481 

images 

Endoscopic 
esophageal 

cardia white 
light images 

CNNs 

Best model: 
(EfficientNet 

model) Accuracy 
of 0.898, 

precision of 
0.892, recall of 
0.906, AUC of 

0.946. 

Secondary 
pre-training 

model 
outperforms 

single 
pre-training 

model. 

https://doi.org/10.4236/jbm.2023.1112016


Q. G. Feng et al. 
 

 

DOI: 10.4236/jbm.2023.1112016 183 Journal of Biosciences and Medicines 
 

Continued 

 

Shahriar 
et al., 2022 

[22] 
USA 

542 
cases 

Whole slide 
imaging 

DL 

ResNet101 model: 
Sensitivity and 

specificity for LGD 
are 81.3% and 

100% respectively, 
while for NDBE 

and HGD they are 
both > 90%. 

ResNet101 model 
can predict 

dysplasia grade on 
whole slide 

imaging. 

Wen 
et al., 2022 

[23] 
China 

187 
images 

Endoscopic 
images 

Fully 
Convolutional 

Networks (FCN) 

Intersection over 
Union (IOU) 
values of 0.56 

(GEJ) and 0.82 
(SCJ). 

The segmentation 
results of fully 
automatic DL 

method are 
consistent with 

manual evaluation. 

Alanna 
et al., 2020 

[24] 
Germany 

129 
images 

Endoscopic 
images 

CNN and 
DeepLab 

V.3+ residual 
network 
(ResNet) 

architecture 

AI system has 
sensitivity and 
specificity of 
83.7% and 

100.0% 
respectively, 

with an overall 
accuracy of 89.9%. 

This is the first 
real-time 

application of deep 
learning AI system 
for evaluating and 
diagnosing early 
EAC in real-life 

scenarios. 

Manon 
et al., 2021 

[25] 
Netherlands 57 cases 

Mass 
spectrometry 

imaging (MSI) 
and 

hematoxylin 
and eosin 
(H & E) 
staining 
imaging 

ML classifier 

Differentiating 
epithelial tissue 

from stroma: AUC 
of 0.89 (MSI) and 

0.95 (H & E); 
distinguishing 

dysplasia grade: 
AUC of 0.97 (MSI) 
and 0.85 (H & E); 

low-grade 
progressors and 
non-progressors: 
accuracy of 0.72 
(MSI) and 0.48 

(H & E). 

H & E-based 
classifier excels in 

differentiating 
tissue types, while 

MSI-based model is 
more accurate in 

distinguishing 
dysplasia grade and 
risk of progression. 

Sharib 
et al., 2021 

[26] 
UK 131 videos 

Endoscopic 
high-definition 

videos 

Depth 
Estimation 
Networks 

Accuracy of 
phantom 

endoscopic videos 
for C & M and 

island 
measurements is 
97.2%, with an 

average deviation 
of ±0.9 mm, 

while for BEA it is 
98.4% with an 

average deviation 
of ±0.4 cm. 

The quantification 
system can 

automatically 
measure C & M 
score, quantify 

Barrett’s 
epithelium area 

(BEA), and 
measure island 
area, enabling 
esophageal 3D 
reconstruction. 
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Meng 
et al., 2022 

[27] 
China 1160 cases 

WLI images and 
NBI images 

YOLOv5 deep 
learning 

algorithm 

After reference to 
CAD system, 
non-experts 

show significantly 
reduced 

differences in 
accuracy 

(88.2% vs. 93.2%, 
p < 0.001), 
sensitivity 

(87.6% vs. 92.3%, 
p = 0.013), and 

specificity 
(89.5% vs. 94.7%, 

p = 0.124) 
compared to 

experts. 

The CAD system in 
WLI and NBI 

combination mode 
can improve the 

diagnostic 
performance of 

superficial ESCC. 

Zhao 
et al., 2022 

[28] 
China 300 cases NBI images 

Google net 
model with 

Inception v3 
image 

classification 
system 

There is no 
statistically 
significant 
difference 

between AI-NBI 
diagnosis and 

doctor diagnosis 
in terms of 
sensitivity 

(90.0% vs. 92.0%), 
specificity 

(92.0% vs. 94.0%), 
and accuracy 

(91.0% vs. 93.0%) 
(P > 0.05). 

AI-NBI can assist 
in the diagnosis of 
early esophageal 

cancer. 

Chronic 
Atrophic 
Gastritis 

and Gastric 
Cancer 

Zhang 
et al., 2020 

[30] 
China 

5470 images 
of the gastric 
antrum from 
1699 patients 

Conversion of 
white light 
endoscopic 
images to 

uncompressed 
BMP format 

Trained 
CNN-CAG 
model using 

DenseNet 121 
network 

architecture 

The accuracy of 
the CNN system 

in diagnosing 
mild, moderate, 

and severe 
atrophic gastritis 

was 0.93, 0.95, 
and 0.99, 

respectively, 
indicating a 

higher detection 
rate for moderate 

and severe 
atrophic gastritis 

than for 
mild cases. 

DenseNet network 
showed high 

performance in 
CAG identification. 
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Zhao 
et al., 2022 

[31] 
China 

5290 images 
from 1711 

patients with 
chronic 
atrophic 
gastritis 

High-quality 
clear images 

U-Net network 

The sensitivity, 
specificity, AUC 
(95% CI), and 

Kappa value of this 
diagnostic model 

were 92.73%, 
92.24%, 0.932 

(0.916 - 0.948), 
and 0.796, 

respectively. 

The U-Net deep 
learning-based 

diagnostic model 
for chronic 

atrophic gastritis 
showed high 

accuracy and good 
agreement with 

pathological 
diagnosis. 

Wu 
et al., 2021 

[32] 
China 

5496 images 
from 928 
patients 

Electronic 
gastroscopy 
images and 

complete video 
recordings of 
gastroscopy 

examinations 

CNN 

In the 
human-machine 

classification 
competition, the 
model achieved 
sensitivities and 

positive predictive 
values of 90.33% 

and 95.41%, 
respectively. 

Accuracy of lesion 
localization 

decreased as the 
overlapping area 
increased. Video 

verification 
showed sensitivity 

of 89.5% for 
identifying early 

gastric cancer and 
92.3% for 

identifying 
non-early gastric 

cancer. 

The model 
demonstrated 

good recognition 
ability for static 
images of early 
gastric cancer 

and benign 
lesions, accurate 
localization of 
gastric cancer 
lesions, and 

real-time 
dynamic 

identification 
of early gastric 

cancer. 

Goto 
et al., 2022 

[33] 
Japan 

500 training 
images, 200 
test images 

White light 
imaging 

AI classifier 

Accuracy, 
sensitivity, 

specificity, and F1 
score measured 

using AI classifier, 
endoscopists, and a 
diagnostic method 
combining AI and 
endoscopic experts 
were 77% vs. 72.6% 
vs. 78.0%, 76% vs. 
53.6% vs. 76.0%, 
78% vs. 91.6% vs. 
80.0%, and 0.768 

vs. 0.662 vs. 0.776, 
respectively. 

Collaboration 
between artificial 
intelligence and 

endoscopic experts 
improved the 

diagnostic 
capability for 

determining the 
depth of early 
gastric cancer 

invasion. 
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Tang 
et al., 2022 

[34] 
China 

21,785 NBI 
(narrow-band 

imaging) 
images and 
20 videos 

NBI NBI AI system 

The AI system 
achieved better 

diagnostic 
performance 

(accuracy: 79.5%, 
95% CI: 77.8% - 

81.0%) compared 
to senior (93.2%, 
95% CI: 90.0% - 

94.9%) and junior 
(85.9%, 95% CI: 
84.2% - 87.4%) 
endoscopists. 

The NBI AI system 
outperformed 

endoscopists and 
has the potential to 
improve diagnostic 
rates in real-time 

diagnosis by 
physicians. 

Bang 
et al., 2021 

[35] 

South 
Korea 

2703 patients 
(967 ESD 

[endoscopic 
submucosal 
dissection], 

1736 surgery) 

Each dataset 
was written in 
.csv file format 

ML classifier 

XGBoost classifier 
demonstrated the 
best performance 
with an accuracy 
of 93.4%, recall of 

99.0%, and F1 
score of 95.7%. 

XGBoost classifier 
showed high 
recognition 

capability for 
curative resection 
in undifferentiated 
early gastric cancer, 

considering 
variables such as 
patient age, sex, 

endoscopic lesion 
size, morphology, 

and 
presence/absence 

of ulcer. 

Kuroda 
et al., 2022 

[36] 
Japan 171 cases 

Robot-assisted 
gastric resection 
using ultrasonic 

shears and 
conventional 
robot-assisted 

gastric resection 
using 

conventional 
forceps 

Robot 

The console time 
(310 minutes 
[interquartile 
range (IQR), 

253 - 369 minutes] 
vs. 332 minutes 
[IQR, 294 - 429 

minutes]; 
p = 0.022) and 

console time for 
gastric resection 

(222 minutes [IQR, 
177 - 266 minutes] 

vs. 247 minutes 
[IQR, 208 - 321 

minutes]; 
p = 0.004) were 

significantly 
shorter in the 

ultrasonic shears 
group compared to 

the conventional 
forceps group. 

The ultrasonic 
shears robot 

showed better 
performance in 
robot-assisted 

gastric resection 
for gastric cancer. 
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Shen 

et al., 2022 
[37] 

China 32 cases 

24-hour 
dynamic 

electrocardiogra
m 

AI-based heart 
rate variability 

(HRV) 
monitoring 

device 

Postoperative 
decreases in 
TNF-α levels 

and VAS scores 
were observed 
in peripheral 
blood during 
the “daytime 

alertness, 
nighttime 

darkness” period. 
Postoperative 

time to passage 
of flatus/bowel 
movements was 

shortened, 
postoperative 

complication rate 
was reduced, 
and length of 
hospital stay 

was decreased. 

Maintaining the 
“daytime alertness, 

nighttime 
darkness” status is 
beneficial for the 

postoperative 
recovery of gastric 

cancer patients. 

IBD 
Charilaou 
et al., 2022 

[39] 

United 
States 

398,426 
patients 

Clinical features 

Multivariable 
logistic 

regression 
model 

Hospitalized 
patient mortality 

prediction: 
The QLattice 

model 
performed best 

with a sensitivity 
of 85.3%, 

specificity of 
72.9%, and 

AUC of 0.867 
[95% CI 

0.855 - 0.879]. 
Performance of 

inpatient 
mortality 
prediction 
model in 
surgical 

subcohort: 
Sensitivity of 

84.5%, 
specificity of 
90.0%, and 

AUC of 0.944 
[95% CI 

0.932 - 0.956]. 

The IM-IBD 
calculator 

achieved good 
validation for risk 

stratification of 
inpatient 

mortality and 
prediction 

in the surgical 
subcohort. 
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Chierici 
et al., 2022 

[40] 
Italy 14,226 images 

Endoscopy 
images 

Residual 
Network 
(ResNet) 

The combination 
model resnet 

34-50-101, resnet 
34-50-152 

exhibited more 
prominent 
recognition 

capabilities in 
N-P, UC-CD, and 

UC-N samples 
compared to any 
individual resnet 

model. 

Ensemble 
learning 
methods 

effectively 
improve the 
performance 

of the 
combination 

model. 

Eyal 
et al., 2020 

[41] 
Israel 27,892 images CE images 

Deep Learning 
Network 

The network 
achieved an 

average accuracy 
of 93.5% in 
classifying 

narrow and 
non-narrow 
cases. It also 

demonstrated 
good 

discrimination 
between narrow 

and normal 
mucosa, narrow 
and all ulcers, as 
well as narrow 
and different 

grades of ulcers. 

The DL network 
was validated to 

effectively identify 
intestinal strictures, 

normal mucosa, 
and different 

grades of ulcers in 
Crohn’s disease 

patients’ CE 
images. 

Barash 
et al., 2021 

[42] 
Israel 17,640 images CE images CNN 

The accuracy for 
classifying grade 1 
and grade 3 ulcers 

was 0.91 
(95% confidence 

interval, 
0.867 - 0.954). 

For grade 2 and 
grade 3, it was 

0.78 (95% 
confidence 

interval, 
0.716 - 0.844), 
and for grade 1 

and grade 2, 
it was 0.624 

(95% confidence 
interval, 

0.547 - 0.701). 

The CNN achieved 
a high accuracy in 

detecting severe CD 
ulcers but 

performed poorly 
in mild CD ulcers. 
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Mascarenhas 
et al., 2021 

[43] 
Portugal 

53,555 
images 

CE images CNN Model 

The average 
sensitivities and 
specificities for 
automatically 

detecting 
various 

abnormalities 
were 

87.8% ± 8.1% 
and 

99.4% ± 3.7%, 
respectively. 

Deep learning 
algorithms can 

detect and 
differentiate small 
bowel lesions with 
obvious bleeding 

potential. 

Ungaro 
et al., 2020 

[44] 

United 
States 

265 patients 
with an 

average age 
of 11.6 years 

Protein and 
serologic 
markers 

Multivariate 
Cox regression 

model 

For B2 
(stricturing) 

complications, 
four proteins 
(IL7, MMP10, 
IL12B, CCL11) 

and two serologic 
markers 

(LnASCA IgA, 
LnCbir) 

were selected 
as the most 
predictive. 

For B3 
(penetrating) 

complications, 
five proteins 

(TNFSF14, CCL4, 
IL15RA, TNFB, 
CD40) and three 
serologic markers 

(LnASCA IgA, 
LnANCA, 

LnCbir) were 
selected as 
the most 

predictive for B3. 

Different proteins 
have better 

predictive value for 
diagnosing 
different 

complications of 
pediatric Crohn’s 

disease, B2 and B3. 

Colorectal 
Cancer 

Kudo 
et al., 2020 

[46] 
Japan 69,142 images 

WLI images, 
EC-NBI images, 
and stained EC 

images 

EndoBRAIN 
CAD system 

In stained 
images: 

EndoBRAIN 
achieved an 

accuracy of 98% 
(97.3 - 98.6). 

In NBI images: 
EndoBRAIN 
achieved an 
accuracy of 

94.6%. 

EndoBRAIN 
improved the 
accuracy and 
sensitivity of 

endoscopists in 
both stained and 

NBI modes. 
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Mi 
et al., 2020 

[47] 

South 
Korea 

1169 
patients 

Narrow-band 
imaging (NBI) 

images of 
colorectal polyps 

Computer-aided 
diagnosis 

system (CAD) 

CAD + trained 
examiner achieved 
a Cohen’s kappa 

value of 0.665 
(95% CI, 

0.560 - 0.758), 
higher than the 
examiner alone 
(0.368, 95% CI 
0.281 - 0.459). 
CAD + trained 
examiner had a 

significantly 
higher overall 

diagnostic 
accuracy 

compared to 
trainee 

endoscopists 
(84.2% vs. 71.8%; 

p < 0.001). 

AI CAD system 
can assist 

inexperienced 
endoscopists in 

accurately 
predicting the 

histopathology of 
colorectal polyps 

with over 80% 
diagnostic 
accuracy, 

regardless of size, 
location, or 

morphology. 

Wang 
et al., 2020 

[49] 
China 240 patients 

High-resolution 
axial T2WI 
MRI images 

Faster 
R-CNN 
model 

The accuracy, 
sensitivity, and 

specificity of the 
model in 

identifying 
positive 

circumferential 
resection margin 
(CRM) status in 
high-resolution 

MRI images were 
0.932, 0.838, and 

0.956, respectively. 
The proportion 
of positive CRM 
images with an 
overlap ratio 

above 0.7 with 
the region 

annotated by 
radiologists was 
95.1% (175/184). 

The trained Faster 
R-CNN AI 

method’s ability to 
annotate CRM was 

comparable to 
radiology experts 
and had higher 

efficiency in 
identification. 

Lu 
et al., 2018 

[50] 
China 28,080 images 

MRI images of 
metastatic 

lymph nodes 

Faster 
R-CNN 

The area under 
the receiver 
operating 

characteristic 
(ROC) curve for 
Faster R-CNN 

was 0.912. 

The ability of Faster 
R-CNN to label 

lymph node 
positions was 

similar to that of 
senior radiologists. 
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Kitaguchi 
et al., 2020 

[51] 
Japan 

19 
intraoperative 

videos 

9 stages and 3 
actions, 5 tools 

CNN 

The overall 
accuracy of the 

full-phase 
classification 

model was 81.0%, 
and the mean 

intersection over 
union (mIoU) for 
tools T1 - T5 was 

51.2%. 

The CNN model 
can be used to 

build an 
automated video 

analysis and 
indexing system. 

Ichimasa 
et al., 2022 

[52] 
Japan 

511 patients 
with early T2 

colorectal 
cancer (CRC) 

8 clinical and 
pathological 

variables (age, 
sex, tumor size, 
tumor location, 

lymphatic 
invasion, 
vascular 
invasion, 

histological 
differentiation, 
and CEA level) 

RF algorithm 

The AUC of the 
AI system in 

validation data 
was 0.93, while 
the AUC of the 

nomogram (based 
on multivariable 

logistic regression 
analysis) was 0.88. 

The AI prediction 
model has the 

potential to reduce 
unnecessary 

surgeries for T2 
CRC patients and 
enable minimally 
invasive treatment 

through 
endoscopic 

full-thickness 
resection (EFTR) 

for T2 CRC 
patients with 
lymph node 
metastasis. 

 
model. The results showed that this model had certain value in predicting the 
presence of extrahepatic bile duct invasion in ECC, with a sensitivity of 86.0% 
and specificity of 86.4% for predicting stage T3 or above. However, further 
prospective experiments are still needed to validate this finding. Similarly, Yao et 
al. [58] used the MaZda software to establish a PSO-SVM radiomics model to 
predict the degree of differentiation (DD) and lymph node metastasis (LNM) in 
patients with ECC. The results showed that the average AUC of the model for 
DD in the training group and test group was 0.8505 and 0.8461, respectively, 
while the average AUC for LNM was 0.9036 and 0.8800, respectively. Another 
study also demonstrated that machine learning using MRI and CT radiomic 
features can effectively differentiate combined hepatocellular-cholangiocarcinoma 
(cHCC-CC) from cholangiocarcinoma (CC) and hepatocellular carcinoma (HCC), 
with good predictive performance [59]. 

In recent years, robotic surgery has been widely used in the treatment of cho-
langiocarcinoma in hepatobiliary surgery. Chang et al. [60] reported a case series 
of 34 patients with hilar cholangiocarcinoma, including 13 cases of Bismuth type 
I, 3 cases of Bismuth type IIIa, 9 cases of Bismuth type IIIb, and 9 cases of Bis-
muth type IV, treated with robotic surgery. In addition, Yin et al. [61] performed 
a robotic-assisted radical resection for a patient with Bismuth type IIIb hilar 
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cholangiocarcinoma. Shi et al. [62] also performed a robot-assisted radical resec-
tion for a patient with hilar cholangiocarcinoma, and the surgery was successful 
with approximately 50 ml intraoperative blood loss. The patient had no post-
operative complications and was discharged six days after the surgery. These 
studies suggest that robotic surgery has shown good efficacy in the treatment of 
cholangiocarcinoma. 

Gallbladder cancer is the most common malignancy of the biliary tract with a 
poor prognosis. One study compared the clinical outcomes of laparoscopic ex-
tended cholecystectomy (LEC) with open extended cholecystectomy (OEC). The 
results showed that LEC was comparable to OEC in terms of short-term clinical 
outcomes. There were no statistically significant differences between the LEC 
and OEC groups in terms of operation time (p = 0.134), intraoperative blood 
loss (p = 0.467), postoperative morbidity (p = 0.227), or mortality (p = 0.289). In 
terms of long-term outcomes, the 3-year disease-free survival rate (43.1% vs 
57.2%, p = 0.684) and overall survival rate (62.8% vs 75.0%, p = 0.619) were sim-
ilar between the OEC and LEC groups [63]. 

5. Research Progress on AI in Liver Diseases 
5.1. Liver Fibrosis 

Methods for the diagnosis of liver fibrosis include invasive liver biopsy and 
non-invasive imaging, serological diagnostic models, and transient elastography. 
With the development of artificial intelligence in pathology and radiology, we 
can utilize technologies such as artificial intelligence to extract information that 
is difficult to perceive or identify with the naked eye. This is of great significance 
for the pathological analysis of liver biopsy tissue sections and other non-invasive 
detection methods. Additionally, artificial intelligence also plays a supportive 
role and has research value in prognostic assessment and surgical procedures for 
patients with liver fibrosis [64] [65]. 

In the research on ultrasound elastography for diagnosing liver fibrosis, Xie et 
al. [66] utilized convolutional neural networks to analyze and extract 11 ultra-
sound image features from 100 liver fibrosis patients. They selected four classic 
models (including AlexNet, VGGNet-16, VGGNet-19, and GoogLeNet) for ex-
perimental comparison. The results showed that the GoogLeNet model had bet-
ter recognition accuracy than the other models. By controlling variables such as 
batch size, learning rate, and iteration times, they verified the performance of the 
network model and obtained the best recognition effect. Fu et al. [67] employed 
traditional machine classification models, including SVM classifier, sparse re-
presentation classifier, and deep learning classification model based on LeNet-5 
neural network. They trained, validated, and tested ultrasound images of 354 pa-
tients who underwent liver resection surgery. They performed automated classi-
fication using a binary classification (S0/S1/S2 vs. S3/S4) and two ternary classi-
fications (S0/S1 vs. S2/S3/S4 and S0 vs. S1/S2/S3/S4). The research results 
showed an accuracy of around 90% for binary classification and around 80% for 
ternary classification, with the deep learning classifier having slightly higher ac-
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curacy than the other two traditional models.  
In the CT imaging-based diagnosis of liver fibrosis, Wu et al. [68] demon-

strated that multi-slice CT (MSCT) based on artificial intelligence (AI) algo-
rithms provided a new approach for clinical diagnosis of liver cirrhosis and fi-
brosis. However, further in-depth research is still needed in multiple centers and 
large hospitals. Furthermore, related studies reported the construction of a liver 
fibrosis staging network (LFS network) based on contrast-enhanced portal ven-
ous phase CT images, which achieved an accuracy of approximately 85.2% in 
diagnosing significant fibrosis (F2 - F4), advanced fibrosis (F3 - F4), and cirrho-
sis (F4) [69]. 

5.2. Fatty Liver 

Artificial intelligence can effectively identify patients with non-alcoholic steato-
hepatitis (NASH) and advanced fibrosis, as well as accurately assess the severity 
of non-alcoholic fatty liver disease (NAFLD) [70]. Okanoue et al. [71] developed 
a novel non-invasive system called NASH-Scope, which consists of 11 features. 
After training and validation on 446 patients with NAFLD and non-NAFLD, the 
results showed that NASH-Scope achieved an area under the curve (AUC) and 
sensitivity both exceeding 90%, and was able to accurately distinguish between 
NAFLD and non-NAFLD cases. Zamanian et al. [72] applied a deep learning al-
gorithm based on B-mode images to classify ultrasound images of patients with 
fatty liver disease, achieving a high accuracy rate of 98.64%. Another study sug-
gested that using the CNN model Inception v3 in B-mode ultrasound imaging 
significantly improves the evaluation of hepatic steatosis [73]. 

5.3. Hepatocellular Carcinoma 

Primary liver cancer patients comprise 75% - 85% of cases diagnosed with he-
patocellular carcinoma (HCC), with the risk factors for HCC varying by region. 
In China, chronic hepatitis B virus infection and/or exposure to aflatoxin are the 
main contributing factors [74]. With the rapid development of artificial intelli-
gence (AI) in the field of medical imaging, AI models based on CT and MR im-
ages have been widely applied for automatic segmentation, lesion detection, 
characterization, risk stratification, treatment response prediction, and auto-
mated classification of liver nodules in hepatocellular carcinoma [75]. Riccardo 
et al. [76] proposed a novel AI-based pipeline that utilizes convolutional neural 
networks to provide virtual Hematoxylin and Eosin-stained images, and em-
ploys AI algorithms based on color and texture content to automatically identify 
regions with different progression features of HCC, such as steatosis, fibrosis, 
and cirrhosis. Compared to manual segmentation performed by histopatholo-
gists, the AI approach achieved an accuracy rate of over 90%. Xu et al. [77] con-
structed a diagnostic model based on CT images using Support Vector Machines 
(SVM), showing good performance in distinguishing between HCC and intra-
hepatic cholangiocarcinoma (ICCA). Additionally, Rela et al. [78] employed 
various classification techniques such as SVM, K-Nearest Neighbors (KNN), 
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Naïve Bayes (NB), Decision Tree (DT), Composite, and Discriminant classifiers 
to classify liver CT images of 68 patients, aiming to differentiate between hepa-
tocellular carcinoma and liver abscess (LA). The results indicated that the SVM 
classifier outperformed other classifiers in terms of accuracy and specificity, 
while slightly lagging behind the Discriminant Analysis classifier in sensitivity. 
Overall, the SVM classifier demonstrated the best performance. Relevant studies 
have shown that gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid 
(Gd-EOB-DTPA)-enhanced MRI can be used to evaluate the differentiation de-
gree of HCC [79]. Due to the limited performance of CT or MRI in detecting le-
sions smaller than 1.0 cm in HCC patients, and biopsy being the gold standard 
for diagnosing HCC, Ming et al. [80] developed a diagnostic tool for pathologi-
cal image classification of HCC. This diagnostic tool evaluated several architec-
tures including ResNet-34, ResNet-50, and DenseNet, and selected ResNet-34 as 
the benchmark architecture for building the AI model due to its superior per-
formance. The AI model achieved sensitivities, specificities, and accuracies all 
above 98% in the validation and test sets, and demonstrated more stable perfor-
mance compared to experts. Furthermore, Ming et al. also applied transfer learn-
ing methods to image classification of colorectal cancer and invasive ductal car-
cinoma of the breast, where the AI algorithm achieved slightly lower perfor-
mance compared to HCC. 

With the rapid development of artificial intelligence, an increasing number of 
clinical trials are exploring the feasibility of using robots for liver resection sur-
gery. According to the research findings of Shogo et al. [81], they found no sig-
nificant differences between robot-assisted liver resection (RALR) and laparos-
copic liver resection (LLR) in terms of blood loss, transfusion ratio, postopera-
tive complication rate, mortality rate, or length of hospital stay. However, stu-
dies by Linsen et al. [82] pointed out that compared to laparoscopic major liver 
resection, robot-assisted major liver resection had less blood loss (118.9 ± 99.1 vs 
197.0 ± 186.3, P = 0.002). Furthermore, although there were differences in sur-
gical time (255.5 ± 56.3 min vs 206.8 ± 69.2, p < 0.001), this difference gradually 
narrowed with increasing surgeon experience. Some scholars abroad have also 
reported individual cases. For example, Machado [83] reported a successful case 
of extensive hepatocellular carcinoma resection using the Glissonian method in 
a 77-year-old male patient. The surgery went smoothly, and the patient was dis-
charged on the 8th day after the operation. In addition, Peeyush [84] reported a 
case of multifocal hepatocellular carcinoma in a 70-year-old male patient who 
underwent robot-assisted total right hepatectomy. The blood loss was minimal 
(400 ml), but the surgery duration was longer (520 min). These research findings 
suggest that robot-assisted liver resection surgery has the potential to play a role 
in providing more precise operations while reducing certain surgical risks. 

6. Research Progress of AI in Pancreatic Diseases 

The auxiliary diagnosis of pancreatic diseases mainly involves imaging and pa-
thological images, with commonly used examination methods including CT, 
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MRI, MRCP, EUS, etc. Some studies have used deep learning algorithms to im-
prove diagnostic performance. For example, Jiawen et al. [85] developed the 
DeepCT-PDAC model using contrast-enhanced CT and deep learning algo-
rithms to predict the overall survival (OS) of patients with pancreatic ductal 
adenocarcinoma (PDAC) before and after surgery. In addition, another study 
compared four networks, NLLS, GRU, CNN, and U-Net, through quantitative 
analysis (comparing SSIM and nRMSE scores), qualitative analysis (comparing 
parameters), and Bland-Altman analysis (consistency analysis). The study found 
that GRU performed the best and proposed a method combining GRU and at-
tention layer for analyzing the concentration curve of dynamic contrast-enhanced 
magnetic resonance imaging (DCE-MRI) and ensuring stable output of ex-
panded parameter estimation. This MRI technique can be used for non-invasive 
detection of various diseases, including pancreatic cancer [86]. Furthermore, Fi-
lipe et al. [87] developed a deep learning algorithm using endoscopic ultrasound 
(EUS) images of pancreatic cysts, achieving an accuracy rate of over 98% in au-
tomatically identifying mucinous pancreatic cysts. There is also a DCNN system 
that uses EUS-FNA stained histopathological images for pancreatic cell cluster 
differentiation, which performs comparably to pathologists in terms of discrim-
ination performance [88]. 

7. Conclusions 

Artificial intelligence has made significant progress in the application of diges-
tive system diseases in the field of medicine. Different scholars have compared 
and analyzed various algorithm networks for different diseases to find the 
best-performing models. On this basis, methods such as MCA attention me-
chanism, feature selection, gradient descent, and ensemble models can be intro-
duced to further improve the diagnostic performance of the models. With the 
establishment of data platforms, the accuracy of the models will also gradually 
improve. However, in achieving high accuracy and applicability, further efforts 
are still needed for the development of artificial intelligence in the medical field.  

As far as this study is concerned, the sources and quality of the data used to 
build the AI model are uneven, which may affect the accuracy of the data; there 
is a lack of standardization and normalization, and it is currently impossible to 
provide some universally applicable and highly accurate models. In the future, 
AI can not only help patients self-manage single or multiple diseases, monitor 
and manage their own diseases in a standardized and reasonable manner, but 
also predict and treat digestive system diseases at the genetic level. 
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