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Abstract 
Background: The prevalence of Parkinson’s disease (PD), a chronic and pro-
gressive neurodegenerative disorder, is projected to increase twofold by 2030. 
Leucine-rich repeat kinase 2 (LRRK2) is the most commonly observed gene 
in both familial and sporadic PD cases. Notably, there is a substantial aug-
mentation in motor activity during both larval and adult stages of zebrafish 
lacking the lrrk2 gene. Nevertheless, the precise genetic abnormalities ac-
countable for eliciting these phenotypes in zebrafish are yet to be elucidated. 
Methods: Real-time polymerase chain reaction (PCR) was conducted on ze-
brafish larvae at 6 days post fertilization (dpf) belonging to both the wild-type 
and lrk2(-/-) groups. Guide RNA was designed and subsequently employed in 
the PCR process. Electrophoresis was performed to facilitate identification. 
Results: The expression of CNTF mRNA was significantly diminished in 
lrrk2(-/-), in comparison to the wildtype zebrafish larvae. This finding im-
plies that CNTF may have crucial implications in the regulated functioning of 
lrrk2, which is widely acknowledged as the predominant genetic factor con-
tributing to hereditary PD. The primers for CNTF DNA were meticulously 
designed, and the electrophoresis results of the PCR product were subse-
quently presented. The wild type zebrafish embryos were meticulously pre-
pared for micro-injection, and the resulting efficiency identification displayed 
the presence of the mutant PCR product, which exhibited the presence of 
several debris. Conclusions: The present study demonstrates the successful 
generation of CNTF mutant zebrafish using the CRISPR/Cas9 genome edit-
ing technique. Further investigations are necessary to deepen our under-
standing of the exogenous CNTF gene’s functionality. 
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1. Introduction 

Parkinson’s disease (PD) is a chronic and progressive neuron-degenerative dis-
order that has a significant impact on individuals aged 65 and above, affecting 
more than 1% of this population [1] [2]. It is projected that the prevalence of PD 
will double by the year 2030 [2]. The primary characteristic of PD is a disruption 
in the initiation and maintenance of normal movement, resulting in bradykine-
sia, resting tremors, and postural instability. The aforementioned symptoms can 
be attributed to the degeneration of dopamine-producing neurons in the subs-
tantia nigra (SNpc) within the midbrain, alongside a reduction in dopamine 
neurotransmitter levels and dopaminergic terminals within the caudate and pu-
tamen nuclei of the striatum [3]. Therapeutic interventions for PD involve the 
regular administration of either the dopamine precursor levodopa or the dopa-
mine agonist [4]. However, it is important to recognize that a definitive cure for 
PD has not yet been found. Currently, there are no therapeutic agents that have 
shown clear evidence of modifying the progression of PD [5]. Therefore, a dee-
per understanding of the underlying pathogenesis of the disease has the potential 
to greatly aid in the identification of treatments. 

The pathology of Parkinson’s disease (PD) is influenced by two significant 
factors: environmental factors and genetic factors. Long-term exposure to envi-
ronmental pollutants, including pesticides, heavy metals, organic solvents, air 
pollutants, and high levels of ultraviolet radiation, has been found to elevate the 
risk of developing PD [6] [7] [8] [9] [10]. Among the various genes associated 
with PD, Leucine-rich repeat kinase 2 (LRRK2) is the most frequently observed 
gene in both familial and sporadic PD patients. The abnormal expression of 
LRRK2 gene is widely recognized as the most prevalent genetic cause of heredi-
tary PD [11] [12]. In the latest study, Sheng et al. observed a significant increase 
in motor activity in both larval and adult stages of lrrk2 knockout zebrafish [13]. 
However, the specific genetic abnormalities responsible for inducing these phe-
notypes in zebrafish remain to be determined. Therefore, we screened the target 
gene from transcriptome analysis.  

Ciliary neurotrophic factor (CNTF), a member of the IL-6 family of multi-
functional neurotrophic factors, has been shown to plays a pivotal role in the 
viability, differentiation, and plasticity of neural cells. CNTF, known for its role 
in promoting the viability of parasympathetic neurons within the chicken ciliary 
ganglion in an in vitro setting, exerts nutritional and differentiation influences 
on various peripheral and central neurons, glial cells, and extracellular cells 
within the nervous system [14] [15]. Recent researches suggested that astrocytes 
contribute to neuroprotection in PD by generating CNTF via the activation of 

https://doi.org/10.4236/jbm.2023.1111023


L. H. Xu et al. 
 

 

DOI: 10.4236/jbm.2023.1111023 271 Journal of Biosciences and Medicines 
 

transient receptor potential vanillin 1 (TRPV1) [16]. Additionally, CNTF has 
demonstrated the ability to stimulate dopamine synthesis and release [17]. Masu 
et al. utilized homologous recombination methods to ablate the CNTF gene in 
fully developed mice, resulting in a gradual decline in muscle mass and motor 
neuron degeneration, ultimately leading to a modest yet discernible decline in 
muscular strength [18]. The absence of CNTF hampers the mice’s ability to re-
cover from sciatic nerve compression injuries [19]. These findings suggested that 
CNTF may play crucial roles in the survival, differentiation, and synaptic plas-
ticity of neural cells.  

Zebrafish, possessing a comparable genome and nervous system to that of 
humans, is frequently employed as a model organism in the investigation of 
neurodevelopment and neurodegenerative disorders. Moreover, the utilization 
of the zebrafish model facilitates drug screening and gene modification experi-
ments, rendering it an invaluable instrument for assessing potential therapeutic 
strategies and comprehending the underlying mechanisms of diseases. 

To the best of our knowledge, there is currently a lack of comprehensive un-
derstanding regarding the precise function and mechanism of CNTF in zebra-
fish. Therefore, it is crucial to utilize genome editing technology to create CNTF 
gene mutants in zebrafish, which will enable further investigation into their role 
in zebrafish development and nervous system functionality.  

2. Material and Methods 
2.1. Zebrafish Maintenance 

Zebrafish (Danio rerio) were maintained according to methods described in The 
Zebrafish Book [20]. All animal procedures were performed according to the 
requirements of the local ethics committee of the Hangzhou Normal University.  

2.2. Real-Time PCR 

Total RNA was extracted from 6-day post fertilization (dpf) zebrafish larvae 
(wild-type and lrk2(-/-) groups) using TRIzol reagent (Invitrogen). A pool of 25 
zebrafish larvae constituted one sample. Three replicate samples for each group. 
Complementary DNA (cDNA) was synthesized using SuperScriptTM II Reverse 
Transcriptase (Invitrogen). Real-time polymerase chain reaction (PCR) was 
performed via 7300 Real-Time PCR System (Applied Biosystems) using 2 μL of 
cDNA/20 μL of SYBR reaction mixture. The forward and reverse primers of 
real-time PCR are in exon2 and exon3, respectively. The product length is 140 
bp. The sequences of real-time PCR primer were shown in Table 1. 

 
Table 1. The primer sequences. 

Gene name Forward primer (5' → 3') Reverse primer (5' → 3') 
CNTF mRNA ACAAACGGTCGTCATGGGTT TGACCTCCTTCCACTGGTGA 
CNTF DNA CCTACGGGGGTCTTTACCTATT TATGACTTGAGGAGTTGGATGC 

CNTF gRNA 
ATAATACGACTCACTATAGAGCTGCGCTTGTCCCT 

GCGGTTTTAGAGCTAGAAATAGC 
AGCACCGACTCGGTGCCACT 

https://doi.org/10.4236/jbm.2023.1111023


L. H. Xu et al. 
 

 

DOI: 10.4236/jbm.2023.1111023 272 Journal of Biosciences and Medicines 
 

2.3. Guide RNA and PCR Identification 

We choose the gRNA (GAGCTGCGCTTGTCCCTGCGCGG) as the target se-
quence. In order to identification the efficiency of the gRNA, we designed the 
identification PCR primer by the genomic DNA templates. The PCR product 
contain the cas9 target sequence and the length is 177 bp. The sequences of 
guide RNA and PCR primer were shown in Table 1. 

The double-stranded DNA used for the synthesis of specific gRNA was ampli-
fied through PCR. The reaction system employed was as follows (20 μl):  

5X first strand buffer  4 μl 
DTT     2 μl 
T7 Polymerase   0.5 μl 
10 mM NTP   1 μl 
Template    1 μg 
Nuclease-free H2O  up to total volume to 20 μl 
Mix the system well and put them in 37˚C for 2 hr - 3 hr. 

2.4. Micro-Injection 

About 1 nl of cas9 mRNA and gRNA were co-injected into 1-cell-stage wild type 
embryos. 

The stock volume final concentration employed was as follows: 
Phenol red    0.4 μl  
Cas9 mRNA   500 ng/μl  
gRNA     300 ng/μl  
Nuclease-free H2O  up to total volume to 3 μl  

2.5. Check the Efficiency 

Firstly add 20 μl solution I (25 mM NaOH, 0.2 mM EDTA, PH 12.0) at 95 for 30 
min, and then add 20 μl solution II (40 mM Tris-HCl, PH5.0) to lysis the zebra-
fish embryos. The genomic region surrounding the CRISPR target site for each 
gene was PCR amplified and digested by the enzyme which you have choose for 
the cas9 target. The product of PCR cannot be digest by the enzyme should be 
the representation of the mutation efficiency. 

3. Results and Discussion 

The expression of CNTF was found to be significantly diminished in lrrk2(-/-) 
zebrafish larvae, in comparison to the CTL group (wildtype zebrafish larvae), as 
depicted in Figure 1. This finding implies that CNTF may have crucial implica-
tions in the regulated functioning of lrrk2, which is widely acknowledged as the 
predominant genetic factor contributing to hereditary PD. Consequently, our 
research endeavors were directed towards CNTF as the focal gene for generating 
CNTF mutant zebrafish through the utilization of CRISPR/Cas9 genome editing 
technology. 

The position of these primers for CNTF DNA and CNTF RNA were showed 
in Figure 2, respectively. The electrophoresis outcome of the PCR product is 
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presented in Figure 3. The marker, listed from top to bottom as 5 K, 3 K, 2 K, 
1.5 K, 1 K, 750, 500, 200, and 100 bp, is displayed on the right, while the PCR 
product of CNTF (177 bp) is shown on the left. Figure 4 shows the wild type ze-
brafish embryos prepared for micro-injection. The efficiency identification result 
was presented in Figure 5. The first list on the left consisted of markers, ar-
ranged from top to bottom as follows: 5 K, 3 K, 2 K, 1.5 K, 1 K, 750, 500, 200, 
and 100 bp. The second list represented the negative control, while the third list 
displayed the mutant PCR product, which contained several debris. The fourth 
list shows the PCR product of CNTF, measuring 177 bp. 

 

 
Figure 1. Real time PCR. 

 

 
Figure 2. Schematic presentation of CNTF gene locus and targeting site. 

 

 
Figure 3. Electrophoresis of PCR product. 
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Figure 4. Micro-injection. 

 

 
Figure 5. Identification of the efficiency. 

 
In summary, the present study demonstrates the successful generation of CNTF 

mutant zebrafish using the CRISPR/Cas9 genome editing technique. CNTF may 
play crucial roles in the survival, differentiation, and synaptic plasticity of neural 
cells. A comprehensive comprehension of the underlying pathogenesis of Parkin-
son’s disease possesses the potential to significantly facilitate the identification of 
therapeutic interventions. Further investigations are necessary to deepen our 
understanding of the exogenous CNTF gene’s functionality, with the ultimate 
goal of optimizing its therapeutic efficacy. 
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