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Abstract 
Some Triptorelin® (TRP) conjugates of triphenylmethanol derivatives (TPMs) 
with optimized hydrophobicity were synthesized by reacting 2-substituted 
methoxy benzenes with 1,3,5-trioxane, followed by the conjugation with TRP and 
sebacic acid to produce TRP-TPMs derivatives. Comparative antiproliferative 
assays between TRP-TPMs conjugates and the corresponding non-covalent 
physical mixtures of the TPMs derivatives and TRP were used to treat human 
acute lymphoblastic leukemia (CCRF-CEM), human ovarian adenocarcino-
ma (SK-OV-3) and mouse preadipocytes (3T3-L1) cells. TRP-TPMs conju-
gates at the 50 µM inhibited cell proliferation in CCRF-CEM, SK-OV-3 and 
3T3-L1 cells by 21% - 37%, 24% - 73%, 37% - 56%, respectively following in-
cubation for 72 h. These findings indicate that TRP-TPMs derivatives have 
the potential to enhance the biological activity of TRP. 
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1. Introduction 

Triptorelin® (TRP) is a synthetic analogue of the gonadotropin-releasing hor-
mone (GnRH), first reported in 1976. The structure of TRP consists of ten ami-
no acids (5-oxoPro-His-Trp-Ser-Tyr-D-Trp-Leu-Arg-Pro-GlyNH2) and is used 
to treat advanced prostate cancer and endometriosis. TRP has been reported to 
stimulate the pituitary gland resulting in the secretion of FSH and LH [1]. How-
ever, prolonged stimulation (i.e., with constant concentration of TRP in the 
blood) of the pituitary causes, insensitivity to the action of GnRH [1]. This re-
duces the level of gonadotropin in the blood, resulting in decreased levels of sex 
hormones to post-castration or menopausal levels. These effects are however, 
reversible. In addition to the usual side effects of the agonist analogs of LH-RH, 
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other reported adverse effects include transient hypertension, dry mouth, exces-
sive salivation, para-esthesia and increased dysuria [1]. 

LHRH analogues are found in a variety of formulations and depending on the 
medication, can be administered every 1 to 12 months. Medications currently 
available in the United States include different formulations of triptorelin® leu-
prolide®, goserelin® and histrelin® in a variety of dosing intervals ranging from 
monthly to yearly. The associated side effects include hot flashes, decreased libi-
do, erectile dysfunction, loss of bone mineral density, anemia and mood changes 
[2]. 

Efficacy and toxicity of anticancer drugs can be modified by using drug deli-
very systems and adjusting the physicochemical properties such as lipophilicity, 
cellular uptake and prolonging activity through chemical conjugation with vari-
ous chemical moieties. Drug delivery systems avoid the P-glycoprotein and other 
multidrug resistance proteins (MRPs) that are involved in drug efflux to over-
come the resistance problem and P-glycoprotein-mediated drug efflux [3] [4] 
[5]. 

Prodrug strategy is a drug delivery system through which chemical conjuga-
tion with the parent drug [6] [7] has been widely used in the delivery of anti-
cancer drugs such as Doxorubicin® [8] [9]. For example, several conjugation 
methods have been used to improve the delivery of Doxorubicin®, including us-
ing gold nanoparticles [10], gold nanospheres [11], liposomes [12], peptides 
[13]-[18], and dendrimers [19]. The conjugation of TRP with agents that have 
optimal lipophilicity has yet to be explored. Therefore, the development of effi-
cient and safe prodrug carriers to enhance the delivery and retention of TRP into 
drug-resistant tumor cells remains less explored. 

Polyphenols are naturally occurring compounds found largely in fruits, vege-
tables, cereals and beverages. Fruits like grapes, apples, pears, cherries and ber-
ries contain up to 200 - 300 mg of polyphenols per 100 grams fresh weight [20] 
[21] [22]. In the last decade, there has been much interest in the potential health 
benefits of dietary plant polyphenols as antioxidants. The effect of polyphenols 
on human cancer cell lines is most often protective and induces a reduction in 
the number of tumors or growth rate. These effects have been observed at vari-
ous sites including the mouth, stomach, duodenum, colon, liver, lungs, mam-
mary glands and skin. Many polyphenols, such as quercetin, catechins, isofla-
vones, lignans, flavanones, ellagic acid, red wine polyphenols, resveratrol and 
curcumin have been tested; all of them showed protective effects in some models 
although their mechanisms of action were found to be different [23] [24]. Poly-
phenols influence the metabolism of pro-carcinogens by modulating the expres-
sion of cytochrome P450 enzymes involved in their activation of carcinogens 
[25] [26]. 

To take advantage of the anticancer properties of polyphenolic antioxidants, 
several polyphenolic derivatives were chosen for the chemical modification of 
TRP. Sebacic acid has been chosen as a lipophilic linker to attach TRP to poly-
phenolic derivatives. In this study, we first report the synthesis of the antioxidant 
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triphenylmethanol (TPMs) derivatives of TRP through the covalent conjugation 
with sebacic acid as the linker. Second, we report the evaluation and efficacy of 
the TPMs in in vitro cell antiproliferation activities using multiple cell lines. 
Prodrug conjugates were designed to improve cellular uptake, prolong biological 
activity and reduce therapeutic dosage of TRP. 

Antiproliferative studies of the TPMs in cells were carried out using three cell 
lines, namely: human leukemia carcinoma (CCRF-CEM); human ovarian adeno-
carcinoma (SK-OV-3); and preadipocytes (3T3-L1). Obesity is a serious problem 
which heightens the risk of several chronic illnesses including cancer develop-
ment [27] [28] [29] [30]. It has been estimated that about 20% of all cancers are 
caused by excess weight [31]. Therefore, and in addition to the use of the above 
cancer cell lines, the anti-obesity effect of our synthesized compounds was also 
tested in 3T3-L1. 

2. Experimental 
2.1. Preparation of TPMs 1a-e 

The TPMs were synthesized using a modified method as reported in the litera-
ture [32] [33] (see Scheme 1 below). Accordingly, 1,3,5-trioxane (15 mmole) was 
added to 2-chloroanisole, 2-nitroanisole, 2-methylanisole 1,2-dimethoxybenzene 
or methyl 2-methoxybenzoate (100 mmole) in 10 mL glacial acetic acid. The mixture 
was heated to 90˚C - 95˚C and 1 mL mixture of sulfuric acid and glacial acetic acid 
(1:5, v/v) was added to the solution. The mixture was stirred for 5 h at 90˚C - 96˚C. 
The reaction mixture was cooled to 0˚C using an ice bath and a homogenous solu-
tion of sodium nitrite (1.0 g, 15 mmole) and 2-chloroanisole, 2-nitroanisole, 
2-methylanisole, 1,2-dimethoxybenzene or methyl 2-methoxybenzoate (15 mmole) 
in 10 ml concentrated sulfuric acid was added to the reaction mixture. The ice 
bath was removed and stirring of the reaction mixture was continued at room 
temperature for an additional 24 hr. The mixture was then poured into crushed 
ice (100 g) while stirring. The precipitate was filtered off and dried under va-
cuum and further purified on C18 column and hexanes/ethyl acetate as solvent 
using a TeledyneCombiFlash® Rf-200 chromatography machine with the gra-
dient system set at a constant flow rate of 25 ml/min to yield pure products in 
63% - 87% yield. 

 

 
Scheme 1. Preparation of triphenylmethanol (TPMs) derivatives 1a-e. 
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Tris(3-chloro-4-methoxyphenyl)methanol (1a), (4.51 g, 66%), MS (ESI-TOF) 
(m/z) for C22H19Cl3O4: calcd., 453.0, found 453.0 [M + H]+; tris(3-nitro-4-me- 
thoxyphenyl)methanol (1b), (4.52 g, 63%), MS (ESI-TOF) (m/z) for C22H19N3O10: 
calcd. 485.1, found 485.4 [M]+; tris(3-methyl-4-methoxyphenyl)methanol (1c), 
(4.77 g, 81%), MS (ESI-TOF) (m/z) calcd. 415.2, found 415.2 [M + Na]+; tris(3,4- 
dimethoxyphenyl)methanol (1d), (5.75 g, 87%), MS (ESI-TOF) (m/z) for C25H28O7: 
calcd, 441.2, found 441.4 [M + H]+; trimethyl 5,5’,5’’-(hydroxymethanetriyl) 
tris(2-hydroxybenzoate) (1e), (5.57 g, 77%), MS (ESI-TOF) (m/z) for C28H28O10: 
calcd. 525.2, found 525.4 [M + H]+. 

2.2. Preparation of Tris(2-(Hydroxymethyl)Phenol) Conjugates of  
TRP 2a-e 

Tris(4-methoxyphenyl)methanol derivatives 1a-e (0.05 mmol), TRP acetate 
(0.05 mmol), sebacic acid, 10 mg, 0.05 mmol) and HBTU (19 mg, 0.05 mmol) 
were dissolved in dry NMP (3 mL). N,N’-diisopropylcarbodiimide (DIC, 8 µL, 
0.05 mmol) and N,N-Diisopropylethylamine (DIPEA, 21 µL, 0.12 mmol) were 
added to the reaction mixture. 

The mixture was stirred at room temperature for 24 h. Afterwards, the solvent 
was evaporated and dried under vacuum. The final product was purified with a 
C18 column and hexanes/ethyl acetate as solvents using a TeledyneCombiFlash® 
Rf-200 chromatography machine. The gradient system is set at a constant flow 
rate of 25 ml/min to yield pure TRP-TPMs conjugates 2a-e (Scheme 2). TRP-TPMs 
conjugate (2a), (64 mg, 66%), MS (ESI-TOF) (m/z) for C96H116Cl3N18O19: calcd, 
1929.8, found 1929.8 [M + H]+; TRP-TPMs conjugate (2b), (71 mg, 72%), MS 
(ESI-TOF) (m/z) for C96H115N21O25: calcd, 1961.9, found 1978.9 [M + OH]+; 
TRP-TPMs conjugate (2c), (64 mg, 68%), MS (ESI-TOF) (m/z) for C99H122N18O18: 
calcd, 1850.9, found 1850.9 [M – H2O]+; TRP-TPMs conjugate (2d), (84 mg, 87%), 
MS (ESI-TOF) (m/z) for C99H124N18O22: calcd, 1917.9, found 1917.9 [M + H]+; 
TRP-TPMs conjugate (2e), (77 mg, 77%), MS (ESI-TOF) (m/z) for C102H125N18O25: 
calcd, 2001.9, found 2001.9 [M + H]+. 

3. Cell Culture 

Human leukemia carcinoma CCRF-CEM (ATCC no. CCL-119), human ovarian 
adenocarcinoma SK-OV-3 (ATCC no. HTB-77) and mouse pre-adipocyte fibrob-
last cells (3T3-L1) cell lines were obtained from American Type Culture Collec-
tion. The cells were grown on 75 cm2 cell culture flasks with RPMI-1460 medium 
for leukemia cell line, McCoy’s 5A medium for ovarian cell line and Dulbecco’s 
Modified Eagle’s Medium (DMEM) (GIBCO, Grand Island, NY) for pre adipo-
cytes cell line and supplemented with 10% fetal bovine serum (FBS) and 1% peni-
cillin-streptomycin solution (10,000 units of penicillin and 10 mg of streptomycin 
in 0.9% NaCl) in a humidified atmosphere of 5% CO2, 95% air at 37˚C for 24 hr. 

3.1. Cell Antiproliferation Assay 

Antiproliferative activities of synthesized TRP-TPMs 2a-e (see Scheme 2) and  
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Scheme 2. Synthesis of triphenylmethanol conjugates of TRP 2a-e. 

 
physical mixtures of TPMs 1a-e + TRP were evaluated in CCRF-CEM, SK-OV-3 
and 3T3-L1 cells and the results compared with cells treated alone with TRP. 
The use of TRP-TPMs as opposed to that of TRP alone was based on the find-
ings in our previous studies where lipid peroxides measured as thiobarbituric 
reactive substances (TBARS) decreased between 20% - 30% for the TRP-TPMs 
samples in comparison to those of TRP (5% - 10%) [34]. The assay was carried 
out using the CellTiter 96 aqueous one solution cell proliferation assay kit (Pro-
mega, USA). Briefly, 100 µL each of SK-OV-3 cells in suspension at 5000/mL, 
CCRF-CEM at 50,000/mL and 3T3-L1 at 10,000/mL were placed in 96 well cul-
ture plate. After seeding for 24 h, the cells were treated with 50 µM of com-
pounds 2a-e in 2% DMSO in triplicate. TRP (50 µM) was used as the positive 
control. For the physical mixtures, an appropriate volume of TRP stock solution 
was mixed with an appropriate volume of an aqueous solution of compounds 
1a-e to obtain a final concentration of 50 μM respectively for TPMs and TRP. 
The mixtures were vortexed until the solutions became homogeneous. Subse-
quently, the mixtures were incubated for 30 min at 37˚C before treating the cells 
with it. The cells were incubated at 37˚C with 5% CO2 for 72 h. Following the 
incubation, 20 μL CellTiter 96 aqueous solution was added to the samples and 
incubated for a further I h. under the same conditions. The absorbance of the 
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formazan product was measured at 490 nm using a microplate reader. The per-
centage of cell survival was calculated as the OD value of cells treated with the 
test compound – OD value of culture medium/(OD value of control cells – OD 
value of culture medium) × 100%. 

3.2. Cell Cytotoxicity Assay 

The cytotoxicity of TRP, TPMs 1a-e and TRP-TPMs 2a-e treated with CCRF- 
CEM, SK-OV-3 and 3T3-L1 cells was determined by the MTT assay using the 
CellTiter 96 aqueous one solution cell proliferation assay kit (Promega, USA). 
The respective cells were cultured overnight in 96 well plates at a density of 5000 
cells per well in 0.1 mL of the appropriate growth medium at 37˚C. Different 
concentrations of TRP, TPMs 1a-e and TRP-TPMs 2a-e (up to a maximum of 
100 μM) were used to treat the cells and incubated for 2 h. Following the treat-
ments, the media was aspirated and replaced with fresh medium and incubated 
for another 72 h. Samples without the above compounds served as controls and 
treated under the same conditions as the treated samples. The absorbance of the 
formazan product was measured at 490 nm using microplate reader. The per-
centage of cytotoxicity was calculated as (OD value of untreated cells – OD value 
of treated cells)/OD value of untreated cells × 100%. 

4. Results and Discussion 
4.1. Chemistry 

TRP, DMSO and other chemicals and reagents were purchased from Fisher 
Scientific or Sigma-Aldrich Chemical Co. All coupling reactions (Scheme 2) 
were carried out in Bio-Rad polypropylene columns by shaking and mixing us-
ing a Glass Col® small tube rotator in dry conditions at room temperature. 
TPMs 1a-e, which mimic the naturally occurring poly phenolic antioxidants, 
were synthesized in moderate yields (Scheme 1) through covalent attachment to 
TRP via the hydrophobic linker, sebacic acid. Tris(2-(hydroxymethyl)phenol) 
conjugates of TRP (2a-e) with optimal hydrophobicity were synthesized to 
transport TRP into the cells (see Scheme 2). All products were purified (≤95%) 
by a flash chromatography system (TeledyneCombiFlash® Rf-200) and the struc-
tures of all the final compounds were confirmed by ESI/TOF mass spectrometry. 
Scheme 3 shows the structures of the final TRP-TPMs conjugates 2a-e. 

4.2. Cytotoxicity and Antiproliferative Activity of TRP-TPMs 2a-e 

TRP, TPMs 1a-e and TRP-TPMs 2a-e did not show any significant toxicity in 
CCRF-CEM, SK-OV-3 and 3T3-L1 cells at the 100 μM dose following treatment 
for 72 h. Thus, a non-cytotoxic concentration of 50 μM was selected for 
cell-based studies of TRP-TPMs 2a-e and the physical mixture of TPMs 1a-e + 
TRP. The effects of the said compounds on cell proliferation for the cell lines 
were also investigated at the 50 μM for 72 h. The 72 h, incubation was selected 
because the antiproliferative activity of the compounds was apparent following  
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Scheme 3. Structure of synthesized TRP-TPMs derivatives 2a-e. 

 
exposure as early as the 24 with the maximum at the 50 μM for the 72 h. incuba-
tion. The activity of synthesized compounds 2a-e was evaluated and in compar-
ison, to the noncovalent physical mixtures of (TPMs 1a-e + TRP) and TRP alone 
respectively (Figure 1). 

TRP-TPMs 2a-e showed higher antiproliferative activity compared to the TRP 
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Figure 1. Inhibition of (a) CCRF-CEM, (b) SK-OV-3 and (c) 3T3-L1 cells by compounds 
(50 µM) after 72 h incubation. The results are shown as the percentage of the control 
DMSO that has no compound (set at 100%). All the experiments were performed in trip-
licate (±SD). 

5. Conclusions 

In summary, TRP-TPMs derivatives were synthesized as prodrugs, and eva-
luated for their antiproliferative activities in two cancer cell lines and in preadi-
pocytes, 3T3-L1, and in comparison, to their corresponding physical mixtures. 
The conjugation of TRP with a specific TPMs derivative improved the antiproli-
ferative activity compared to the corresponding physical mixtures in all tested 
cell lines. TRP-TPMs showed comparable antiproliferative activity against CCRF- 
CEM, SK-OV-3 and 3T3-l1 cells when compared to TRP alone.  

Since the system was designed as a prodrug, we did not detect any huge sig-
nificant differences between TRP and TRP-TPMs in cytotoxicity over time. 
These data suggest that TRP-TPMs can be used as a potential prodrug for im-
proving the biological profile and cellular delivery of TRP.  

With regards to any future studies based on the current findings, normal cells 
such as human fibroblasts or HeK293 from kidneys may be included and to elu-
cidate the potential effects and benefits of TRP-TPMs in the said cells in com-
parison to cancer. 
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