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Abstract 
Cholesterol and cholesterol oxides impact on the functional properties of 
cells, in respect of the intracellular and extracellular distribution of com-
pounds across cell membranes, carcinogenesis and drug resistance. Abnormal 
levels of cholesterol oxides and steroids in cancerous tissues promote interest 
in steroid receptor cross-talk during cell-signalling and the steroid metabo-
lome of cancer patients. The research literature links the cytotoxic properties 
of oxysterols to interference with the NO/cGMP pathway. cGMP participates 
in cell-signalling and has a molecular structure that relates to cancer-inducing 
and cancer-preventing agents. This study uses a molecular modelling ap-
proach to compare the structures of cholesterol oxides to cGMP. Cholesterol 
and cholesterol oxide structures fit to a cGMP structural template in several 
ways, some of which are replicated by corticosteroids and gonadal steroid 
hormones. The results of this study support the concept that cholesterol 
oxides modulate cell apoptosis and autophagy via the NO/cGMP pathway 
and in conjunction with steroid hormones participate in modulating regula-
tion of cell function by cGMP. 
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1. Introduction 

Several major diseases are attributed to the malfunction of cell mitochondria, 
endoplasmic reticula and the cell membrane transport proteins that keep the 
intracellular environment in a state of functional homeostasis. Cholesterol, the 
precursor of steroid hormones, bile acids and oxysterols, dictates fluidity and 
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permeability within the cell membrane [1]. Modulation of the cholesterol com-
ponent of the cell membrane influences the conformation and ATPase activity of 
P-glycoprotein (MDR1), the ATP-dependent membrane efflux pump [2]. Cho-
lesterol accumulation and oxysterol synthesis within mitochondria decrease the 
opening-sensitivity of the permeability transition pore [3]. Desensitisation of 
transporter mechanisms within cells and mitochondria generates pro-apoptotic 
oxidative stress and mitochondrial dysfunction of relevance to the development 
of diabetes and cancer, and cancer pharmacology [3] [4].  

Investigations of cholesterol as a risk factor in malignancy are complicated by 
its precursor role and widespread distribution in many chemical forms. Studies 
on cholesterol oxysterols have demonstrated the promotion of various cancers, 
pro-apoptotic and cytotoxic effects on tumour cells, and interaction with chemo-
therapy and steroid hormone receptors [5] [6] [7]. Cell membrane (GPCR) and 
nuclear receptors (LXR) exist for oxysterols and may participate in the promo-
tion of apoptosis [8]. In endothelial and blood monocyte cultures, the apoptosis- 
inducing activities of 7β-hydroxycholesterol (7β-HC) and 7-ketocholesterol (7-KC) 
are rated as greater than those of 25-HC and 5,6-epoxycholesterol (5,6-EC) [9] 
[10]. Cytotoxic concentrations of these oxysterols induce oxiapoptophagy: ROS 
(reactive oxygen species) associated cell death with the characteristics of apopto-
sis and autophagy [11] [12]. Lethal autophagy is another description of cell death 
attributed to cholesterol metabolites [13]. A wide range of small molecular weight 
compounds of natural and synthetic origin protect against the cytotoxicity of 
oxysterols in cell culture. Such compounds include vitamin E (α-tocopherol), 
docosahexaenoic acid (DHA), ascorbic acid, biotin and methylfumarate [14] 
[15] [16] [17] [18].  

Nucleotide dependent enzyme pathways are integral to cell-signalling and 
there is considerable interest in the manipulation of tumour cGMP levels to im-
prove outcomes in vitro and in clinical settings. cGMP modulates cell ROS and 
SOCE (store-operated calcium entry), nucleotide binding domains (NBDs), tu-
mour cell apoptosis, autophagy and mitochondrial dysfunction [19]. The pres-
ence of cGMP binding sites on multi-drug resistant proteins (MRPs) links the 
nucleotide to the development of chemotherapy resistance [20]. Some cancer pa-
tients receive cGMP-targeted phosphodiesterase medication, although there is 
considerable debate on the therapeutic value of the nucleotide [21]. A similarly 
confusing picture is characteristic of in vitro studies on the role of cGMP. Indi-
vidual cell apoptosis-modulating agents including carcinogens, chemotherapy 
drugs, endogenous hormones and phytochemicals both induce and protect 
against apoptosis. Such contradictory findings may relate to the molecular simi-
larity of these compounds relative to the nucleotide. The alternative in-silico fits 
of their molecular structures to a cGMP structural template may demonstrate 
their propensity for engaging with alternative biochemical pathways at NBDs 
[22]. 

The major role of cGMP in maintaining mechanisms of cell homeostasis ge-
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nerates interest in the capacity of steroid hormones and endogenous sterols to 
directly influence functional properties of the nucleotide and promote cytotoxic-
ity, as a consequence of altered nucleotide: steroid ratios within cells. The poten-
tial for molecular interaction may be evident within compound structures as rel-
ative molecular similarity in comparison to the nucleotide; data that may con-
tribute to a better understanding of the impact of biochemical defects within 
cells and identify compounds suitable for therapy. The aim of this study is to in-
vestigate and report on nucleotide relative molecular similarity within the struc-
tures of cholesterol, oxysterols, and the compounds modulating their apoptotic 
and autophagic properties. 

2. Materials and Methods 
2.1. Compound Structures 

The compounds selected for investigation are primarily oxysterol compounds 
identified in cancer patient tissues [6] [7] and the above small molecular weight 
inhibitors of oxysterol cytotoxicity. Compounds structures are taken from the 
PubChem website (https://pubchem.ncbi.nlm.nih.gov/).  

2.2. Molecular Modelling 

The Nemesis software program (Oxford Molecular version 2.1) is used to build 
compound structures from the program fragment file and minimise energy val-
ues by conformational analysis. The molecular structures used for fitting are 
minimum energy conformers in an uncharged form. The conformation of the 
cGMP structure is described by the torsion angle (bond angle formed by 4 adja-
cent atoms) C8N9C1’O9-33˚ (Figure 1). The Nemesis program fits paired mo-
lecular structures on a three-point basis. Fitting-points, comprised of atoms of 
similar type and partial charge within compound and nucleotide structures, are 
identified in the text and table with respect to the nucleotide labels. Colour- 
coded atoms in the figures identify ligand fitting-points: carbon-green, nitro-
gen-blue, oxygen-red, sulphur-yellow. Bond order within the molecular struc-
tures is not shown to improve on presentation. The Nemesis program computes 
goodness-of-fit values, in respect of inter-atomic distance at each fitting-point 
and root mean square (RMS) value. The sequence of fitting points (given in Ta-
ble 1, left to right) provides the fit with the lowest RMS value. 

3. Results 

Figure 1 gives six fits of the cholesterol structure (templates 2 - 7) on the cGMP 
structure (template 1) which all have fitting-points on the purine and ribose- 
phosphate moieties of the nucleotide. These fits are similar in respect of good-
ness-of-fit values (Table 1). The common sterol core structure of 4 cyclic rings 
(template 2) enables oxysterol structures, such as 25-HC and 27-HC, to replicate 
the fits of cholesterol; template 2 and 3 fits are also given by testosterone and 
template 4 by estradiol (not shown). The keto group of 7-KC (8 and 9) contri-
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butes to more exclusive fits, with template 8 using the same fitting points as the 
chemotherapeutic drug doxorubicin (12). Apoptosis inhibitory compounds, as-
corbic acid (10) and dimethylfumarate (11) fit to the ribose-phosphate moiety of 
cGMP occluding the nucleotide cyclised ring. The O5 lactone ring fit of withafe-
rin A (13), a herbal medicine, contributes to the limited superimposition of this 
structure on the nucleotide template. 

Cholesterol oxides with side-chain C20, C22 and C24 hydroxyl groups target 
O6, O7 and O8 fitting-points on the cGMP template (Figure 2) which are not 
available to the cholesterol structure; 20α-HC fits at O6 and O8, 22(R)-HC and 
24(S)-HC at O7 and O8 respectively. Also given are the fits of cholesterol 5,6- 
epoxide (5) and metabolites of the epoxide: cholestane-3β,5α,6β-triol (6) (cho-
lestane-triol) and tumour promoter 6-oxo-cholestan-3β,5α-diol (OCDO) (7). 
The cholestane-triol fit is also given by 11-ketotestosterone (not shown). Den-
drogenin (8) is an epoxide metabolite derived by enzymatic conjugation with 
histamine. Two fits of the LXR agonist and androgen receptor antagonist 
T0901317 are given (9, 10). Of the T0901317 fits, template 10 is more similar to 
the fit of 22(R)-HC; both LXR agonists induce apoptosis in a similar manner. 

 
Table 1. Values for fitting compound structures to the cGMP template. 

Compounds Fitting points Interatomic distances (Å) RMS (Å) 

3-methyladenine O6C5C8 0.02, 0.03, 0.02 0.0067 

3-methyladenosine C6C1’N7 0.01, 0.02, 0.03 0.0048 

3-methyladenosine N7C8O7 0.09, 0.05, 0.11 0.0040 

5,6α-epoxide C4O8C3’ 0.05, 0.06, 0.09 0.0225 

7-ketocholesterol C1’C2C6 0.02, 0.06, 0.07 0.0086 

7-ketocholesterol C4C4’C1’ 0.11, 0.10, 0.06 0.0084 

17β-estradiol O3C1’C4’ 0.10, 0.03, 0.09 0.0024 

20αHC C4’C3’O6 0.14, 0.14, 0.03 0.0105 

20αHC O6C6O8 0.08, 0.11, 0.04 0.0024 

22(R)HC C4C1’O7 0.04, 0.06, 0.02 0.0093 

24(S)HC C8C2’O7 0.02, 0.12, 0.13 0.0102 

27HC C4C1’C3’ 0.03, 0.06, 0.04 0.0117 

α-tocopherol C3’O9O8 0,12, 0.08, 0.07 0.0201 

ascorbic acid C4’C2’O3 0.07, 0.07, 0.07 0.0027 

betulinic acid C2’C1N9 0.09, 0.05, 0.11 0.0205 

betulinic acid O7C4’C6 0.08, 0.10, 0.17 0.0073 

betulinic acid C4’C2’N1 0.09, 0.06, 0.02 0.0072 

biotin O9C4’O8 0.06, 0.11, 0.05 0.0000 

bufalin C2O7C2’ 0.07, 0.08, 0.10 0.0188 
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Continued 

bufalin C6C2O7 0.14, 0.04, 0.12 0.0060 

cholestane-triol O8C3’C4 0.06, 0.08, 0.09 0.0184 

cholesterol C4’C2’C2 0.09, 0.04, 0.05 0.0054 

cholesterol C4’C1’C2 0.11, 0.09, 0.06 0.0188 

cholesterol C3’C2’C4 0.05, 0.09, 0.09 0.0141 

cholesterol C4’C2’C2 0.10, 0.07, 0.06 0.0056 

cholesterol C3’C1’C4 0.05, 0.06, 0.03 0.0176 

cholesterol C4’C1’C8 0.07, 0.03, 0.05 0.0038 

cortisol C6C5C2’ 0.08, 0.04, 0.04 0.0065 

cortisol C4C1’C3’ 0.05, 0.07, 0.07 0.0180 

cycloheximide C3’C2’C6 0.04, 0.09, 0.09 0.0076 

cytosine arabinoside C3’C4’C8 0.01, 0.01, 0.02 0.0003 

dendrogenin C6C5C2’ 0.14, 0.08, 0.08 0.0150 

DHEA C4C1’C3’ 0.04, 0.06, 0.08 0.0101 

diethylstilbestrol O3C1’C4 0.06, 0.05, 0.02 0.0049 

dimethylfumarate O2C3’O5 0.03, 0.09, 0.10 0.0028 

diosgenin O8C3’C6 0.06, 0.07, 0.12 0.0056 

docosahexaenoic acid O7O5C2 0.13, 0.11, 0.07 0.0090 

doxorubicin C1’C2C6 0.06, 0.06, 0.12 0.0013 

fenoldopam N1C4O3 0.10, 0.13, 0.04 0.0105 

fulvestrant C4C3C1’ 0.07, 0.09, 0.07 0.0151 

lumisterol C6C5C2’ 0.07, 0.06, 0.01 0.0002 

mifepristone C5C4C2’ 0.10, 0.12, 0.03 0.0143 

OCDO C3’C2’C6 0.14, 0.13, 0.10 0.0182 

OCDO C6C5C2’ 0.14, 0.08, 0.08 0.0153 

QW-1624F2-2 C5C4O7 0.08, 0.07, 0.01 0.0006 

riociguat O6C6C7 0.06, 0.07, 0.01 0.0047 

staurosporine C1’C8C2 0.03, 0.05, 0.05 0.0048 

T0901317 O9C8C2’ 0.11, 0.08, 0.04 0.0034 

T0901317 C3’C1’C5 0.05, 0.03, 0.08 0.0003 

tadalafil N7C8C4’ 0.10, 0.10, 0.06 0.0143 

tesmilifene O3C3’C6 0.05, 0.02, 0.07 0.0001 

vitamin D C5C4C7 0.07, 0.07, 0.01 0.0001 

vitamin D C8N9O7 0.10, 0.11, 0.05 0.0064 

withaferin A C6C2O5 0.14, 0.04, 0.13 0.0073 
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The template fits of cortisol (1) and OCDO (2) in Figure 3 are the same as 
that given by dendrogenin in Figure 2. OCDO binds to the glucocorticoid re-
ceptor (GR) and shares this property, and similar nucleotide template fit, with 
the anti-progesterone mifepristone (3). The C4C1’C3’ fits of structures 4, 5 and 8 
are replicated by cholesterol and dehydroepiandrosterone (DHEA) and differ 
from those given by estradiol (6) and diethylstilbestrol (7). A more exclusive fit 
of DHEA (9) is not available to cholesterol-based compounds lacking an oxygen 
substituent. The molecular structures of DHEA and estradiol are very similar; in 
comparison to the estradiol fit (6) the structure of DHEA (9) is inverted. Dios-
genin (10), a commercial source of DHEA, superimposes along the C6-O8 axis 
of the cGMP template.  

Molecular structures of the pentacyclic triterpenoid betulinic acid and buffalin 
(Figure 4) also superimpose along the length of the cGMP template. Bufalin (4)  

 

 
Figure 1. Fits of cholesterol, cholesterol oxides and modulators of apoptosis to 
cGMP template (grey). 1: cGMP, 2 - 7: cholesterol, 8: 7-ketocholesterol, 9: 
7-ketocholesterol, 10: ascorbate, 11: dimethylfumarate, 12: doxorubicin, 13: 
withaferin A. 
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Figure 2. Fits of cholesterol oxides, dendrogenin and compound T091317 to cGMP 
template (grey). 1: 20α-HC, 2: 20α-HC, 3: 22(R)-HC, 4: 24(S)-HC, 5: 5,6,α-epoxide, 
6: cholestane-triol, 7: OCDO, 8: dendrogenin, 9: T091317, 10: T091317. 

 
has a similar template fit to withaferin A (Figure 1). An additional fit of betulin-
ic acid with an O7 fitting-point (C6C4’O7) is not shown as the C6 fitting dis-
tance (0.17 Å) is rather high (Table 1). Biotin (5) is a compound that shares an-
tioxidant properties with alpha-tocopherol (6) and DHA (7). Neither biotin or 
alpha-tocopherol have fitting-points on the nucleotide purine ring. Tesmilifene 
(8) a novel potentiator of chemotherapy, displays a unique nucleotide template 
fit. Structural analogues of vitamin D (9, 10) include compound QW-1624F2-2 
(11) and the ring-closed structure of lumisterol (12) which provides the cortisol 
fit given in Figure 3.  

Figure 5 includes the structures of compounds in clinical use that increase 
cGMP levels (1, 2, 3) or find use as pro-apoptotic anti-tumour agents (4, 5, 6). 
Fenoldopam, tadalafil and riociguat respectively have properties of a peripheral 
dopamine agonist, PDE5 inhibitor and anti-hypertensive activator of guanylyl 
cyclase. Minimum energy conformers of the three drugs demonstrate relative 
molecular similarity to the structure of cGMP, their pharmacological effector 
molecule. The fits of the three pro-apoptotic structures leave the nucleotide cyc-
lised ring unobstructed. In contrast to some of the above structures that supe-
rimpose over the length of the nucleotide template, derivatives of adenine (7, 8, 
9) with properties of autophagy inhibition share a preference for the purine ring.  

Nucleotide template fitting-values given in Figures 1-5 (Table 1) range from 
0.01 - 0.14 Å (interatomic distance) and 0.001 - 0.0225 Å (RMS value). 
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Figure 3. Fits of cholesterol derivatives and drug structures to cGMP tem-
plate (grey). 1: cortisol, 2: OCDO, 3: mifepristone, 4: 27-HC, 5: fulvestrant, 
6: estradiol, 7: diethylstilbestrol, 8: cortisol, 9: DHEA, 10: diosgenin. 

 

 
Figure 4. Fits of apoptosis and autophagy modulating compounds to cGMP 
template (grey). 1: betulinic acid, 2: betulinic acid, 3: bufalin, 4: bufalin, 5: 
biotin, 6: α-tocopherol, 7: docosahexaenoic acid, 8: tesmilifene, 9: vitamin 
D, 10: vitamin D, 11: QW-1624F2-2, 12: lumisterol. 
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Figure 5. Fits of cGMP modulating compounds and adenine deriva-
tives to cGMP template (grey). 1: fenoldopam, 2: tadalafil, 3: rioci-
guat, 4: cycloheximide, 5: cytosine arabinoside, 6: staurosporine, 7: 
3-methyladenine, 8: 3-methyladenosine, 9: 3-methyladenosine. 

4. Discussion  

Cholesterol provides the core ring structure of steroid hormones and identifies 
with the structure of cGMP, as illustrated by the cholesterol superimposed nuc-
leotide templates, in respect of molecular size and specific intra-atomic dis-
tances. The cholesterol fits are replicated by DHEA, a compound with the prop-
erty of alleviating oxidative-stress and apoptosis [23] [24] and a potent inhibitor 
of prostate and mammary gland cancer in the rat [25]. Some template fits of the 
cholesterol structure are also replicated by cortisol, testosterone and estradiol. 
Although cholesterol is not a compound with solely benign effects on cell func-
tion, cholesterol oxides have a greater capacity for rendering cells dysfunctional 
via modulation of oxidative stress mechanisms, mitochondrial function and 
MRPs. The effects of 27-HC on cells include autophagy induction in promono-
cytic cultures [26], ROS-linked apoptosis in haematopoietic cells [27], decreased 
colon cancer cell proliferation [28] and block of docetaxel-induced prostate epi-
thelial cell apoptosis [29]. 27-HC is a selective modulator of estrogen receptors 
[27]. The anti-proliferative effects of 22(R)-HC and 24(S)-HC on breast and 
prostate cancer cell-lines are also mediated by the AR antagonist T0901317 [30]. 
All three afore-mentioned compounds are LXR (liver X receptor) agonists, 
which induce expression of ATP-binding cassette (ABC) transporters involved 
in cholesterol efflux, promoting reduced intracellular cholesterol levels and cell 
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proliferation, and stimulation of apoptosis [31]. Although 22(R)-HC and T0901317 
structures do not have identical nucleotide template fitting-points their relative 
molecular similarity to cGMP may be sufficient to modulate cGMP function in 
the same way. Oxygen and hydroxyl substituents on the core steroid ring struc-
ture enable additional fits to the nucleotide template, unavailable to cholesterol 
and oxysterols with side-chain substituents, and may provide greater affinity to 
protein receptors of cGMP. 7-KC and cholestane-triol both promote LXR agon-
ist-induced apoptosis of breast and prostate cancer cells [8] whereas cholango-
cytes cultured in low concentrations of cholestane-triol become resistant to hy-
drogen peroxide-induced apoptosis [32]. 

The impact of oxysterols on NO/cGMP biochemistry is evident in studies which 
have evaluated the cytotoxicity of 7-KC, 25-HC and cholestane-triol on red 
blood cells, fibroblasts and endothelial cells [33] [34] [35]. The small molecular 
weight compounds (biotin, vitamin C, α-tocopherol, dimethylfumarate and DHA) 
that protect against the cytotoxic effects of oxysterols are, in terms of structure, 
very different in comparison to the oxysterols and each other but not in respect 
of relative molecular similarity to cGMP. The effects of α-tocopherol and biotin 
on oxidative stress have been attributed to protection of the redox state of gua-
nylate cyclase and influence on the protein kinase G pathway [36] [37]. DHA 
induces production of endothelial cell nitric oxide (NO) and the expression of 
genes associated with down-regulation of PDE5 [38] [39]. α-tocopherol, DHA 
and dimethylfumarate prevent the cytotoxicity induced in cell cultures by 7-KC 
[14].  

Studies on murine oligodendrocyte death induced by 7β-HC demonstrate at-
tenuation of impaired mitochondrial function and dysfunctional lipid metabol-
ism by biotin, DHA and α-tocopherol [17]. Several earlier studies established a 
relationship between vitamin D and cGMP through the investigation of guanylyl 
cyclase activation. Barsony and Marx [40] describe the rapid accumulation of 
intracellular cGMP in dermal fibroblasts near activated vitamin D receptors. The 
accumulation of vitamin D and cGMP, in response to adrenocorticosteroids, 
correlated with GR binding-affinity. Vitamin D induces autophagy with inhibi-
tion of oxidative stress and apoptosis in pancreatic beta-cells and breast cancer 
cells [41] [42]. Supplementation with the vitamin, in the clinical setting, may 
improve the effectiveness of chemotherapeutic drugs [43].  

Several larger compound structures (diosgenin, betulinic acid, bufalin, witha-
ferin A) with template fits that span the length of the nucleotide structure are 
recognised for their lethal autophagy properties. The generation of ROS and 
JNK activation by bufalin, a β-hydroxy steroid, induces apoptosis and autophagy 
in a number of tumour cell lines [44]. Betulinic acid, another compound with 
apoptotic and autophagic means of inducing cell death has an affinity for estro-
gen receptors (ER) and stimulates NO generation [12] [45]. Diosgenin inhibits 
prostate cancer cell proliferation by inducing autophagy and apoptosis [46]. 
There are, however, some concerns that the cell apoptosis observed when auto-
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phagy is inhibited by chemotherapy, radiation, or compounds such as 3-methy- 
ladenine and 3-methyladenosine, may not be autophagy related [47] [48]. Tes-
milifene-induced apoptosis of MDR cells, associated with increased superoxide 
and reduced ATP levels, enhances the cytotoxicity of several chemotherapeutic 
drugs in vitro and in vivo [49].  

The anti-myeloma activity of cholesterol 5,6-epoxide is attributed to oxiapop-
tophagy; metabolism to OCDO stimulates breast cancer cell growth via GR [12] 
[50]. Tumour cell proliferation by OCDO, present in higher concentrations in 
breast cancer tissue, is inhibited by mifepristone [51]. Dendrogenin, a non ca-
nonical LXR ligand, degrades hydrogen peroxide and cholesterol 5,6-epoxides 
via catalase stimulation and lethal autophagy [52]. The nucleotide templates 
demonstrate the same fit for cortisol, OCDO, mifepristone and dendrogenin. 
Recent clinical studies question the balance of corticosteroid treatment effects in 
breast cancer. Cortisol treatment of ER+ tumours is associated with reduced cell 
proliferation, whereas cortisol inhibition of chemotherapy-induced apoptosis 
may promote the development and metastasis of ER− tumours [53]. Hydroxy-
cholesterol template fits are replicated by cortisol, progesterone and testosterone, 
and the dendrogenin fit is replicated by cortisol and progesterone. Additional 
pro- and anti-apoptotic nucleotide template fits of cortisol, progesterone and 
testosterone are given in a previous study [54].  

Following a systematic review of steroid metabolism in cancers, Anh et al. [55] 
identified estradiol, DHEA, cortisol and estrogen metabolites as oncosteroids. 
The significance of steroid receptors in cancer subtypes is receiving more atten-
tion [55] [56] following recognition that ratios of cancer promoting and inhibi-
tory steroids and their metabolites may determine the status and progression of 
tumours. There is extensive steroid crosstalk between receptors (GR, ER, PR, 
AR) during cell-signalling. GR recognises glucocorticoid and progesterone struc-
tures with similar affinity, whereas AR binds to the ER element with an antago-
nistic effect on estrogen [53]. GR has a tumour suppressive role in attenuating 
AR dependent transcription in prostate cancer. Following an investigation of a 
substantial metabolome of 36 urinary metabolites in patients with a familial risk 
of breast cancer, Houghton et al. [57] identified six glucocorticoids associated 
with an increased risk (49% - 161%), including tetrahydrocortisone (THE) and 
tetrahydrocortisol (THF). Androsterone (AN) and 11-hydroxy-androsterone 
(11OHAN) were associated respectively with increased risks of 70% and 90%, 
whereas E1and E2 reduced breast cancer risk. The results are indicative of raised 
androsterone and cortisol levels in breast cancer patients, as glucocorticoids are 
all cortisol derived. In regard to the present study, THE and THF structures pro-
vide the same Figure 3 cortisol fit, as the steroid A ring is not involved in tem-
plate fitting. THE and THF structures are not able to replicate cortisol template 
fits that use the oxygen fitting-points demonstrated in a previous study [54]. 
Cortisol, DHEA, AN and 11OHAN replicate the template fits of cholesterol 
(Figure 1, templates 3 and 7); template fit 7 is also given by 11-ketotestosterone.  
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Research literature documenting the role of cGMP in the transformation of 
healthy cells into cancerous tissue is limited and confusing. PDE5 inhibitors in-
crease intracellular cGMP by blocking enzymatic hydrolysis of the nucleotide 
and ABCC5-mediated efflux, producing favourable conditions for the promo-
tion of tumour cell apoptosis and reduced growth [58]. On the other hand, in 
vitro studies report that the NO/cGMP pathway attenuates apoptosis in be-
ta-cells, neuronal cells and prostate cancer stem cells [59] [60] [61]. cGMP 
age-related disruption of mitochondrial homeostasis is also evident in rats [62]. 
Breast cancer studies demonstrate the benefits of dopamine and D1R agonists in 
controlling aggressive tumour cells, in vitro and in mouse models, via the 
cGMP/PKG pathway [63]. Stehle et al. [21] implicate the heterogeneity within 
tumour cell cGMP signalling, attributable to tumour cell type and environment, 
for contributing to the contradictory results of cancer therapy. A similarly con-
fusing picture is encountered in vitro, as the same compounds are reported to 
possess both positive and negative effects on cell apoptosis [22]. Some variability 
may be explained by the chemical milieux within which experimental studies are 
undertaken. Lipids, steroids and other cell products may interfere with agents 
under investigation, an even more complex problem for studies in vivo. Another 
factor is the assumed nature of an effector agent; for example, a PDE antagonist 
or dopamine agonist may not necessarily work on the basis of their known 
properties but on the basis of their molecular structures. A limitation of the 
present study is that goodness-of-fit values do not provide evidence of pharma-
cological affinity and in this respect it is difficult to identify the importance of 
comparative structures for a cGMP binding site, for example cholesterol versus 
oxysterols structures with ring or side-chain oxygens. A central role for cGMP in 
the regulation of apoptosis and autophagy is evident, however, from the obser-
vation that so many endogenous and exogenous modulators demonstrate rela-
tive molecular similarity to the nucleotide structure. Many of these compounds 
are unlikely to satisfy the enzyme, MDR, ion-channel and conformational change- 
mediated functions of the nucleotide. 

The compound structures linked to the modulation of apoptosis and auto-
phagy processes demonstrate characterisic nucleotide template fitting patterns. 
The fitting pattern is simplest for the above small molecular weight inhibitors of 
apoptosis that block the nucleotide cyclised ring. In contrast stimulators of 
apoptosis fit without blocking the cyclised ring, as is evident for the template fits 
of hydroxycholesterol compounds in Figure 2 (templates 1 - 4) and the pro- 
apoptotic structures in Figure 5. Autophagy inhibitors, 3-methyladenine and 
3-methyladenosine have a fitting preference for the nucleotide guanine ring. The 
stimulators of autophagy and lethal autophagy (diosgenin, betulinic acid, bufa-
lin, withaferin A, dendrogenin) relate to the complete nucleotide structure and 
in vivo may be able to displace or replace the nucleotide completely. Many 
compounds provide several different fits of one minimum energy structure to 
the cGMP nucleotide template. Extension of this observation to cell nucleotide 
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receptors may explain how such compounds induce alternative biochemical and 
bi-functional changes, via activation of different cell pathways. The additive and 
allosteric effects of compounds on apoptosis and autophagy processes through 
binding to NBD sites is of relevance to the study of drug resistance. Finally, this 
study places cholesterol oxides on an extensive list of tumour cell growth mod-
ulators that demonstrate relative molecular similarity to the cGMP structure. 
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