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Abstract 
Cystic fibrosis patients often develop lung infections because of the presence 
of thick and sticky mucus that fills their airways. The presence of this thick 
mucus prevents the lungs from filtering out certain dominant bacterial types, 
making patients highly susceptible to infections that can range anywhere in 
severity from mild to life-threatening. These infections can cause great dis-
tress for patients as it becomes harder for patients to breathe and increases 
the chance of mortality by respiratory failure. It is important to be able to 
track the progression or regression of cystic fibrosis to determine the best 
course of treatment. Thus, this project focuses on the use of an AI model to 
examine the microbiology of cystic fibrosis patients and predict the condition 
or stage of lung function in the future, as a way to guide doctors with their 
treatment plan. Due to the limited amounts of publicly available patient data, 
we used all of the data in the training and testing of our machine learning al-
gorithms initially and then tried a 50% training, 10% validation, and 40% 
testing split. Our results show that with relatively simple models (cubic poly-
nomials), we can predict FEV1 from statistically significant bacteria se-
quences within 98% accuracy when training on sufficiently large samples. 
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1. Introduction 

Cystic Fibrosis is a fatal genetic disorder that affects a number of organs, espe-
cially the lungs [1]. Mutations in the CFTR gene, known as the Cystic Fibrosis 
Transmembrane Conductance Regulator, disrupt the flow of chloride ions and 
water across cell membranes. Because the mucus becomes dehydrated with this 

How to cite this paper: Pinnaka, M. and 
Cheek, E. (2023) HealthNet: Machine Learn-
ing for Cystic Fibrosis Characterization. 
Journal of Biosciences and Medicines, 11, 
158-170. 
https://doi.org/10.4236/jbm.2023.119014 
 
Received: August 14, 2023 
Accepted: September 17, 2023 
Published: September 20, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jbm
https://doi.org/10.4236/jbm.2023.119014
https://www.scirp.org/
https://doi.org/10.4236/jbm.2023.119014
http://creativecommons.org/licenses/by/4.0/


M. Pinnaka, E. Cheek 
 

 

DOI: 10.4236/jbm.2023.119014 159 Journal of Biosciences and Medicines 
 

disruption, the cilia that normally move the mucus along the passageways can no 
longer perform this function on the thick and sticky mucus that builds up. 
Compared to healthy individuals, this abnormality of the mucus in CF patients 
provides germ with a more favorable environment to inhabit, thereby increasing 
the frequency of infections. As the disease progresses, a few bacterial types like 
Pseudomonas Aeruginosa tend to dominate in the lung as CF pathogens as a re-
sult of their ability to quickly adapt to the lung conditions of patients. CF pa-
tients often experience constant declines in FEV1 scores as they are faced with 
frequent lung infections and inflammation. In comparison to personal baselines, 
FEV1 scores for patients can help determine lung condition as the disease 
progresses. 

For this project, we used several machine learning approaches to predict the 
FEV1 score from current bacteria levels. The first two machine learning models 
used were the linear regression and polynomial regression models. After finding 
the baseline performance using these linear and non-linear models, we further 
experimented with training a neural network for this task. The type of neural 
network architecture selected to predict cystic fibrosis progression is the classic 
Multi-Layer Perceptron (MLP), which consists of an input layer that takes in the 
information that needs to be processed, hidden layers that drive the computa-
tions, and an output layer that performs the final classification or prediction. 
After feeding forward the values, MLPs are also trained with a backpropagation 
algorithm to correct and reduce errors [2]. 

Machine learning has a rich history of successfully processing sequential data, 
especially time-series information. Connor and coauthors [3] showed reliable 
predictions of weather data using RNNs where other machine learning (ML) 
methods like linear models and neural networks failed. This is also not the first 
time ML has been applied to the medical field [4]. Chang and coauthors [5] used 
ML to identify biomarkers from the microbiomes of study participants to aid in 
disease prediction and treatment. In the past decade, various types of machine 
learning algorithms have been developed with remarkable progress to analyze 
data a large scale in a time effective and cost-effective manner for applications in 
numerous fields, from medicine to agriculture to cybersecurity [6]. 

In addition to using recurrent neural networks, we will also experiment with 
simpler models, such as linear regression, polynomial regression, kernelized re-
gression methods, and multi-layer perceptron networks. These types of machine 
learning models can learn linear and non-linear relationships between the input 
features like the presence of certain bacteria and FEV1 score. 

Multi-Layer Perceptrons are machine learning models that aim to learn im-
portant information from data through a process called training. The weights of 
the network are often called neurons. These neurons mimic neurons of the hu-
man brain and learn to become activated and transmit information to one 
another when activated. MLPs have shown promise in several machine learning 
applications ([7] [8]), and should be expressive enough to learn the relationship 
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between FEV1 score and the presence of certain bacteria. The inputs to our 
neural network will be the number of bacteria present in the lungs on a certain 
day, and the output will be the predicted FEV1 score at a later point in time. We 
will train our MLP using the ADAM optimizer to minimize the mean-squared 
error over all of our training samples to learn the optimal weight setting. 

2. Data 

The data used in this experiment is publicly available and acquired from Qit-
ta.com [9]. The majority of preprocessing was done using usegalaxy.org. There 
were 51 patient sputum samples in the dataset that were collected and analyzed 
for certain bacteria using next-generation sequencing technology. Of these 51 
samples, 6 had invalid readings of FEV1 score due to faulty measurements. 

3. Experiments 
3.1. Data—Preprocessing 

For our initial experiment, we first wanted to show that it is possible for a ma-
chine learning model to predict FEV1 score based on the presence of certain 
bacteria in the patient’s sputum sample. To ensure that we were only providing 
relevant information to our machine learning models, we used only bacteria 
which had a statistically significant correlation to FEV1 score as measured by the 
spearman correlation metric. Still, some patients had extremely low numbers of 
bacteria counts. We further pre-processed our data by removing patients who 
had fewer than 10 statistically significant bacteria present in their sputum sample 
which left a total of 19 patients’ data. For all machine learning models, we did 
two separate tests by partitioning the data in separate ways. 

1) Use all of the data for training and testing. This was done to see if the mod-
el was expressive enough to describe the relationship between bacteria counts 
and FEV1 score. 

2) Separate the data into training, testing and validation sets. Here, 50% of the 
data was used for training, 10% was held out for validation to optimize our 
model hyper-parameters, and 40% was held out for testing. 

In each case, we trained our machine learning models in the simple supervised 
learning approach, where the input to the models was the bacterial counts, and 
the predicted output was FEV1 score. 

3.2. Same-Day Prediction 

We trained a linear regression model, a polynomial regression model, and an 
MLP model to predict FEV1 score based on bacteria counts. 

Let Nw R∈  denote a vector of the learned weights for the linear regression 
model, My R∈  denote a vector of FEV1 scores for each patient, and M N

trX R ×∈  
denote our matrix of training data, and M N

teX R ×∈  denote a matrix of our test 
data. To learn the weights for our linear regression model, we solved the li-
near-least squares problem. The closed-form pseudo-inverse solution to this 
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problem is: 

tr trw X y+=                             (1) 

To make a prediction with these weights, we multiply them by the matrix of 
our training data. 

pred try X w=                            (2) 

To make a prediction on test data, we can do the same thing with the test data. 
te

predy X w=                            (3) 

The polynomial regression model fits a polynomial of degree n to the data, 
and can capture more complex relationships than our linear regression model. 
The procedure for learning the weights of our polynomial regression model is 
exactly similar to the process of learning the weights of our linear model, except 
we augment our data matrix X by repeating the existing columns raised to a cer-
tain degree according to the degree of the polynomial we decided to use for our 
model. For our experiments, we used a polynomial model of degree two. For 
implementation, we used the function from the sklearn.kernel ridge library with 
α = 0 to create, fit, and test our polynomial model [10]. 

Lastly, we decided to train a shallow neural network model to learn the rela-
tionship between statistically significant bacteria and FEV1 score. Our neural 
network had 3 layers, with 10, 5, 1 neurons in each layer, respectively. The out-
put layer was programmed to have only one output and return a single number, 
the predicted FEV1 score for that patient. We used a ReLu activation function 
for layers 1 - 8 and a linear activation function for the output layer. We used the 
Adam optimizer to update the weights of the network during training, with an 
initial learning rate α of 0.001, a value of β1 of 0.9, and a value of β2 of 0.999. 

For implementation of the neural network, we used the Keras and tensorflow 
libraries ([11] [12]). 

3.3. Predicting Future FEV1 Scores 

To create our dataset of forecasted FEV1 scores, we modeled three scenarios for 
patients. The first is where the patient’s condition gets worse, and the bacteria 
counts increase along with FEV1 score. By trial and error, we determined the 
probability of cells splitting (0.2) and the probability of cells dying (0.5) that 
would allow for a general moderate increase in the number of cells over the 10 
days, starting with 100 cells. The second scenario is where the patient’s condition 
gets better, and the bacteria counts decrease along with FEV1 score. We kept the 
probability of cells splitting the same and decided once again by trial and error 
what probability of cells dying (0.75) would allow for a general moderate de-
crease in the number of cells over 10 days. Finally, the third scenario is where the 
patient’s condition stays the same, so the bacteria counts fluctuate around the 
same value. A graphical representation of this bacteria growth for a hypothetical 
scenario can be seen in Figure 1. To create this fluctuation, we generated a nor-
mal distribution, with a mean of the bacteria count for that day and a standard  
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Figure 1. Model for bacteria growth, bacteria decay, and bacteria stagnation. 
 
deviation of 0.05, and allowed for random selection of the bacteria count values 
based on the normal curve. The value of 0.05 was chosen through trial and error 
based on what would allow for the selection of bacteria count values with mod-
erate differences between each day. The figure below shows the projected bacte-
ria counts for each scenario over the 10 days. 

We then created the projected FEV1 score values that would model each of 
the three scenarios. For the first scenario where the patient’s condition worsens 
over the 10 days, FEV1 score was increased by 0.05% each day. For the second 
scenario where the patient’s condition improves, FEV1 score was decreased by 
0.05% each day. Finally, for the third scenario where the patient’s condition stays 
the same, FEV1 score was kept the same as the day 0 value through day 10. Fig-
ure 2 shows the projected FEV1 scores for each scenario over the 10 days. 

All this data was aggregated into a 3D array: 19 patients with 5 bacteria count 
values for each of the 10 days. 

4. Results 
4.1. Same-Day Prediction 
4.1.1. All Data Used for Training 
We first tested how well a linear model (LSTQ) can fit the data if we use all of it 
for training. As shown in Figure 3, this model performed poorly on the data,  
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Figure 2. Model for forecasting FEV1 scores. 
 

 
Figure 3. LSTQ Model for FEV1 score prediction. 

 
suggesting that the relationship between FEV1 and the bacterial counts is 
non-linear. 

Next, we tried a slightly more sophisticated model, our polynomial regression 
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model. Here, we set the degree of our model to 3. Figure 4 shows that it per-
formed much better than a simple linear model. Lastly, we tried a neural net-
work with nine layers and a learning rate of 0.01. Figure 5 shows how well the 
model fits the data. 

As expected, when all of the data is used for training, more complex models 
are able to effectively express the relationship between the presence of certain 
bacteria and FEV1 score. The next question is how will these results change 
when separating data into training and testing sets? 

 

 
Figure 4. Polynomial regression model for FEV1 score prediction. 

 

 
Figure 5. Shallow neural network for FEV1 score prediction. 
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4.1.2. Separate Training and Testing Sets 
Figures 6-8 below show the results for training the same machine learning 
models with 50% of the data used for training, 10% used for validation (for 
neural network training) and 40% used for testing. 

Unsurprisingly, the linear model performed equally as good on training data 
when using all of the points for training and testing (Figure 6). It also performed 
the best in terms of having the smallest maximum error over all test samples. 
This is most likely because the simplicity of the linear model and the concept of 
bias-variance trade-off. The linear model has low variance, but a higher bias. 

 

 
Figure 6. Linear model results on train and test data.        

 

 
Figure 7. Polynomial model results on train and test data. 
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Figure 8. Shallow neural network results on train and test data. 

 
The polynomial model performed the best on training data and the worst on 

test data (Figure 7). This is somewhat expected, as perfect performance on 
training data is usually indicative of overfitting. This was extremely likely to oc-
cur anyways based on the size of our dataset after preprocessing. 

To our surprise, the neural network actually performed the 2nd best on test 
data and worst on the training data (Figure 8). Our explanation for this is that 
due to terminating training of the neural network model based on our one sam-
ple used for validation, we didn’t overfit the test data. The one point with a large 
error in the training set ended up being the one point left out for validation. 

4.2. Predicting Future FEV1 Scores 
Separate Training and Testing Sets 
Using our self-generated dataset where we modeled bacteria growth, death, and 
stagnation, we moved on to predicting future FEV1 scores. To do this, we used 
the same three machine learning models as in the Same-Day prediction experi-
ments. 

The input to the machine learning models was the number of bacteria counts 
for each of the statistically significant bacteria over k sequential days, and the 
output predicted by the model was the FEV1 score of the patient on the 10th day. 
For these experiments, we selected k = 9 to give our machine learning models 
their best chance at predicting the value on the 10th day. 

Figures 9-11 below show the results for the linear, polynomial, and neural 
network models on both training and testing sets, consolidated for simplicity in 
this section. 

The results were very similar to the previous case, except now the neural net-
work had the best performance on test data (Figure 11), striking the best balance  

https://doi.org/10.4236/jbm.2023.119014


M. Pinnaka, E. Cheek 
 

 

DOI: 10.4236/jbm.2023.119014 167 Journal of Biosciences and Medicines 
 

 
Figure 9. Simple linear model performance for future FEV1 score prediction. 

 

 
Figure 10. Polynomial model performance for future FEV1 score prediction. 

 
between overfitting and underfitting given our very limited dataset. The perfor-
mance on training data for each model also improved, even for the linear model 
(Figure 9). This suggests that the increase in features given to the network helps 
aid in remedying the lack of data problem. 

Table 1 summarizes the results on both the training and testing datasets for 
future prediction. This gives a concise summary which shows that the neural 
network (NN) actually performed best on the test data, despite having the most 
parameters and performing the worst on the training data. In this table, let “tr” 
be an abbreviation for “training data” and “te” be an abbreviation for “test data”. 
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Figure 11. Shallow neural network performance for Future FEV1 score prediction. 
 

Table 1. Models’ performance for future FEV1 score prediction. 

Metric 
Model Type 

Linear Model Polynomial Model Shallow NN 

R2 (tr) 1.0 1.0 1.0 

R2 (te) 0.21 0.12 0.33 

Slope (tr) 1.0 1.0 1.0 

Slope (te) 0.03 0.0 0.09 

RMSE (tr) 0.0 0.0 0.112 

RMSE (te) 429.89 2688.15 169.37 

Max Error (tr) 0.0 0.0 0.22 

Max Error (te) 1182.91 7799.17 500.01 

4.3. Conclusion and Future Work 

Using a publicly available dataset of DNA sequences from bacteria in the lung 
microbiomes of patients with cystic fibrosis, we investigated the existence of 
positive or negative correlations between the different microbial species in the 
lung and the extent of deterioration of lung function. After determining which 
bacteria were highly correlated with FEV1 score, we trained a linear model, po-
lynomial model, and shallow neural network model for predicting the progres-
sion or regression of patients suffering from CF. Our results showed that, on 
training data, our deep learning model was highly accurate at predicting a pa-
tient’s future FEV1 score based on their previous microbiome contents. Howev-
er, with such a limited number of samples, all of the models performed poorly 
on test data. Factors such as data noise, training time, and data size all influence 
machine learning model accuracy, but it is evident that data size had the biggest 
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influence in this case as shown by the extent of improvement in the predictive 
abilities of all three models when the forecasted data points were added into the 
dataset [13]. Further work would have to be done with larger datasets to ex-
amine the relationship between bacteria counts and FEV1 score. A larger dataset 
would have also enabled more complex models made to process sequential data 
for future prediction more effectively (such as a recurrent neural network, for 
example). Additionally, one could use more features than the presence of certain 
bacteria, such as the specific families or genus the bacteria each belong to. 
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