
Journal of Biosciences and Medicines, 2023, 11, 95-113 
https://www.scirp.org/journal/jbm 

ISSN Online: 2327-509X 
ISSN Print: 2327-5081 

 

DOI: 10.4236/jbm.2023.118009  Aug. 18, 2023 95 Journal of Biosciences and Medicines 
 

 
 
 

An Immunogenic Cell Death-Related 
Classification Predicts Prognosis and  
Response to Immunotherapy in  
Glioblastoma 

Xiaobin Luo 

Department of Neurosurgery, Zigong Fourth People’s Hospital, Zigong, China 

 
 
 

Abstract 
To investigate the immunogenic Cell Death gene’s potential mechanism and 
prognostic value in glioblastoma. Information on GBM samples from The 
Cancer Genome Atlas database was downloaded, ICD genes were obtained, 
genotyping, integrated bioinformatics to verify the prognostic value of geno-
typing, and finally, prognostic model construction. Two subtypes associated 
with the ICD gene were obtained by consensus clustering, and the high ICD 
subtype (risk) group was associated with poor prognosis, high mutations in 
the PTEN gene, high stromal score, and high immune score. We also con-
structed a new classification system for GBM based on ICD characteristics. 
This study is the first to use immunogenic cell death genes for genotyping 
and successfully build a prognostic model. 
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1. Introduction 

Glioblastoma (GBM) is the most common and lethal primary tumor in the hu-
man brain [1]. It is also the glioma with the worst prognosis, with a median sur-
vival of approximately 12 - 15 months [2]. The primary treatment modalities 
currently available are surgery, chemotherapy, anti-angiogenic therapy, radia-
tion therapy, immunotherapy, and tumor electric field therapy [2]. Despite ad-
vances in the treatment of GBM, exciting outcomes are usually not observed, 
and patients diagnosed with GBM typically have a poor prognosis and poor 
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quality of life as the disease progresses. It has been found to have a heterogene-
ous population of genetically unstable and highly infiltrative cells, ultimately 
leading to drug resistance development [2] [3] [4] [5]. Statistical reports based 
on the U.S. Central Brain Tumor Registry for 2021 and 2020 found an increase 
in the incidence of 0.07 from 2014-2018 compared to 2013-2017 [6] [7]. With 
the incidence rate increasing year by year, the underlying pathogenic mechanism 
of GBM is unclear. Therefore, research to explore the underlying mechanisms is 
urgent and has significant practical implications for improving patient progno-
sis, improving the quality of patient survival, and reducing the socioeconomic 
burden. 

Immunogenic cell death (ICD) is a specific variant of Regulated cell death 
(RCD) driven by stress and can induce adaptive immunity against dead cell an-
tigens. Immunogenic cell death is not a recently proposed mode of death; it was 
presented as early as 2005 by Noelia et al. and in 2013 by Kroemer et al., who 
hypothesized that ICD and its destruction by pathogens also play an essential 
role in antiviral immune responses and further discussed the characteristics of 
ICD, immune effect-related ICD pathways [8] [9]. Three months ago, Kroemer 
et al. [10] found that when cells exhibit sufficient antigenicity, their death in the 
presence of infected malignant cells can peak the adaptive immune response, 
which is executed by cytotoxic T lymphocytes and triggers immune memory, 
suggesting a crucial role of ICD in immune surveillance [10]. The discovery of 
ICD has facilitated the development of new therapeutic agents, personalized 
treatment, and therapeutic strategies. 

In this study, we explored the potential mechanism and typing of immuno-
genic cell death genes in glioblastoma and the relationship with tumor mutation 
burden, tumor microenvironment, immune checkpoints, HLA genes, and cop-
per death genes by integrating bioinformatics approach, and prognostic model 
construction by finding prognosis-related genes, which ultimately mediates sound 
immunotherapeutic effects. 

2. Materials and Methods 
2.1. Data Download and ICD Gene Acquisition, Differential  

Analysis, and Genotyping 

Download Counts data, clinical information, and tumor mutation data of gliob-
lastoma from the TCGA database, then perform gene ID conversion and tumor 
mutation burden calculation. Thirty-four ICD genes were identified by Garg et 
al. [11], and gene expression matrices were also obtained, followed by differen-
tial analysis with the screening criteria of |logFC| ≥ 0.5 and P-value < 0.05. Pro-
tein-protein interaction (PPI) network construction was also performed using 
the STRING (https://string-db.org/, version: 11.5) online web tool, followed by 
genotyping using the “ConsensusClusterPlus” package and heat map for gene 
classification, which was finally used to classify them into two groups of high 
and low risk [12]. 
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2.2. Genotyping for Survival Analysis, Differential Analysis 

Matrix data were combined with survival information for survival analysis of 
genotypes, and genotypes were analyzed for differences with |logFC| ≥ 2 and 
FDR < 0.05. The study used the “wilcoxTest” function in R. GO, and KEGG was 
screened for relevant enriched pathways with FDR < 0.05. 

2.3. Fractal Difference Analysis of Tumor Mutation Burden and  
Immune Infiltration, Immune Cell Assessment 

Tumor mutation burden was explored by plotting waterfall plots using the 
“maftools” package. Immune infiltration was assessed using the “estimate” ex-
pression matrix. Differences in immune infiltration were also compared between 
different analyses of the ICD (using the “stat_compare_means” function in R 
The immune cell assessment was performed using the CIBERSORT  
(https://cibersortx.stanford.edu/) online website, followed by correlation analysis 
and difference analysis of immune cells [13] [14]. 

2.4. Genotyping and Correlation Analysis of HLA, Immune  
Checkpoint, and Copper Death Genes 

Twenty-four HLA genes, 48 immune checkpoint genes, and 13 copper death 
genes were obtained from the literature and subsequently analyzed for differ-
ences using the “stat_compare_means” function in R [15] [16]. 

2.5. Genotyping and Correlation Analysis of HLA, Immune  
Checkpoint, and Copper Death Genes 

First, the matrix data of the CGGA database mRNAseq-325 was downloaded, and 
then the primary glioblastoma in it was screened for ICD-related genes. Secondly, 
the ICD gene matrix in the TCGA database and the ICD gene matrix in the CGGA 
database were intersected to obtain the ICD genes common to both. Again, genes 
with significant prognostic effects were screened using one-way COX analysis; fi-
nally, predictive models were constructed using LASSO regression. 

2.6. Integrated Bioinformatics Analysis of Prognostic Models 

For prognostic model genes survival analysis, risk mapping, independent prog-
nostic factor analysis, drug prediction (using the “pRRophetic” package), im-
mune cell correlation analysis (based on TIMER), immune function difference 
analysis, immunotherapy using TIDE (Tumor Immune Dysfunction and E ex-
clusion, http://tide.dfci.harvard.edu/) online web tool, and prognostic value of 
the model using ROC curves. 

3. Results 
3.1. Data Collation and Differential Analysis of ICD Genes,  

Genotyping 

A total of 174 GBM samples (5 normal and 169 tumor samples) were down-
loaded from the TCGA database, and an additional 12,696 mutated genes were 
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obtained. Differential analysis of 34 ICD genes yielded 20 differentially expressed 
ICD genes, and the heat map showed their differential expression in tumor and 
normal tissues was significant (Figure 1A). PPI showed a potential association 
between differential ICD genes (Figure 1C). Genotyping showed they were most 
appropriate when typed as 2 (Figure 1B). After that, the heat map visualization 
of gene typing showed the association between 34 ICD genes and types 1 and 2 
(Figure 1D). 

3.2. Genotyping for Survival Analysis, Differential Analysis, and  
Enrichment Analysis 

Survival analysis of typing showed that the prognosis of the high-risk group of 
ICD was significantly lower than that of the low-risk group of ICD (P < 0.05) 
(Figure 2A). A total of 258 differential genes (including 232 up-regulated genes 
and 26 down-regulated genes) were obtained by differential analysis after geno-
typing (Figure 2B & Figure 2C). The GO terminology analysis found that the 
differential genes were mainly enriched in immune-related pathways (Figure 
3A). KEGG enrichment analysis showed that they were enriched in multiple 
tumor-related pathways. E.g., PI3K-Akt signaling pathway, TNF signaling path-
way, NF−kappa B signaling pathway, and JAK-STAT signaling pathway (Figure 
3B). 

3.3. Genotyping for Tumor Mutation Burden and Immune  
Infiltration Assessment 

Tumor mutation burden in the high and low-risk groups of ICD showed higher 
mutation rates in the top 5 highly mutated genes, PTEN in the high-risk group 
and TP53, EGFR, TTN, and MUC16 in the low-risk group (Figure 3D & Figure 
3E). The Estimate assessment found higher immune scores and stromal scores 
but lower tumor purity in the high risk (P < 0.05) (Figure 3C). The CIBERSORT 
immune cell assessment found a negative correlation between Monocytes and 
Macrophages M0 and a positive correlation between T cells gamma delta and 
Plasma cells (Figure 4B). Differential expression of B cells naïve, B cells memo-
ry, T cells CD4 memory activated, T cells gamma delta, and Dendritic cells rest-
ing was found in high and low-risk groups (Figure 4C). 

3.4. Relationship between Genotyping and HLA Genes, Immune  
Checkpoint, and Copper Death Genes 

A total of 22 HLA genes were found to be different (P < 0.05) (Figure 5A), 30 
immune checkpoint genes were different (P < 0.05) (Figure 5B), and eight cop-
per death genes were different (P < 0.05) in the high and low-risk groups (Figure 
5C). 

3.5. Construction of Prognostic Models 

A total of 30 ICD-related genes were obtained by taking the intersection of the 
two data sets, seven prognosis-related genes were obtained by one-way Cox 
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Figure 1. Screening process of ICD genes. A. Heat map of difference analysis between TCGA tumor group and 
normal values; blue represents low expression, and red represents high expression. B. Genotyping results based on 
consensus clustering. (a) Representative typing of 2 with approximately less typing crossover, representing that its 
classification as type 2 is highly desirable; (b) Consensus clustering shows the relative change in the area under the 
cumulative distribution function (CDF) curve for k = 2 to 10. C. PPI results for differential ICD genes. D. Heat 
map of differences when genes are classified as type 2. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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Figure 2. Survival analysis of genotyping, differential analysis results. A. Differential analysis of genotyping, red 
represents ICD high-risk group, blue represents ICD low-risk group, X-axis represents survival time, Y-axis represents 
survival rate; B. Volcano plot of differential analysis, red represents upregulated genes, green represents downregulated 
genes, and black represents stable expression genes; C. Differential analysis between ICD high and low-risk groups. 
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Figure 3. Enrichment analysis, immune infiltration analysis, and tumor mutation burden analysis between high 
and low-risk groups of ICD. A. GO analysis of high and low-risk groups. Bp, cc, and mf represent different terms. 
Different colors represent different significant levels; B. KEGG analysis of high and low-risk groups; C. Immune 
infiltration analysis of high and low-risk groups. Red means the high-risk group, and blue represents the low-risk 
group. D. Tumor mutation burden in high- and low-risk groups. 
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Figure 4. Analysis of immune cell infiltration levels in high and low-risk groups. A. Presentation of 
immune cell content in each sample; B. Analysis of immune cell and immune cell correlation, C. Anal-
ysis of differences in immune cells between high and low-risk groups. 
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Figure 5. Differential analysis of HLA genes, immune checkpoint genes, and copper death genes between high and low-risk 
groups. A. Differential analysis of HLA genes between high and low-risk groups; B. Differential analysis of immune checkpoint 
genes between high and low-risk groups; C. Differential analysis of copper death genes between high and low-risk groups. 
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analysis (Figure 6A), and five genes were further analyzed by lasso regression 
for model construction (Figure 6B & Figure 6C), and the risk score was calcu-
lated as risk score = FOXP3 exp * 0.35 + IL6 exp * 0.048 + LY96 exp * 0.038 + 
MYD88 exp * 0.193 + PDIA3 exp * 0.126, survival analysis showed that the 
prognosis of the high-risk group was significantly lower than that of the low-risk 
group (P < 0.05) (Figure 6D & Figure 6E), The results of the CGGA cohort ve-
rified that it was consistent with the TCGA cohort. Independent prognostic fac-
tor analysis showed that the risk score could be used as an independent prognos-
tic factor (Figure 6G & Figure 6H); drug prediction showed that the high-risk 
group was more sensitive to 32 drugs (P < 0.05), 13 drugs without laboratory 
evidence, 11 sensitive drugs in the high-risk group, and two sensitive drugs in 
the low-risk group. Treatment of GBM (P < 0.05) (Figure 8). The TIDE analysis 
revealed that the TIDE score was significantly lower in the low-risk group than 
in the high-risk group (P < 0.05) (Figure 7D), reflecting that immunotherapy 
may benefit patients with low-risk scores. The correlation analysis showed a 
negative correlation between the risk score and the TCGA cohort for Eosinophil, 
NK cells activated negatively and T cells regulatory (Tregs) positively (Figure 
7A), Monocytes, NK cells activated negatively and Neutrophils, T cells CD4 
memory triggered completely in the CGGA cohort (Figure 7B). The TCGA co-
hort was analyzed for immune cell correlation, and the results showed differ-
ences in multi-platform immune cells (P < 0.05) (Figure 7E), and further analy-
sis of their immune functions revealed differences in all immune pathways (P < 
0.05) (Figure 7C). In addition, ROC curves showed good prognostic value of the 
predictive model (Figure 8N & Figure 8O). 

4. Discussion 

Glioblastoma is a primary brain tumor in the brain, and its treatment is diverse, 
but its prognosis has not been significantly improved, which requires further re-
search. A related study found that the PI3K-Akt signaling pathway was asso-
ciated with glioblastoma signaling pathway is associated with drug resistance in 
glioblastoma, tumor proliferation, and invasion, and tumor cell senescence and 
apoptosis [17] [18] [19]. Rhoj can promote angiogenesis in glioblastoma through 
the TNF signaling pathway [20]. The NF-kB pathway is associated with radiation 
resistance in glioblastoma [21] [22] [23]. The JAK-STAT signaling pathway is a 
potential therapeutic associated with tumor proliferation, anti-apoptosis, angi-
ogenesis, stem cell maintenance, and immunosuppression [24]. 

Tumor mutation burden analysis revealed a higher mutation rate of the PTEN 
gene in the high-risk group and the rest of the genes in the low-risk group, 
which was found to be a common mutation in glioblastoma and its association 
with glioblastoma drug resistance, and the rest of genes were expressed higher in 
the low-risk group, which was linked to the subsequent TIDE treatment of GBM 
[25]. We could find that the tumor mutation burden may be relevant to their 
TIDE treatment. In addition, immune infiltration was higher in the high-risk 
group, and multiple immune cells were differentially expressed. 
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Figure 6. Construction of prognostic model for ICD genes. A. Forest plot of univariate analysis of ICD genes. 
B&C. Lasso Cox analysis to obtain the five genes most associated with prognosis for ICD genes for model con-
struction. D. Survival analysis of prognostic model based on CGGA data. E. Survival analysis of prognostic 
model based on TCGA data. F. Risk plot of prognostic model. G. Risk plot of prognostic model. Forest plot of 
univariate analysis of the prognostic model. H. Forest plot of multivariate analysis of the prognostic model. 
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Figure 7. Immune cells, immune function, and TIDE analysis of the ICD genetic prognostic model. A. Correlation analysis 
of risk scores and immune cells. B. for validation results based on the CGGA database. C. Difference analysis of immune 
function between high and low-risk groups of the prognostic model. D. Difference analysis of TCDE in high and low-risk 
groups. E. Difference analysis of immune cells based on TIMER. *P < 0.05, **P < 0.01, ***P < 0.001, & ****P < 0.0001. 
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Figure 8. Drug prediction and ROC curve analysis of the prognostic model. A-M. Drug prediction results of the prognostic model. 
N&O. The ROC curve prediction analysis of the prognostic model. 

 
In contrast, it was differentially expressed in 91.7% of HLA genes and 62.5% 

of immune checkpoint genes in the high- and low-risk groups and was more 
highly expressed in the high-risk group than in the low-risk group but was more 
highly expressed in the low-risk group than in the high-risk group. In addition, 
we further constructed ICD-related prognostic models in which several genes 
and GBM were correlated, among which FOXP3 plays an essential role in the 
immunosuppressive microenvironment of glioma through regulatory T cells 
(Treg), and FOXP3 overexpression was associated with GBM cell resistance to 
TMZ [26] [27]. il6 plays an essential role in the immunosuppressive microenvi-
ronment of glioma through phosphorylation of (p)-STAT3-MIR155-3p pathway 
to cause glioblastoma autophagy [28]. In 2018, Wang et al. found that targeting 
IL-6 produced by endothelial cells may be a potential therapeutic strategy for 
GBM [29]. Nakamura et al. studied CNS lymphoma and GBM samples and 
found that recurrent mutations in CD79B and MYD88 are a hallmark of primary 
CNS lymphoma [30]. Chiavari et al. found that reduced expression of the PDIA3 
gene restricts the pro-tumor polarization process of microglia toward the M2 
phenotype [31]. In addition, the novel cyclic RNACircRFX3 as a sponge of Mi-
croRNA-587 could regulate the PDIA3 gene, thereby promoting glioblastoma 
progression [32]. ly96 gene is currently not found to correlate with GBM. A total 
of 32 potential drugs were predicted in drug prediction (Table 1), and 19 drugs  
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Table 1. Drug prediction results. 

Drug name Drug sensitivity Evidence 

17-AAG High-risk group Sauvageot et al. [33] 

AG-014699 (Rucaparib) High-risk group Zhang et al. [34] 

Bortezomib High-risk group Su et al. [35] 

Dasatinib High-risk group Alhalabi et al. [36] 

Lapatinib High-risk group Yu et al. [37] 

LY317615 High-risk group Graff et al. [38] 

MG-132 High-risk group Li et al. [39] 

OSI-930 High-risk group Yang et al. [40] 

Paclitaxel High-risk group Yang et al. [41] 

Pazopanib High-risk group Haraldsdottir et al. [42] 

PD-0332991 High-risk group Michaud et al. [43] 

Rapamycin High-risk group Le et al. [44] 

Ruxolitinib High-risk group Delen et al. [45] 

Temsirolimus High-risk group Kaley et al. [46] 

TGX221 High-risk group Yang et al. [47] 

Z-LLNle-CHO High-risk group Monticone et al. [48] 

BMS-754807 Low-risk group Fuentes-Baile et al. [49] 

FK866 Low-risk group Feng et al. [50] 

Salubrinal Low-risk group He et al. [51] 

 
have been confirmed by relevant evidence [33]-[51]. In addition, 11 sensitive 
drugs in the high-risk group and two sensitive drugs in the low-risk group were 
not found to treat GBM, so our study can provide a reference for clinical drug 
development. 

In this study, the ICD gene was typed by a complete bioinformatics method, 
and integrated bioinformatics analysis and prognostic model construction were 
performed after typing, which is the first application of the ICD gene in gliob-
lastoma. Secondly, the sample size is still tiny and may be biased; finally, there is 
a lack of relevant laboratory validation tools. 

5. Conclusion 

In this study, we uncovered the relationship between ICD genotyping based on 
ICD genotyping and GBM immune infiltration and tumor microenvironment, 
and our findings will be helpful for the immunotherapy of GBM patients. In ad-
dition, we developed an ICD gene-related prognostic model, integrated bioin-
formatics to verify its good predictive value, and obtained potential therapeutic 
agents. 
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