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Abstract 
Background: Osteoporosis (OP) is a common clinical manifestation of mul-
tiple myeloma (MM). The aim of this study was to investigate the possible 
molecular pathways and shared genes in the co-occurrence of OP and MM. 
Methods: The Gene Expression Omnibus database was used to retrieve gene 
expression information. Use WGCNA and differential analysis to screen out 
Hub genes. The GENEMANIA was used to build protein-protein interaction 
(PPI) networks. Enrichment analyses were performed to explore the func-
tions. Validation datasets were selected to verify the diagnostic marker relia-
bility of PLAGL1. The immune microenvironment of diseases was analyzed 
by immune infiltration analyses. Results: We confirmed a hub gene called 
PLAGL1, which is significantly under-expressed in both OP and MM. We 
found hub genes were associated with glucose and energy metabolism. Sub-
sequently, the reliability of PLAGL1 for diagnosing OP and MM was verified 
using ROC curves, with all areas under the curve > 0.75. Moreover, PLAGL1 
regulates t lymphocytes and may participate in the occurrence of OP in MM 
through immune pathways. Conclusions: PLAGL1 is a hub gene for the 
co-occurrence of OP and MM. It can regulate T-lymphocyte involvement in 
disease development. PLAGL1 may be a novel diagnostic marker for the 
co-occurrence of OP and MM. 
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1. Introduction 

Multiple myeloma (MM) is a malignant disease of plasma cells in which tumor 
cells arise from plasma cells in the bone marrow. MM is closely associated with 
monoclonal proliferation, the production of monoclonal antibodies, and 
end-stage organ injury [1]. According to recent data, there were 0.9% of all can-
cer diagnoses in 2018 and an estimated 160000 instances of MM worldwide. 
There were approximately 90,000 men and 70,000 women among those Multiple 
myeloma Patients, which corresponds to an age-standardized incidence of 
2.1/100,000 and 1.4/100,000, respectively. The cumulative risk of being diag-
nosed from birth to 74 is 0.24% among men and 0.17% among women, making 
the disease about 1.5× more likely in men [2]. Its incidence is increasing in de-
veloped countries. From 1990 to 2016, the global incidence of MM increased by 
126% [3]. It is the second most common hematologic malignancy, affecting 
mainly older male patients. CRAB symptoms, which include increased calcium 
ions, renal failure, anemia, and bone disease, are common in MM patients. 
When MM is suspected, blood and urine electrophoresis should be conducted to 
test for tumor-secreted monoclonal light chains. Blood IgG, IgM, and IgA levels 
can be used to determine the subtype of light chain generated. To detect osteo-
lytic lesions, imaging techniques such as CT (without contrast owing to renal 
impairment), MRI, and PET scans are employed. A skeletal examination is uti-
lized instead of imaging if the patient is unable to undergo imaging. At the time 
of diagnosis, 80% of patients have a skeletal lesion, fracture, or bone loss [4] [5] 
[6]. 

Bone damage is one of the characteristic manifestations of MM, which is 
present in up to 75% of patients with a primary diagnosis of MM [7]. Bone 
damage includes osteolytic damage, pathological fractures, and osteoporosis 
[8]. Osteoporosis (OP) is a key process in the reduction of bone mass and can 
often result in fractures [9]. China has an estimated 60.2 million OP patients, 
with the incidence of OP reaching 6.46% in elderly males and 29.13% in elder-
ly females [10]. In the UK, the prevalence of osteoporosis in people over 50 
years old is 6.8% in men and 21.8% in women [11]. In conclusion, the preva-
lence of OP is high in both Asia and Europe. Typical symptoms of osteoporo-
sis are weakness, generalized bone pain, spinal deformities and even vertebral 
fractures. 

The interaction between osteoclasts, osteoblasts, adipocytes and osteocytes 
results in increased bone destruction and decreased bone remodeling leading to 
osteoporosis. Among the molecular mechanisms of osteoporosis, the Osteoclasts 
are induced to bone resorption by secreting protein hydrolases (cathepsin K, 
MMP-9) and hydrochloric acid [12] [13] [14]. Some cytokines such as IL-1, IL-6 
and tumor necrosis factor-α (TNF-α) and αVβ3 integrin can regulate osteoclast 
differentiation [15] [16]. Runt-related transcription factor 2 (Runx2), osterix 
(Osx), β-catenin, activating transcription factor 4 (Atf4), and activator protein 1 
(AP-1) family play a key role in osteoblast turnover [17] [18] [19]. Similarly, 
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ibroblast growth factors (FGFs), transforming growth factor-β1 (TGF-β1), 
IGF-1, Notch, and PTH have also been shown to promote osteogenic differen-
tiation [20] [21] [22]. Osteoblasts can regulate bone formation by secreting sub-
stances, such as sclerostin and DKK1, that inhibit osteoblast function [23] [24]. 
Osteoblast osteocytes secrete RANKL and M-CSF, or nitric oxide and OPG to 
inhibit osteoclast function [25] [26]. Adipocyte differentiation while competing 
with osteoblasts, and expression of RANKL by mature adipocytes can promote 
osteoclastic differentiation [27] [28]. 

MM is one of the many causes of osteoporosis. Specifically, most MM patients 
develop osteolytic lesions and OP [29]. An imbalance between bone degradation 
and reconstruction is behind the pathogenesis of osteolytic lesions and progres-
sive bone loss in MM. This imbalance is related to the activation of osteoclasts, 
including an increase in their apoptosis and the simultaneous suppression of os-
teoblasts. The mechanism of bone destruction in myeloma can be summarized as 
osteoblast promotion and osteoclast activation. The molecular mechanisms in-
volved include the RANKL/RANK/OPG axis, Notch signaling, the Wnt/β-Catenin 
signaling pathways, and signaling molecules such as DKK-1, sclerostin, osteo-
pontin, activin A, chemokines, and interleukins [30]. 

MM cells can secrete NF-κ B ligand (RANKL), interleukin (IL)-1, IL-6, and 
chemokine C-C motif ligand 3 (CCL3) to promote osteoclast proliferation. Os-
teoblast inhibitors dickkopf-1 (DKK1) and sclerostin can also be secreted to in-
hibit osteoblast proliferation [8] [31] [32] [33] [34]. In addition, MM and 
BMSCs cells can also secrete vascular endothelial growth factor (VEGF), insu-
lin-like growth factor (IGF-1), TGF-β, angiopoietin-1 (Ang-1), platelet-derived 
growth factor (PDGF), and basic-fibroblast growth factor (bFGF) to promote 
angiogenesis, increase osteoclastic differentiation, and promote tumor cell proli-
feration [35] [36] [37]. What is more, activin A was found in MM patients with 
advanced bone disease, and a correlation was found between elevated activin A 
levels and lysis bone lesions [38]. Deregulation of the bone compartment can 
create a suitable microenvironment for MM cell proliferation and differentiation 
[39]. Bone marrow stromal cells (BMSCs) can promote MM cell growth and in-
creased osteolytic bone lesions within the bone marrow through adhesion mo-
lecules [40]. 

These studies are all about osteolytic destruction, but the genetic and molecu-
lar mechanisms of osteoporosis are not clear. The purpose of this study is to 
detect whether the early causes of osteoporosis are associated with myeloma and 
to treat multiple myeloma at an early stage. In this study, a search of gene ex-
pression data from MM and OP was performed using the Gene Expression Om-
nibus (GEO) database, which identified several differentially expressed genes 
that strongly overlapped between these conditions. These genes may be potential 
diagnostic markers for the complication of osteoporosis and multiple myeloma. 

We used a public database to analyze the potential pathogenesis of MM and 
OP. A flowchart of this study is shown in Figure 1. 
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Figure 1. Research design flow chart. 

2. Research Methodology 

2.1. Data Sources 

In this study, we obtained data from the Gene Expression Omnibus (GEO). 
Multiple myeloma (MM) and osteoporosis (OP) were keywords for the related 
gene expression data set. The selection criteria for the datasets were as follows. 
The data we selected included both the disease and normal groups. Each group 
should contain a test sample of adults with MM who had not received radiation 
therapy. These datasets should further contain raw analytical data. Based on the 
above criteria, The GSE133346, GSE5900, GSE7429, GSE56815, GSE6477, and 
GSE35956 datasets were finally incorporated as training datasets, and the 
GSE24870, GSE156508, and GSE35958 were incorporated as validation datasets. 
The details of these datasets are summarized in Table 1. GSE7429 data show the 
gene expression of circulating B cells in the blood of 10 high-density and 10 low- 
density subjects. GSE56815 data show the gene expression of circulating mono-
cytes from 40 hip high density subjects and 40 hip low density subjects.  
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Table 1. Information on the GEO datasets for OP/MM patients. 

ID GSE number Platform Samples Disease Dataset 

1 GSE7429 GPL96-57554 10 patients and 10 controls OP Training 

2 GSE56815 GPL96-57554 40 patients and 40 controls OP Training 

3 GSE133346 GPL570-55999 12 patients and 12 controls MM Training 

4 GSE5900 GPL570-55999 56 patients and 22 controls MM Training 

5 GSE35956 GPL570-55999 5 patients and 5 controls OP Training 

6 GSE6477 GPL96-57554 147 patients and 15 controls MM Training 

7 GSE24870 GPL570-55999 7 patients and 5 controls MM Validation 

8 GSE156508 GPL96-57554 6 patients and 6 controls OP Validation 

9 GSE35958 GPL570 6 patients and 4 controls OP Validation 

OP, Osteoporosis; MM, Multiple myeloma; GEO, Gene Expression Omnibus. 

 
GSE133346 data are the gene expression of Adipose Stromal Cells (ASC) from 
12 healthy donors and 12 multiple myeloma patients. GSE5900 data are the 
gene expression of human mesenchymal stem cells (hMSC) from 22 healthy 
donors and 56 myeloma patients. GSE35956 data show gene expression of hu-
man mesenchymal stem cells from 5 subjects with high bone density and 5 sub-
jects with low bone density. GSE6477 data are the gene expression of bone 
marrow plasma cells from 15 healthy donors and 147 multiple myeloma pa-
tients. GSE24870 are the gene expression of hematopoietic stem cells, common 
myeloid progenitors, granulocyte/monocyte progenitors, and megakaryo-
cyte/erythroid progenitors from 5 healthy donors and 7 myeloma patients. 
GSE156508 data are the gene expression of primary osteoblasts from 6 os-
teoarthritis donors and 6 osteoporotic fracture patients. GSE35958 data are the 
gene expression of human mesenchymal stem cells from 4 healthy donors and 6 
patients with osteoporosis. Batch corrections can significantly reduce differ-
ences between datasets (Figure 2). 

2.2. Weighted Gene Coexpression Network Analysis (WGCNA) 

We identified the coexpression network and coexpression modules between MM 
and OP using WGCNA-related R packages. First, using the flash tool in R, we 
analyzed the samples by hierarchical clustering and detected and eliminated ab-
normal samples. Second, based on the scale threshold topology criterion, we set 
the “soft” threshold power of WGCNA using the “picksoft threshold” algorithm 
(β). We chose R2 = 0.88 and the soft-threshold β = 3 in MM and chose R2 = 0.86 
and the soft-threshold β = 6 in OP. Third, we established a topological superpo-
sition matrix (TOM) based on an adjacency matrix. Fourth, we detected gene 
modules using the dynamic tree-cut algorithm. Fifth, we calculated gene signi-
ficance and module dependence, and associated the modules with particular 
clinical features. The other parameters both in OP and MM were the following:  
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Figure 2. Batch correction. ((a), (c), (e)) principal components analyses (PCA) of OP ((a), (e)) and MM (C) prior to batch correc-
tion. ((b), (d), (f)) PCA of OP (b) and MM ((d), (f)) after batch correction. 
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minModuleSize = 60, mergeCutHeight = 0.25 and deepSplit = 2, geneSigFilter = 
0.5, moduleSigFilter = 0.8. 

2.3. Identification of Common Gene 

The online program venny2.1.0  
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) was used to identify the 
genes overlapping between OP- and MM-related preservation modules using 
Venn diagrams. 

2.4. Analyses of the Functional Enrichment of Genes 

Gene expression data can be annotated by enrichment analyses of Gene Ontolo-
gy (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways. “ClusterProfiler” package in R software was used for functional enrich-
ment analysis. We studied the vital biological functions associated with the genes 
expressed in OP and MM. Analyses of the KEGG and GO pathways particularly 
associated with the expressed genes revealed the primary signaling pathways of OP 
and MM. p < 0.05 was considered to reflect enrichment of the genes/pathways. Bar 
graphs were drawn using the ggplot2 package in R. 

2.5. Gene Set Enrichment Analyses 

Using the median level of PLAGL1 expression, we classified GSE6477 samples 
into high- and low-expressing groups. We then applied GSEA, a feature-typology- 
based technique that computes genomic enrichment and identifies diverse 
pathways that may be relevant to biological functions [41]. GSEA was conducted 
by using the clusterProfiler package in R and hallmark signatures (h.all.v7.2. 
symbols.gmt) from MsigDB [42] [43]. Results were considered significant when 
normalized p value < 0.05 and FDR < 0.25. We show only the top 5 sorted path-
ways, sorted from smallest to largest according to P-value. 

2.6. Protein-Protein Interaction Network Construction 

GeneMANIA (http://www.genemania.org) can be utilized for protein–protein 
interaction (PPI) networks, which provide possibilities for predicting gene func-
tions and identifying genes with closely linked effects. Using 19 common genes 
between OP and MM as input data, this study used GeneMANIA technique for 
PPI of common genes. The species setting of GeneMANIA is Homo sapiens. 

2.7. Immune Infiltration Analyses 

We evaluated the tumor immune microenvironment (TIME) in OP and MM by 
immune infiltration analyses via a single-sample gene enrichment assay (ssGSEA) 
using the R package “GSVA” [44]. Gene sequence analyses (GSVA) is a tool for 
calculating enrichment scores [45]. Next, we compared the differences in im-
mune function between the disease and control groups in OP and MM. PLAGL1 
may be involved in immune cell infiltration, which we investigated using 
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Spearman’s correlation analyses. 

3. Results 

3.1. Data Processing 

Next, we clustered the OP samples to determine if there were significant outliers 
and excised them at a resection height of 37.5 (Figure 3(a)). Similarly, the MM 
samples were clustered to determine if there were significant outliers and excised 
them at a resection height of 150 (Figure 3(b)). 

3.2. Modules of Genes Coexpressed in OP and MM 

Using WGCNA, we determined the modules of genes coexpressed in the MM 
and OP datasets. Initially, two training datasets, GSE133346 and GSE5900, were 
pooled, and batch effects were eliminated for the WGCNA of MM later. The two 
training datasets GSE7429 and GSE56815 were pooled, batch effects were elimi-
nated for the WGCNA of OP later, and samples from patients from both data-
sets were grouped into two clusters with no detectable outliers: a disease group 
(MM or OP) and a healthy group. Before calculating the adjacency, we deter-
mined the soft threshold power and raised the coexpression similarity. We  
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(g) 

 

(h) 

Figure 3. The WGCNA module is linked to clinical features. (a) A sample clustering dendrogram with tree leaves corresponding 
to individual samples in OP. (b) A sample clustering dendrogram with tree leaves corresponding to individual samples in MM. (c) 
Network topology for different soft threshold powers in OP. (d) Network topology for different soft threshold powers in osteopo-
rosis in MM. ((e), (f)) A cluster dendrogram of genes coexpressed in OP (e) and MM (f). ((g), (h)) A heatmap of the correlation 
between module eigengenes and disease status in OP (g) and MM (h). OP, osteoporosis; CON, control; MM, multiple myeloma 

 
utilized the WGCNA function pickSoftThreshold to investigate the network to-
pology. Because of the scale independence of 0.86 (Figure 3(c)) and the rela-
tively high average connection, a soft threshold capacity of 6 was set for the OP 
group for future study. Similarly, for the MM group, a soft threshold capacity of 
3 was set because the scale independence reached 0.88 (Figure 3(d)) and the av-
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erage connection was quite high. We generated gene networks and identified 
modules using the WGCNA R software’s one-step network-building feature. The 
minimum module size was set to 60 for cluster splitting, and deepSplit was set to 
2 (which indicates medium sensitivity). 

3.3. Modules of Coexpression between OP and MM 

WGCNA established 15 modules in the OP group dataset and 12 in the MM 
group dataset, with each color representing a different module. We calculated 
Spearman’s correlation coefficient. Then, we created a heatmap of the modular 
attribute relationship to evaluate the relationship between each module and the 
disease. In this analysis, the yellow-green and orange modules are positively 
correlated with OP (Figure 3(g); yellow-green modules: r = 0.35, P = 5e−04, 
genes = 135; orange-red module: r = 0.24, p = 0.02, genes = 109). Meanwhile, 
brown, red-purple, purple, and orange modules are positively correlated with 
MM. The brown, red-purple, purple, and orange-red modules are positively 
correlated with MM (Figure 3(h); brown module: r = 0.39, P = 7e−05, genes = 
410; red-purple module: r = 0.21, p = 0.04, genes = 136; purple module: r = 0.34, 
P = 8e−04, genes = 107; orange-red module: r = 0.26, p = 0.01, genes = 82). 

3.4. Common Genes Signatures in OP and MM 

The module positively correlated with OP and MM consists of 19 common 
genes, which are referred to as gene set 1 (GS1) (Figure 4). These genes are 
strongly related to the pathogenesis of OP and MM. 

3.5. Genes Signatures in OP and MM 

Using the GeneMANIA database (http://www.genemania.org/), we obtained a 
PPI network of the genes shared between OP and MM. In addition, 20 genes 
were discovered to be tightly connected to the common genes (Figure 5(a)). So 
we got 39 genes. To explore the pathways associated with these genes derived 
from the PPI network, we performed GO enrichment analyses with GlueGo, 
which identified various important biological processes, including aerobic electron  

 

 
Figure 4. Common genes of OP and MM. 
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(b) 

 
(c) 

Figure 5. PPI network and enrichment analyses of genes shared between OP and MM. (a) A characterized gene coexpression 
network from the GeneMANIA database. (b) Gene Ontology analyses of shared genes to identify the key biological processes, 
cellular components, and molecular functions in which they are involved. (c) The top 15 most significantly enriched KEGG path-
ways. PPI, protein-protein interaction; OP, osteoporosis; MM, multiple myeloma. 
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transport chain, energy derivation by oxidation of organic compounds, genera-
tion of precursor metabolites and energy, proton transmembrane transport, ATP 
metabolic process, aerobic respiration, oxidative phosphorylation, and cellular 
respiration. Meanwhile, mitochondrial inner membrane, mitochondrial pro-
tein-containing complex, respirasome, mitochondrial respirasome, respiratory 
chain complex, inner mitochondrial membrane protein complex, and cytoch-
rome complex were the primary cellular components. Proton transmembrane 
transporter activity was the main molecular function (Figure 5(b)). KEGG 
enrichment analyses of critical targets revealed 15 items, which were particularly 
associated with oxidative phosphorylation, chemical carcinogenesis-reactive 
oxygen species, thermogenesis, and amyotrophic lateral sclerosis (Figure 5(c)). 

3.6. Analyses of Differentially Expressed genes and the  
Identification of Hub Gene in OP and MM 

Using the GSE35956 and GSE6477 datasets, we performed an analysis of the dif-
ferentially expressed genes. For GSE35956, 2789 differentially expressed genes 
(DEGs), comprising 1457 upregulated genes and 1331 downregulated genes in 
OP, were discovered. For GSE6477, 2762 DEGs, comprising 1440 upregulated 
genes and 1322 downregulated genes in MM, were found. Volcano plots of the 
differentially expressed genes were created for the two diseases (Figure 6(a) and 
Figure 6(b)). After selecting 50 genes with the most differential expression (up 
and downregulated), we created a heatmap of the differentially expressed genes 
for the two diseases (Figure 6(c) and Figure 6(d)). Overall, 112 genes were 
upregulated in GSE359562 and GSE6477, whereas 85 genes were downregulated, 
as defined by gene set 2 (GS2). Intriguingly, one of the hub gene overlapping 
between GS1 and GS2 was PLAGL1, whose downregulation of expression may 
be essential for the development of OP and MM (Figure 6(e)). It is thus highly 
likely that PLAGL1 is a joint target for OP and MM. 

3.7. GSEA Identifies a Signaling Pathway in Which PLAGL1 Is  
Involved 

Gene expression analyses (GSEA) revealed that PLAGL1 expression was down-
regulated in association with glycolysis, glycogenesis, and oxidative phosphory-
lation (Figure 6(f)). 

3.8. Validation of Joint Targets 

GSE35958 and GSE156508 were combined by removing batch effects and later 
used as the validation set for the OP. Validation was performed in GSE27870 for 
MM from GEO. As compared to normal tissues, the findings demonstrated that 
PLAGL1 was significantly downregulated in both OP and MM (Figures 7(a)-(d)). 
In order to evaluate the efficacy of the diagnostic features, receiver operating 
characteristic (ROC) curves were created in these datasets using the pROC tool 
in the R programming language (Figures 7(e)-(h)). For OP, GSE35956 were se-
lected as the training dataset to create the ROC curve for PLAGL1 with an AUC  
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(c) 

 
(d) 
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(e) 

 
(f) 

Figure 6. Identification of overlapping genes and GSEA of PLAGL1. (a) A DEG volcano plot between control and OP samples. (b) 
A DEG volcano plot between control and MM samples. ((c), (d)) Heatmap of genes differentially expressed in OP (c) and MM (d). 
(e) The Venn diagram shows the overlap of DEGs and genes shared between OP and MM. (f) Single-gene enrichment analyses of 
MM patients with high PLAGL1 expression followed by a demonstration of the top 10 enriched pathways. GSEA, Gene Set 
Enrichment Analyses; OP, osteoporosis; MM, multiple myeloma. 
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of 0.960 (Figure 7(e)), and GSE156508 and GSE35958 were selected as the vali-
dation dataset to create the ROC curve for PLAGL1 with an AUC of 0.778 
(Figure 7(f)). For MM, the GSE6477 datasets were selected as the training data-
set to create a receiver operating characteristic (ROC) curve for PLAGL1, with 
an AUC of 0.856 (Figure 7(g)), and the GSE27870 datasets were selected as the 
validation dataset to create a receiver operating characteristic (ROC) curve for 
PLAGL1, with an AUC of 0.852 (Figure 7(h)). The AUC values for PLAGL1 
were greater than 0.75 in all datasets, so PLAGL1 had an excellent prognostic 
capacity for the diagnosis of MM and OP. 

3.9. Association between PLAGL1 and the Tumor Microenviron-
ment 

The ssGSEA algorithm was used to provide an overview of the infiltration of  

 

 
(a)                                                 (b) 

 
(c)                                                  (d) 
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(e)                                                   (f) 

 
(g)                                                   (h) 

Figure 7. Validation of hub genes. ((a), (c)) The box plot of hub gene expression in the training set indicates that the OP (a) or 
MM (c) group has lower expression than the control group. (b) In GSE35958 and GSE156508 for OP, PLAGL1 was verified. The 
boxplots demonstrate that OP samples have lower hub gene expression levels. (d) In GSE27870 for MM, PLAGL1 was verified. 
The boxplots demonstrate that MM samples have lower hub gene expression levels. The diagnostic efficacy of the hub genes in OP 
((e), (f)) or MM ((g), (h)) diagnosis was assessed using ROC curves. ROC: receiver operating characteristic; OP, osteoporosis; 
MM, multiple myeloma. 
 

immune cells in OP and MM. Wilcoxon’s test showed four immune subgroups 
that were significantly altered between the OP and normal samples, including 
activated dendritic cells, spontaneously destroyed cells, and plasmacytoid den-
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dritic cells (Figure 8(a)). 
In addition, nine significantly altered immune subgroups were identified in 

the comparison between the MM and normal samples, including central memo-
ry CD4 T cells, affected memory CD8 T cells, natural T cells, memory B cells, 
neutrophils, hypertrophies, eosinophils, natural killer cells, and activated CD8 T 
lymphocytes (Figure 8(b)). 

The composition of natural killer cells was significantly altered in both OP 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8. Analyses of the immunological microenvironment in OP and MM. ((a), (b)) Different immune cell subtypes are asso-
ciated with the establishment of OP (a) and MM (b). ((c), (d)) Heatmap of immune cells associated with key genes in OP (c) and 
MM (d). 
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and MM. In addition, we found that three immune cell subpopulations (imma-
ture dendritic cells, CD56bright natural killer cells, and central memory CD4 T 
cells) were positively correlated with PLAGL1 in OP, whereas natural killer T 
cells, myeloid-derived suppressor cells (MDSCs), follicular helper T cells, 
CD56dim NK cells, natural killer cells, plasmacytoid dendritic cells, and type 1 T 
helper cells were negatively correlated with PLAGL1 (Figure 8(c)). 

PLAGL1 was positively correlated with mast cells, MDSCs, natural killer T 
cells, memory B cells, central memory CD4 T cells, type 2 T helper cells, T cells, 
regulatory T cells, central memory CD8 T cells, effector memory CD8 T cells, 
and macrophages in the MM samples (Figure 8(d)). 

The results indicated that PLAGL1 may be involved in the immune processes 
associated with natural killer cells in OP. 

Our study also showed that PLAGL1 may be jointly involved in immune 
processes regulating central memory T cells in both OP and MM. 

4. Discussion 

The effects of blood disorders on bones are caused by circulatory factors, such as 
cytokines. For example, MM is associated with osteolytic changes and progres-
sive bone loss due to uneven remodeling of bone. The mechanism behind this 
involves the promotion of osteoclasts and the inhibition of osteoblasts [46]. 
Moreover, tumor cells secrete different cytokines that induce the proliferation 
and activity of osteoclasts, and can also secrete interleukin (IL)-1 to suppress the 
formation of bone cells in MM. There are other related molecular mechanisms 
which reported such as RANKL/RANK/OPG axis, Wnt/β-linked protein signal-
ing pathway and signaling molecules such as DKK-1, sclerostin, bone bridge 
protein, chemokines [8] [31] [32] [33] [34]. These findings explain the molecular 
mechanism between MM and osteolytic destruction. However, few studies have 
focused on the common pathogenetic mechanism between OP and MM at the 
genetic level. 

Information on gene expression derived from global gene expression data 
deepens our understanding of the etiology of OP and MM and how these condi-
tions interact. The results of analyzing these enriched genes in OP and MM in 
public disease databases by GO enrichment analyses reveal their particular asso-
ciations with ribonucleoprotein complex biogenesis, oxidative phosphorylation, 
aerobic respiration, cellular respiration, ATP metabolic processes, organic com-
pounds, and ATP metabolic pathways. KEGG enrichment analyses reveal that 
the key targets are particularly associated with biological processes such as oxid-
ative phosphorylation, chemical carcinogenesis-reactive oxygen species, ther-
mogenesis, and amyotrophic lateral sclerosis. GSEA suggests that PLAGL1 may 
be involved in glucose and energy metabolism. These results suggest both are 
closely related to energy production, probably because of the large amount of 
energy required for tumor growth and bone destruction activities. 

OP is often associated with systemic energy metabolism and glycolipid meta-
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bolism disorders [47] [48] [49] [50]. Osteoblasts need to consume large amounts 
of ATP to synthesize new collagen to complete the modeling and remodeling of 
bone [51] [52]. Excessive bone resorption by osteoclasts is also a process that 
requires large amounts of adenosine triphosphate (ATP) produced by glycolysis 
and oxidative phosphorylation [53]. The decrease in energy supply for osteo-
genic activity and the increase in energy supply for osteoclastic activity lead to an 
imbalance in energy supply between osteoblasts and osteoclasts as the underly-
ing cause of osteoporosis [54]. 

A close relationship between oxidative phosphorylation and MM has also 
been identified. For example, it is concluded that FoxM1 promotes glycolysis 
and energy production in myeloma cells. FOXM1 is an active regulator of mye-
loma metabolism and were involved in a bioenergetic pathway and oxidative 
phosphorylation (OXPHOS) that significantly affect glycolysis [55]. Meanwhile, 
PGC-1a-mediated overexpression of OXPHOS provides a structural basis for 
enhancing OXPHOS in MM cells. Sr18292, an inhibitor of PGC-1α, has a prom-
ising anti-myeloma effect and provides a potentially effective approach for treat-
ing myeloma. Sr18292 demonstrates actual antitumor activity against MM by 
suppressing oxidative phosphorylation [56]. Both OP and MM in these studies 
are closely associated with energy metabolic pathways, respectively, which is 
consistent with the results derived from our study. Therefore, the common me-
chanism behind the pathogenesis of MM and OP may be caused by the regula-
tion of their shared genes and oxidative phosphorylation. 

To further discover the hub gene involved in these diseases, an analysis of 
genes differentially expressed between MM and OP was performed. Intriguingly, 
we discovered PLAGL1 among the differentially expressed genes that overlapped 
between these conditions. PLAGL1 was likely involved in the development of 
MM and OP. 

Polymorphic adenoma gene 1 (PLAGL1, Zac1, or lot1) can encode a homo-
nymous zinc finger protein to regulate the cell cycle and apoptosis. PLAGL1 is 
expressed in several types of tissues in embryos and adults. The PLAGL1 gene 
maps to chromosome 6q24 [57] [58] [59]. It has been confirmed that PLAGL1 is 
a tumor repressor gene that is found in lots of cancers, such as diffuse large 
B-cell lymphoma, lung tumorr, gastric tumor, colorectal tumor, breast tumor, 
ovarian tumor, and prostate tumor [60] [61] [62] [63] [64]. Specifically, tumor 
progression is associated with reduced or absent expression of PLAGL1 (Zac1) 
in these conditions, which has been confirmed as a novel prognostic marker for 
cervical cancer [65]. The p53 and p21 genes are crucial for cell division and dif-
ferentiation to produce different cell groups [66] [67]. However, the mechanism 
of action of PLAGL1 in MM has yet to be reported and warrants attention. Re-
duced PLAGL1 expression was found to be associated with glycolysis, gluconeo-
genesis, and phosphorylation, suggesting that this reduction may be associated 
with energy metabolism and the rapid growth of cancer cells. These results indi-
cate that PLAGL1 may be a key factor in the signaling pathways associated with 
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OP and MM. 
The expression of PLAGL1 in MM was found to be positively correlated with 

significant infiltration of immune cells in patients in this study, including mast 
cells, MDSCs, natural killer T cells, memory B cells, central memory CD4 T cells, 
type 2 T helper cells, GAMMA delta T cells, regulatory T cells, central memory 
CD8 T cells, effector memory CD8 T cells, and macrophages. The expression of 
PLAGL1 in OP was strongly associated with immature dendritic cells, CD56bright 
natural killer cells, CD4 T cells with central memory, and PLAGL1. PLAGL1 re-
gulates T-cell immune activity and may promote the development of OP with 
MM. 

Therefore, we speculate that PLAGL1 can regulate immune cells to participate 
in developing OP and MM. Immune surveillance is the process by which the 
immune system detects and eliminates malignancies. Immunity is intimately re-
lated to carcinogenesis and progression. Recent research has demonstrated that 
the tumor immune microenvironment (TIME) is crucial for carcinogenesis and 
cancer progression [68]. 

T lymphocytes eliminate MM by identifying tumor-specific or tumor-associated 
antigens. This process occurs directly in the killing of tumor cells by CD8 T cells 
or indirectly in the activation of NK cells or macrophages (e.g., IFN) following 
cytokine release [69]. It has been concluded that cloning expanded T cells, pri-
marily CD8 cells (93%), improves the survival of patients with MM [70]. What is 
more, it has been shown that T cells also express TNF-α to promote osteoblast 
apoptosis and stimulate osteoclastogenesis, leading to fracture osteoporosis. In 
conclusion, T cells are strongly associated with multiple myeloma and OP, 
which is the same as our findings [71]. 

Plasma cells originate from B-cell differentiation and are involved in the de-
velopment of MM. Large populations of B cells directly or indirectly reduce the 
differentiation of malignant plasma cells. The reduction of malignant plasma 
cells may also promote the proliferation of normal B lymphocytes. B cells may be 
a good predictor of MM patient prognosis [72]. 

MDSCs are a heterogeneous population of immature bone marrow cells [73]. 
Studies have shown that M-MDSCs are significantly increased in patients with 
mild MM compared with the level in healthy donors [74]. More importantly, the 
M-MDSC count is significantly associated with disease activity and tumor pro-
gression [75]. 

Tregs are a T-cell subgroup that controls autoimmune responsiveness in the 
body and can secrete immunosuppressive cytokines. Functionally, Tregs were 
reported to exhibit inhibitory effects regardless of the state of MM disease [76]. 

Because macrophages are capable of cosecreting angiogenic factors that pro-
mote MM-associated neovascularization, they are a potential therapeutic target 
for cancer [77]. 

Dendritic cells (DC) are also intimately involved in the process of osteoporo-
sis. It has been concluded that DCs can express more cytokines to drive bone 
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loss due to inflammation [78]. 
NK cells are capable of promoting osteoporosis, and it has been shown that 

NK cells are capable of promoting bone loss in the presence of IL-15 [79]. 
In conclusion, it can be stated that PLAGL1, a gene shared by OP and MM, 

plays an essential function in TIME. 
PLAGL1 expresses a transcription factor that suppresses proliferation and 

thus inhibits the growth of cancer cells [80] [81] [82] [83]. PLAGL1 cosuppresses 
or activates the transcription of nuclear hormone receptors [84]. Interestingly, 
mice lacking PLAGL1 showed a delay in growth and changes in bone formation 
[85]. Therefore, lowering PLAGL1 may cause osteoporosis. 

This research has several limitations, which should be mentioned here. First, 
there is a need for more clinical data in databases. Second, contaminated tissues 
may have skewed the WGCNA findings. Third, further in vitro investigations are 
required to obtain a deeper understanding of the mechanisms shared by OP and 
MM, including complex ribonucleoprotein synthesis, oxidative phosphorylation, 
aerobic respiration, cellular respiration, and ATP metabolic activities. Moreover, 
there is inadequate evidence that PLAGL1 is a good predictor of OP and MM 
co-occurrence, so additional clinical trials are required to verify this point. Never-
theless, the present study shows that PLAGL1 has diagnostic and predictive 
promise for patients with OP and MM and is also an immune-related biomarker. 
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