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Abstract 
We continue to consider one of the cybernetic methods in biology related to 
the study of DNA chains. Exactly, we are considering the problem of recon-
structing the distance matrix for DNA chains. Such a matrix is formed on the 
basis of any of the possible algorithms for determining the distances between 
DNA chains, as well as any specific object of study. At the same time, for ex-
ample, the practical programming results show that on an average modern 
computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs 
using the Needleman-Wunsch algorithm; therefore, for such a 300 × 300 ma-
trix, about 3 months of continuous computer operation is expected. Thus, 
even for a relatively small number of species, calculating the distance matrix 
on conventional computers is hardly feasible and the supercomputers are 
usually not available. Therefore, we started publishing our variants of the al-
gorithms for calculating the distance between two DNA chains, then we pub-
lish algorithms for restoring partially filled matrices, i.e., the inverse problem 
of matrix processing. Previously, we used the method of branches and boun-
daries, but in this paper we propose to use another new algorithm for restor-
ing the distance matrix for DNA chains. Our recent work has shown that 
even greater improvement in the quality of the algorithm can often be 
achieved without improving the auxiliary heuristics of the branches and 
boundaries method. Thus, we are improving the algorithms that formulate 
the greedy function of this method only. 
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1. Introduction 

In this paper, we continue to consider one of the cybernetic methods in biology 
related to the study of DNA chains. Namely, we are considering one of the im-
portant tasks of this topic, i.e., the problem of reconstructing the distance matrix 
for DNA chains. In this case, the distance matrix is formed on the basis of any of 
the possible algorithms for determining the distances between DNA chains, as 
well as any specific object of study. 

Let us firstly remark, that the total length of the human genome exceeds 3 × 
109 characters, which is about 200,000 times longer than mtDNA (see below). 
This fact indirectly confirms the need to apply heuristics when considering DNA 
algorithms. 

It is important to note that currently it is easy to find only a few similar algo-
rithms on the Internet, [1] [2] [3] etc.; see also the description of our algorithm 
in [4] and some of our other papers cited there. The objects of research of these 
algorithms (for mammals) are, as a rule, one of the following 3 variants: the mi-
tochondrial DNA (mtDNA); “the tail” of Y chromosome; the main histocompa-
tibility complex (MHC) [5] [6] [7] [8]. 

However, such a small number of variants (less than 10 algorithms and 3 ob-
jects of research) does not negate the need to create effective algorithms for 
processing DNA chains, in particular, constructing (for one of these variants) a 
matrix of distances between such chains. At the same time, for example, the 
practical programming results show that on an average modern computer, it 
takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needle-
man-Wunsch algorithm [1]; therefore, for such a 300 × 300 matrix, about 3 
months of continuous computer operation is expected. Such dimensions come 
from real problems: for example, in the class of mammals there are about 30 or-
ders, in the order of primates there are about 20 families, more than 80 genera 
and more than 500 species. At the same time, the exact values differ in different 
classification options, but they are not interesting to us: we are interested in ap-
proximate values only. 

Thus, even for a relatively small number of species (smaller than the total 
number of primate species), calculating the distance matrix on conventional 
computers is hardly feasible; the use of supercomputers, firstly, is not always 
possible, and, secondly, it often requires significant revision of existing software. 
In this regard, the task arises of restoring such a partially filled matrix. We 
started publishing our variants of similar algorithms for restoring partially filled 
matrices in [4] (the simplest algorithm was described very briefly there), after 
which we returned to this problem in [9] [10] [11], where a variant of the algo-
rithm using the method of branches and boundaries was described in detail. 

In this paper, we revisit algorithm variants that do not rely on the branches 
and boundaries method, despite prior successful results. Our recent research, 
particularly in graph theory and ultra-large communication networks, has 
shown that improving auxiliary heuristics of this method may not always lead to 
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significant algorithm quality improvements (see [12]). Instead, we focus solely 
on enhancing the greedy function formulation of the method's algorithms, 
which we consider auxiliary. 

Specifically, we describe an improvement to the greedy algorithm for recon-
structing the distance matrix between DNA chains. Our computational experi-
ments (see Section 5) demonstrate that this approach yields better results than 
simpler variants of the branches and boundaries method. It is important to note 
that although we previously used the branches and boundaries method for the 
inverse problem of matrix processing, i.e., restoring partially filled matrices, we 
do not utilize it in this paper. 

In connection with the above, the question arises about the concept of “par-
tially filled matrix”: how to determine this partial filling. It is clear that the 
greater the percentage of values will not be calculated, the less time will be spent 
on these calculations: after all, as follows from the above estimates, the calcula-
tion of one value for two considered mtDNAs requires about 3 minutes of com-
puter operation, which is approximately equal to the total time required for ma-
trix recovery even using the long-running method of branches and boundaries. 
On the other hand, a too small percentage of the values left in the matrix (i.e., 
calculated by the special previous algorithms), of course, cannot give adequate 
results; in this regard, we have been using in this work the percentage of values 
calculated by the algorithm of about 10% - 12%. 

The second important question that cannot but arise on the basis of the above 
text is how exactly we can analyze the quality of the solution obtained using the 
recovery algorithm(s). For more information, see Section 5 below. 

2. A Brief Description of the Greedy Algorithms of Restoring 
the Distance Matrix 

It is clear that with smaller dimensions of the matrix, a larger percentage of 
non-deleted elements is required. Thus, for small dimensions (of the order of 
10), algorithms often do not work with a small number of nonremovable ele-
ments. Of course, in principle, there are options when, under the conditions we 
have given (i.e., about 10% of non-removable elements with matrix dimensions 
of about 30), it is impossible to restore the matrix: for example, when an empty 
line is obtained. 

We considered the simplest heuristic for filling in the distance matrix without 
using the method of branches and boundaries in [9]. (We note in advance that 
the results of the computational experiments given in that paper will be com-
pared below with newer results using other heuristic algorithms.) Further, as we 
have already noted, our publications were devoted to the application of the 
branches and boundaries method; but in this paper, we again abandon it. At the 
same time, we complicate the greedy heuristics of [9]. 

Let us briefly describe the greedy matrix filling algorithm used in this paper. 
First of all, we choose an element that, if filled in, forms the largest number of 
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newly formed triangles; i.e., for n n× -dimensional distance matrix ( ),i jm , we 
choose the pair ( , )i j  such that: , 0i jm <  and 

( ) ( )( ), ,1 , , 1 , ,
max sgn sgnk j k ji j n i j k n k l k j

m m
≤ ≤ ≠ ≤ ≤ ≠ ≠

+∑              (1) 

is achieved. 
If there are several such elements, we choose any of them. Next, we consider 

all the resulting triangles, and minimize the total value of the badness. 
One of the variants of such an assessment of badness for one triangle is the 

formula 

α β
γ
−                             (2) 

where ,α β  and γ  are the angles of the derived triangle, and α β γ≥ ≥ . If 
the three sides do not satisfy the triangle inequality, we assumed a large value as 
the value of badness, usually from 1.0 for the case a b c= +  to 2.0 for “abso-
lutely impossible” triangles. 

The total value of badness is always (i.e., both for choosing a value in the de-
scribed algorithm and for a posteriori evaluation of the quality of the algorithm) 
considered simply as the sum of the values of badness of all triangles. In the de-
scribed algorithm, we are trying to minimize this badness value for all newly 
formed triangles. 

The minimization method is given in the next section, where the justification 
for the possibility of piecemeal filling of the matrix is given, to obtain a value of 
badness close to optimal (i.e., in terminology of [13], “to obtain a pseu-
do-optimal solution”). Simplifying it, we can say that that, taking the average 
values of the maximum sides of the formed triangles (i.e., α in previous formu-
las; note that in [9], this value was counted final) as the beginning of the iterative 
process, we get a pseudo-optimal value in a few iterations. 

3. The Theoretical Substantiation of the Possibility of  
Improvement of the Greedy Algorithm 

Thus, in this paper we reconstruct the matrix of distances between DNA se-
quences of different species of organisms. We shall restore the distance function 
of the matrix and find its derivative. The main problem is that it is an ill-posed 
problem, which means that a small error in the source data can lead to a large 
error in the calculated derivatives [14] [15] [16] [17], etc. 

If we introduce the coordinate axes x and y, located in the horizontal and ver-
tical axes, respectively, and consider the matrix as a two-dimensional array with 
noisy data defined on the domain 2RΩ ≤ , then the matrix elements will 
represent the noisy values of the function of two variables ,i juδ . It is natural to 
assume that the domain Ω  is divided into 2N n≤  parts { } 1

N
i i=

Ω , and there is 
the only one value ,i juδ  in each part. Denote id  as the diameter of iΩ  and let 

{ }max id d= . 
In this case, we obtain the deterministic model 
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( ) ,max , ,i i i ju x y uδ σ− ≤                      (4) 

between the noisy data ,i juδ  and the corresponding exact values ( ){ },i iu x y  at 
grid points { }1 2:n nX x x x= < <…<  and { }1 2:n nY y y y= < <…< . 

Let us suppose that the reconstructed function ( , )u x y∈  is formed accord-
ing to the following optimization problem: 

( )( )1

2 2

2

,2 1 1( )

2 22 2

2 2
( ) ( )

1arg min ,

( , ) ( , ) ,

n n
i j i ji jv C

L L

u v x y u
n

v x y v x y
x y

δ
= =∈ Ω

Ω Ω


= ⋅ −



 ∂ ∂  + +
 ∂ ∂ 

∑ ∑



          (5) 

where ( , )v x y  is a cubic spline, and regularization parameter   satisfies the 
expression: 

( )( )2 4
,2

1 1

1 , .
n n

i j i j
i j

v x y u
n

δ δ
= =

⋅ − =∑∑                   (6) 

Then by ([18], Theorem 3.3), the following proposition holds. 
Proposition 1. Let 2( , ) ( )u H⋅ ⋅ ∈ Ω . Let ( , )u x y  be the minimizer of the 

problem (1). Then for 2σ= , we have 

1
1/4 2

1( )
( , ) ( , ) ,

H
u u C d C δ

Ω
⋅ ⋅ − ⋅ ⋅ ≤ +                 (7) 

where C1 and C2 are some constants depending on the area Ω  and on 

2 ( )( , ) .Lu x y
Ω

∆
 

Based on Proposition 1, we obtain the following fact. For sufficiently small 
values d and δ, after solving the optimization problem (1) values 

,u u
x y

 ∂ ∂
 
∂ ∂   

can also be found with sufficiently high accuracy. We can do it taking derivatives 

, .u u
x y

 ∂ ∂
 
∂ ∂ 

 

 
Due to the fact that with an increase in the value of the norm 2 ( )( , ) Lu x y

Ω
∆  

the value of constants C1 and C2 will increase, we conclude that the smoother the 
function ( , )u x y  is, the smaller this norm will be, and the more accurate the 
regularization result will be. If the function is not smooth enough, we shall need 
noisier data to obtain the necessary accuracy. 

It also follows from the proposition 1 that if we set 0δ → , the error of res-
toring the function will depend mainly on the diameter d, which is the larger, 
the more missing data { },i juδ  at the grid points. And due to the fact, that 65% of 
data is missing in the task we have set, we need to introduce additional condi-
tions to restore the function. One of such conditions is the regularity found in 
the paper [4] for distance matrices, which consists in the fact that the three ele-
ments of the matrix 

https://doi.org/10.4236/jbm.2023.115023


B. F. Melnikov et al. 
 

 

DOI: 10.4236/jbm.2023.115023 315 Journal of Biosciences and Medicines 
 

( ), , ,, ,i j k i k jm m m
 

form the sides of an isosceles triangle. Thus, the formulas below reduce such a 
metric to a function of several variables, and a “triangular” norm for determin-
ing the quality of the distance metric can be introduced, which can be repre- 
sented in the following way. 

For the matrix ( ),i jM m=  and its elements ,i jm , we always suppose that 
, , {1,2, , }i j k n∈ …  and do not consider diagonal elements (i.e., elements ,i im  

and the arithmetical expressions with these elements are ignored in formulas). 
The total error σ is defined as follows: 

1

,
1 1

,
n n

i j
i j i

σ
−

= = +
∑ ∑                           (8) 

where one of the calculation variants is the sequential usage of the following 
formulas: 

( )
( )

(1)
, , , , ,

(2)
, , , , ,

,

(1) (2)
, , , , , , ,

(2)1 ,
, ,

max , , ,

min , , ,

 and is as follows :

2
max .

i j k i j k i k j

i j k i j k i k j

i j

i j k i j k i j k i k j

k nk i k j
i j k

r m m m

r m m m

r r m m m
r

σ

≤ ≤ ≠ ≠

− =

− =

−

+ − − −

              (9) 

Then the original problem can be reformulated into the problem of minimiz-
ing the error value (as we already said, it often was called “badness” in our pre-
vious papers) by piecemeal filling in the missing elements. 

It is very important that we fill missing elements in the table sequentially, pie-
cemeal, “step by step”; thereby we greatly simplify the implementation of the 
corresponding algorithm. 

Filling the table in this way, we obtain a matrix with noisy data { },i juδ  and 
then we restore the u  function by solving (1). The level of noise δ generated 
by this algorithm for restoring missing values can be estimated by analyzing the 
results of violations of the “isosceles triangle” regularity in [4]. 

Thus, by sequentially filling in the missing elements of the matrix, we can 
guarantee a consistent improvement of the resulting solution, which theoretical-
ly justifies the possibility of abandoning the branch and boundary method, 
which works much longer than the greedy algorithm for obtaining the value of 
one element considered here. 

4. Quality Criteria for the Numerical Solution of the Problem 

As we said before, an important question arises, is how exactly can we analyze 
the quality of the solution obtained using the recovery algorithm(s). 

However, the above model of calculations does not give a complete answer to 
the question of the quality of matrix restoring. 

Therefore, the simplest quality criterion would be a comparison (by some 
natural metric) of the reconstructed matrix and the actually obtained distance 
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matrix, which we can obtain for some examples of a small dimension; however, 
it is obvious that such a comparison can be made only a limited number of 
times, probably during the initial debugging of the algorithms. 

Therefore, in this section we formulate two possible quality criteria for the 
numerical solution of such restoring problems: 
• the first criterion compares the matrix reconstructed by the simplified algo-

rithm under consideration with the matrix obtained as a result of applying a 
general algorithm for the formation of each of its elements, like [9] [10]; we 
shall denote by σ the value of this criterion; 

• and the second criterion considers the discrepancy in a special way, it applies 
the same algorithms that are used as auxiliary ones of the general recovery 
algorithm considered in this paper; we shall denote by δ the value of this cri-
terion (or by d in some previous papers). 

In both cases, the goal is to reduce the values obtained by the applied crite-
rion. The exact formulas are as follows. 

1) For σ, we usually set 

( )
1

, ,
1 1

2 ,
( 1)

n n

i j i j
i j i

m
n

m
n

σ
−

= = +

= ⋅ −
⋅ − ∑ ∑                 (10) 

where all the elements ,i jm  are obtained by applying the original algorithm (for 
instance, already cited Needleman-Wunsch algorithm), i.e., without restoring 
any elements. Note that for obvious reasons, we cannot often use this method, 
and also, we cannot apply it for large matrices obtained by some distance deter-
mination algorithms; therefore, the following criterion δ can be called more 
universal. 

2) For δ, we usually set 
2 1

, ,
1 1 1

,
n n n

i j k
i j i k j

δ δ
− −

= = + = +

= ∑ ∑ ∑                      (11) 

(we specifically note once again, that the values ,i jm  are not used here). Each 
value , ,i j kδ  (where 1 , , , , ,i j k n i j i k j k≤ ≤ ≠ ≠ ≠ ) is the “badness” of corres-
ponding triangle; it is usually counted in the following way. 2a) Firstly, we re-
name , ,,i j i km m  and ,j km  into a, b and c, where a b c≥ ≥ . 

2b) If a b c≥ +  (i.e., the triangle inequality is violated), we choose in advance 
a constant ω (usually, =2) and set 

, , max , .i j k
a

b c
δ ω =  + 

                     (12) 

2c) Otherwise, for usual triangle, we count its angles; let they be ,α β  and 
γ , where α β γ≥ ≥ . 

2d) Then we set 

, , .i j k
α βδ
γ
−

=                         (13) 

Let us especially note that δ, unlike σ, is calculated quickly, despite we need to 
consider ∼n3 triangles. 
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Let us also note the relationship of both of these criteria with the task we are 
considering: for example, for a “random” matrix, we obtained significantly 
worse results of calculation by the criterion δ, even for small dimensions; to say, 
for such a matrix of dimension 13 × 13 we obtained δ in limits about 0.4 - 0.5, 
this is several times higher than the corresponding values for the “correct” ma-
trices of dimension 28 × 28 and significantly lower percentage of initial fullness, 
see the next section. 

5. Some Results of Computational Experiments 

As previously mentioned, we place great emphasis on evaluating the results of 
our computational experiments. We have achieved improved algorithm perfor-
mance compared to the simplest variant of the branch and boundary method (as 
described in [9] [10]). By “simplest variant,” we refer to the basic greedy heuris-
tic used to select the next separating element. In this paper, we employ a more 
complex greedy heuristic while abandoning the branch and boundary method. 
Although the combination of both methods and a more complex greedy heuris-
tic would likely yield even better results according to our quantitative criteria, 
the time constraints would be unacceptable. We have not conducted detailed 
computational experiments for this case. 

We will briefly describe the computational experiments that we have con-
ducted. In this paper, we have used only one variant of input data (mtDNA from 
28 monkeys, which we briefly discussed earlier). However, similar results have 
been obtained for all input data variants used. The initial matrix, filled in as a 
result of the Needleman-Wunsch algorithm, is presented in ([9], Tab. 8). The in-
itial matrix with approximately 10% of remaining elements is presented in ([10], 
Tab. 9). It should be noted that while the calculations in that paper were accu-
rate, the calculations of the values σ and δ were erroneous. However, these mis-
takes did not affect the relative quality indicators of the algorithms. In this paper, 
we present completely accurate results, which can be easily verified. 

The column designations in Table 1 are clear, and the row designations have 
the following meaning: 
• (A) corresponds to the matrix, obtained by the best algorithm of ([9], Tab. 

13); algorithm does not use branches and boundaries method; 
• (B) corresponds to the matrix, obtained by the best algorithm of ([10], 

Tab.17); the algorithm uses branches and boundaries method; 
• (C) corresponds to the matrix, obtained by the simplest greedy algorithm of 

([9], Tab. 10); the algorithm does not use branches and boundaries method;; 
• (D) corresponds to the matrix, obtained by the complicated greedy algorithm 

of the current paper; the algorithm does not use branches and boundaries 
method. 

Certainly, all the calculation results shown in this table can be quickly checked 
using a simple supportive computer program. 

Some unusual feature of the results obtained is that the reduction of the values 
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of σ and δ by different algorithms occurs independently of each other, i.e., the 
binary relationship between the algorithms, which consist in the fact that the 
first of them gives the best results for both criteria, forms a partial order only. 
Similar relative results are obtained for other objects of study (not for monkeys 
etc.). Of course, the best option would be the simultaneous minimization of σ 
and δ, which we shall achieve in the subsequent work. However, the results pre-
sented in this paper are of big interest. 

6. Conclusion 

Let us formulate some problems for the future solution, i.e., consider a brief de-
scription of the nearest directions for further work related to the modification 
and improvement of the described algorithms. 

We introduce a special “reliability coefficient” (let it be 1R < , to say, 0.9R =  
in the following description), which we use as follows. We consider that the ini-
tial values of the matrix (in the example considered in the paper, the remaining 
10% of the elements after the removal) have a weight of 1.0. The elements de-
rived from only the initial ones (i.e., in the beginning of filling) have a weight of 
R. 

And in the general case (i.e., after filling in some elements) we proceed as fol-
lows. As in the greedy algorithm already discussed in this paper, we form all 
possible triangles obtained together with the element selected for filling, i.e., if 
the considered unfilled element of the matrix is ,i jm , then, as before, we consid-
er all such k that ,i km  and ,j km  are already filled. However, we calculate the 
obtained values with the reliability coefficients already assigned to these values, 
i.e., we minimize the general function, which includes values with these coeffi-
cients; for the reliability coefficients ,i kR  and ,j kR , we assume that the reliabil-
ity coefficient of the considered triangle is 

, , .
2

i k j kR R
R∆

+
=                        (14) 

The resulting value obtained as a result of minimization is placed in a matrix 
with its new reliability coefficient equal to the a priori value of R multiplied by 
the average reliability coefficient of all considered triangles that form the element 

,i jm : using (3) and assuming we are considering m triangles, this new coefficient 
can be written as follows: 

 
Table 1. General results of some computational experiments. 

T σ δ 

(A) 0.091 0.110 

(B) 0.029 0.133 

(C) 0.079 0.103 

(D) 0.038 0.044 

The most successful values of σ and δ are highlighted in bold. 
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( )(1) (2) ( )

.
mR R R R

m
∆ ∆ ∆+ +…+ ⋅

                   (15) 

And, of course, the best value of the reliability coefficient R should be ob-
tained as a result of some self-learning process. 

Founding 

This work was supported in part by the Higher Education Stability Support Pro-
gram of Chinese Universities (section “Shenzhen 2022—Science, Technology 
and Innovation Commission of Shenzhen Municipality”). 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Needleman, S. and Wunsch, C.D. (1970) A General Method Applicable to the 

Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Mo-
lecular Biology, 48, 443-453. https://doi.org/10.1016/0022-2836(70)90057-4 

[2] Winkler, W. (1990) String Comparator Metrics and Enhanced Decision Rules in the 
Fellegi-Sunter Model of Record Linkage. In Proceedings of the Survey Research 
Methods Sections, American Statistical Association, 354-359.  

[3] Van der Loo, M.P.J. (2014) The Stringdist Package for Approximate String Match-
ing. The R Journal, 6, 111-122. https://doi.org/10.32614/RJ-2014-011 

[4] Melnikov, B., Pivneva, S. and Trifonov, M. (2017) Various Algorithms, Calculating 
Distances of DNA Sequences, and Some Computational Recommendations for Use 
such Algorithms. CEUR Workshop Proceedings, 1902, 4347.  
https://doi.org/10.18287/1613-0073-2017-1902-43-50 

[5] Maloy, S. and Hughes, K. (2013) Brenner’s Encyclopedia of Genetics. Elsevier, 
Amsterdam.  

[6] Cibelli, J., Wilmut, I., Jaenisch, R., et al. (2014) Principles of Cloning. Academic 
Press, New York.  

[7] Sykes, B. (2003) Adam’s Curse: The Science That Reveals Our Genetic Destiny. 
W.W. Norton and Company, New York.  

[8] Lennarz, J. and Lane, M. (2013) Encyclopedia of Biological Chemistry. Elsevier, 
Amsterdam.  

[9] Melnikov, B. and Trenina, M. (2018) On a Problem of the Reconstruction of Dis-
tance Matrices between DNA Sequences. International Journal of Open Information 
Technologies, 6, 1-13. (In Russian)  

[10] Melnikov, B. and Trenina, M. (2018) Application of the Branches and Boundaries 
Method in a Problem of the Reconstruction of Distance Matrices between DNA 
Sequences. International Journal of Open Information Technologies, 6, 1-13. (In 
Russian)  

[11] Melnikov, B., Trenina, M. and Melnikova, E. (2020) Different Approaches to Solv-
ing the Problem of Reconstructing the Distance Matrix Between DNA Chains. In: 
Sukhomlin, V., Zubareva, E., Eds., Modern Information Technology and IT Educa-

https://doi.org/10.4236/jbm.2023.115023
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.32614/RJ-2014-011
https://doi.org/10.18287/1613-0073-2017-1902-43-50


B. F. Melnikov et al. 
 

 

DOI: 10.4236/jbm.2023.115023 320 Journal of Biosciences and Medicines 
 

tion. SITITO 2018. Communications in Computer and Information Science, Sprin-
ger, Cham, 1201. https://doi.org/10.1007/978-3-030-46895-8_17 

[12] Melnikov, B. and Terentyeva, Y. (2021) Building Communication Networks: On the 
Application of the Kruskal’s Algorithm in the Problems of Large Dimensions. In 
IOP Conference Series: Materials Science and Engineering, 1047, 012089.  
https://doi.org/10.1088/1757-899X/1047/1/012089 

[13] Melnikov, B., Melnikova, E., Pivneva, S., Churikova, N., Dudnikov, V. and Prus, M. 
(2018) Multi-Heuristic and Game Approaches in Search Problems of the Graph 
Theory. In Information Technologies and Nanotechnologies. Collection of Works 
of ITNT-2018. Samara National Research University Named after Academician S. 
P.Korolev., 2884-2882. (in Russian)  

[14] Tikhonov, A.N. (1963) On the Solution of Ill-Posed Problems and the Method of 
Regularization. Proceedings of the USSR Academy of Sciences, 151, 501-504.  

[15] Groetsch, C. (1984) The Theory of Tikhonov Regularization for Fredholm Equa-
tions of the First Kind. Pitman Advanced Publishing Program, Boston.  

[16] Hanke, M. and Scherzer, O. (2001) Inverse Problems Light: Numerical Differentia-
tion. The American Mathematical Monthly, 108, 512-521.  
https://doi.org/10.1080/00029890.2001.11919778 

[17] Chaikovskii, D. and Zhang, Y. (2022) Convergence Analysis for Forward and In-
verse Problems in Singularly Perturbed Time-Dependent Reaction-Advection-Di- 
ffusion Equations. Journal of Computational Physics, 470, 111609.  
https://doi.org/10.1016/j.jcp.2022.111609 

[18] Wang, Y.B. and Wei, T. (2005) Numerical Differentiation for Two-Dimensional 
Scattered Data. Journal of Mathematical Analysis and Applications, 312, 121-137.  
https://doi.org/10.1016/j.jmaa.2005.03.025 

 

https://doi.org/10.4236/jbm.2023.115023
https://doi.org/10.1007/978-3-030-46895-8_17
https://doi.org/10.1088/1757-899X/1047/1/012089
https://doi.org/10.1080/00029890.2001.11919778
https://doi.org/10.1016/j.jcp.2022.111609
https://doi.org/10.1016/j.jmaa.2005.03.025

	An Algorithm for the Inverse Problem of Matrix Processing: DNA Chains, Their Distance Matrices and Reconstructing
	Abstract
	Keywords
	1. Introduction
	2. A Brief Description of the Greedy Algorithms of Restoring the Distance Matrix
	3. The Theoretical Substantiation of the Possibility of Improvement of the Greedy Algorithm
	4. Quality Criteria for the Numerical Solution of the Problem
	5. Some Results of Computational Experiments
	6. Conclusion
	Founding
	Conflicts of Interest
	References

