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Abstract 
Mental workload plays a vital role in cognitive impairment. The impairment 
refers to a person’s difficulty in remembering, receiving new information, 
learning new things, concentrating, or making decisions that seriously affect 
everyday life. In this paper, the simultaneous capacity (SIMKAP) experiment- 
based EEG workload analysis was presented using 45 subjects for multitask-
ing mental workload estimation with subject wise attention loss calculation as 
well as short term memory loss measurement. Using an open access prepro-
cessed EEG dataset, Discrete wavelet transforms (DWT) was utilized for fea-
ture extraction and Minimum redundancy and maximum relevancy (MRMR) 
technique was used to select most relevance features. Wavelet decomposition 
technique was also used for decomposing EEG signals into five sub bands. 
Fourteen statistical features were calculated from each sub band signal to 
form a 5 × 14 window size. The Neural Network (Narrow) classification algo-
rithm was used to classify dataset for low and high workload conditions and 
comparison was made using some other machine learning models. The re-
sults show the classifier’s accuracy of 86.7%, precision of 84.4%, F1 score of 
86.33%, and recall of 88.37% that crosses the state-of-the art methodologies in 
the literature. This prediction is expected to greatly facilitate the improved 
way in memory and attention loss impairments assessment. 
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1. Introduction 

The electrical activity of brain neurons can be recorded methodically using elec-
troencephalography (EEG). For these recordings, the scalp is used, and numerous 
electrodes are positioned there in different, specific places. Analyzing recorded 
EEGs helps describe the status of the brain with deviations from the normal/ 
healthy state, and such deviations engender epileptic seizures, sleep difficulties, 
attention loss, memory loss, mental stress, and more. Visual examination of the 
recorded EEG data is not feasible due to the huge volume of data [1]. Successful 
assessment and understanding of both low and high mental workload states place 
a high demand on the ability to retrieve meaningful information from EEG sig-
nals. Then, considering only a few crucial signal characteristics by using Machine 
Learning (ML) makes EEG analysis simpler than laborious, time-consuming big 
data sets for analyzing mental states. 

The idea of human mental workload is the cornerstone of research on the as-
sessment of the human brain functions. The broadest definition of mental work-
load can be stated as the cognitive cost of completing a task in a limited amount 
of time and its associated prediction is required in order to forecast the operator 
and system [2] [3]. Mental workload has been identified as a crucial element that 
significantly affects the human brain’s performance [2]. As a concept, it has been 
widely used in the design and evaluation of complex human-machine systems 
and environments, including those for operating aircraft [4], operating trains 
and vehicles [5] [6], different human-computer and brain computer interfaces 
[7] [8] [9] and educational contexts [10] [11] [12]. Over the past two decades, 
there has been an increase in interest in studying mental workload due to the 
emergence of a number of technologies that need users to operate at various le-
vels of cognition and in a variety of environments. The survey of the literature 
reveals various works on workload EEG analysis to determine attention loss and 
short-term memory loss. But only a few of them have been conducted for work-
load analysis where the adequate and useful features are extracted. Different ap-
proaches have been put forth to gauge the workload of the human mind using 
simultaneous tasks (SIMKAP). One of them is an arithmetic task that was in-
troduced to perform mental stress or workload analysis [1]. An approach using 
(Independent Component Analysis) ICA with three types of task was introduced 
in [13] for choosing the most suitable EEG channels for classifying mental tasks 
using power spectrum density (PSD) feature extraction only and it got only 70% 
accuracy. Simultaneous task EEG workload dataset description with experimen-
tal results was proposed with 69.2% accuracy using FFT based PSD features ex-
traction technique only [14]. Another method for emotion recognition was re-
ported by the work in [15] where two types of workload were predicted and it 
achieved a classification accuracy of 73.14%. Mental workload recognition from 
EEG signal using deep learning techniques was conducted in [16] and it achieved 
only 65% classification accuracy. Mental workload estimation using EEG was 
also introduced by Vishal Pandey et al. in 2020 in an international conference 
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with maximum 72% classification accuracy [17]. Cognitive Workload assess-
ment on simultaneous tasks was proposed by Wonse Jo et al. in 2022 with 74.68% 
[18]. 

We found a glaring deficit in effective feature extraction and feature selection, 
along with classification based on our examination of the literature that has been 
discussed in above. In this study, we proposed a feature selection technique se-
lecting the dominant features after feature extraction with fourteen types of sta-
tistical features results high classification accuracy from the literature to fill up 
the gap of the literature and thus classify low and high workload analysis from 
EEG data to find out the attention loss and short-term memory loss. This is how 
the rest of the paper is structured: The “Materials and Research Methods” sec-
tion provides a chronological explanation of the research, including research de-
sign and research procedure. The “Results and Discussion” section is next pro-
vided, and lastly the “Conclusion” section.  

2. Materials and Research Methodology  

Materials and required methodology used in this research is provided in this 
section descriptively. The tasks related to experiment, a description of a dataset 
used, wavelet transform (DWT), statistical data computation for feature extrac-
tion, and a detailed description of classifiers used along with the performance 
metrics for validation are illustrated in the following subsections.  

2.1. Dataset Description and Experimental Design 

This paper mainly describes EEG workload estimation technique using simulta-
neous task or simultaneous capacity (SIMKAP) [14]. The data for each subject 
follows the naming convention as subno_task.txt. For example, sub01_lo.txt is 
filtered EEG data for subject 1 at rest, while sub23_hi.txt is filtered EEG data for 
subject 23 during the multitasking test. The rows of each datafile correspond to 
the samples in the recording and the columns correspond to the 14 channels of 
the EEG device, those are AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, 
AF4, respectively depicted in Figure 1 [14]. 

 

 
Figure 1. Electrodes positions based on 10 - 20 international 
system for EEG recording with The Emotiv EEG Device [14]. 
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In order to minimize the impact of any between-task activity, the start and last 
15 seconds of data from each recording were removed, yielding recordings that 
lasted 2.5 minutes. After each trial section, subjects were asked to assess their 
perceived mental workload (MWL) on a scale from 1 to 9.  

 

 
 

Questionnaire on a 1 - 9 scale for rating of mental workload, which subjects 
were required to fill after completion of each segment of the experiment has 
been shown in above screenshot [14]. This was done subjectively confirming 
that the subject actually felt more work during the test than they did while they 
were resting. A rating of 1 - 3 can be interpreted as low (lo) workload, (4 - 6 as 
medium workload was not considered in this study) and 7 - 9 as high (hi) work-
load. In both low and high workload states, 128 Hz sampling frequency was used 
with 2.5 minutes of EEG recordings utilizing the Emotiv EPOC EEG headset 
[14]. According to a study in [19], the most popular measure in cognitive load 
studies is the 9-point rating scale [20], which is comparable to the NASA-1 
TLX’s to 21 scale.  

The overall functionality of the system is composed of several parts as de-
picted in Figure 2. Those parts include collecting the dataset from the IEEE Data 
Port in text format, extracting data based on channels, arranging the processed 
data corresponding to its label to fit for classification and finally classifying EEG 
data during high and low workload. 

To determine the attention loss as well as the short-term memory loss in brain 
wavelet decompose technique was applied to decompose EEG signal into its sub 
band signals, and the relative power of those signals, namely, theta, alpha and 
beta signals, was determined using percentage of five signals, preparing area and 
radar plot in excel during high workload. 

2.2. Discrete Wavelet Transform 

In order to analyze the time-frequency relationship of biomedical signals, dis-
crete wavelet transform (DWT) is used [21]. This DWT is especially helpful in 
EEG signal processing because of its non-stationary properties. By using long 
time frames for low frequencies and short time frames for higher frequencies, 
this transform generates an accurate time-frequency evaluation. The DWT de-
composition of a signal uses two down samplers by 2, time series high-pass and 
low-pass filtering, and time series high-pass and low-pass filtering.  

In this case, the mother-wavelet is indicated by DWT’s high-pass filter g(n), 
and its mirror version is expressed by DWT’s low-pass filter h(n) [21]. Figure 3 
depicts the mother wavelet of the Daubechies wavelet (db4) and the scaling func-
tion associated to it. The approximation and detail coefficients, marked by A1 
and D1, are the outcomes of the first high-pass and low-pass filters respectively.  
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Figure 2. EEG workload estimation and relative power calculation during SIMKAP. 

 

 
Figure 3. Scaling function and mother wavelet (db4). 

 
The A1 is additionally disintegrated, and procedure is carried out again and 
again until the desired number of breakdown levels is reached [21] [22]. The di-
lation function φj,k(n) is reliant on the low-pass, and the wavelet function ψj,k(n) 
keeps on the high-pass filter, which is represented as follows.  

( ) ( )2
, 2 2j j

j k n h n kφ = −                     (1) 

( ) ( )2
, 2 2j j

j k n g n kψ = −                     (2) 

where, 0,1, 2, , 1n N= − ; 0,1,2, , 1j J= − ; 0,1,2, , 2 1k j= − ; J = log2(N); 
and N represents the length of the signal [23]. The primary frequency compo-
nents of the signal are used to determine the highest decomposition level [24]. 
DWT coefficients are the dot products of the original time series and the chosen 
basis functions. The term approximation coefficients Ai and the another term 
detailed coefficients Di in the ith level are expressed by (3) and (4) [24].  

( ) ( ),
1

i j kA x n n
M

φ= ×∑                   (3) 

( ) ( ),
1

i j kD x n n
M

ψ= ×∑                   (4) 

where, 0,1,2, , 2 1k j= −  and M is the length of the EEG time-series in the 
discrete points. 

3. Signal Processing, Statistical Features Calculation and  
Workload Estimation 

Computer-based intelligent systems for analysis of mental stress are very useful 
in diagnostics and disease management. This part presents data acquisition, sig-
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nal processing techniques and finally mental workload classification for human 
brain workload estimation. The elimination of noise by digital filter enhances 
the quality of signal and features extraction facilities. The subject wore a 10 - 20 
system for EEG recording. The found data was transmitted to wavelet transform 
for feature selection for statistical analysis. 

3.1. Major Steps Involved for Processing of EEG Signal to Estimate  
Workload during SIMKAP Task 

Below steps are considered for processing EEG signal to estimate workload dur-
ing SIMKAP task: 

3.1.1. Extracting Data Based on Channels 
The data are extracted from the dataset and information files found in IEEE data 
port according to the number of channels. This paper discussed single channel 
(O2) data for EEG data preprocessing during the SIMKAP process. For this data 
manipulation process, MATLAB version 2021 was used.  

3.1.2. Data Processing for Corresponding to Its Label to Fit for  
Classification 

The processed data was arranged for data corresponding to its label to fit for 
machine learning with the help of information provided in the rating file in 
IEEE Data port. A separate file called ratings.txt contains the ratings for each 
subject. Subject number, rating at rest, and rating for test were provided in 
comma separated value format. As an illustration, 1, 2, 8 would be subject 1, 
with a rating of 2 for “at rest”, and 8 for “test”. It was awarded that subjects 5, 24, 
and 42 did not have available ratings. 

3.1.3. Wavelet Decomposition Technique 
Wavelet decomposer was used to decompose the EEG signal into its five signals. 
These are (D5-D8, and A8) gamma, theta, delta, beta and alpha (respectively). 
After calculating individual power of each signal or level relative power in per-
centage of the signals are easily calculated.  

The overall repeated procedure of the decomposition of EEG signals is been 
given in Figure 4. 

3.1.4. Statistical Features Calculation and Dominant Features Selection  
from Decomposition Levels (D5-D8, and A8)  

There are five decomposed signals or levels found in EEG signals. To find the 
statistical features from EEG signal wavelet decomposition technique was used 
to decompose the signal into five sub bands. These are delta, theta, alpha, beta, 
gamma and Figure 5 depicts the decomposed sample versus time signals. Four-
teen statistical features viz. minimum, maximum, mean, mode, median, inter 
quartile range, standard deviation, variance, root mean square (rms), entropy, 
kurtosis, peak2rms, peak2peak, Root-sum-of-squares level were calculated for 
each sub band signal for O2 channel. In this process, 5 × 14 features widow size 
was found for each number of samples.  
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Figure 4. EEG signal sub-band decomposition using DWT. 

 

 
Figure 5. Decomposed EEG signals for 60 × 2.5 seconds (2.5 minutes) (No. of 
sample VS time curve) duration low and high state. 

 
Maximum relevance, minimum redundancy analysis (MRMR) model was 

used to select dominant features among 70 features. Selecting only five statistical 
features by this feature selection model provided (denoted by bar diagram) from 
70 features (along features index) which results in the same classification accu-
racy with a wide neural network. The features selection model and confusion 
matrix found by applying MRMR are depicted by Figure 6 and Figure 7(b) re-
spectively. 

3.1.5. Classification 
The most rapidly used classification technique is machine learning. We used 
various machine learning algorithms for classification purposes to classify low 
and high states that have been discussed in below.  

Among all classifiers used in this study, neural networks algorithm helps us in 
second position to improve machine learning the results of classification per-
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formance parameters by combining several models. Neural networks, which are 
a subset of machine learning and the core of deep learning algorithms, which are 
also known as artificial neural networks (ANNs) or simulated neural networks 
(SNNs). In order to mirror the way that organic neurons communicate with one 
another, their name and structure are both derived from the human brain. In-
put, one or more hidden layers, and an output layer are the layers that make up a 
node layer in artificial neural networks (ANNs). There are connections between 
each node, or artificial neuron, and each one has a threshold and weight that go 
along with it [25].  

The Ensemble classification algorithm provided 2nd height classification accu-
racy and other performance parameters. Bagged, Random Forest is some types 
of Ensemble classification [26].  

 

 
Figure 6. First five features (6, 62, 63, 66, 64) selected by maxi-
mum relevance, minimum redundancy analysis (MRMR) model. 

 

 
(a)                                    (b) 

Figure 7. Confusion matrix found by Neural Network classifier, (a) without MRMR and (b) 
with MRMR. 
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A group of supervised learning techniques called support vector machines 
(SVMs) are employed in the identification of outliers, regression, and classifica-
tion. Support vector machines have some benefits including high-dimensional 
spaces effectively. Even when there are more dimensions than samples, the me-
thod is still effective [27]. It is a revolutionary small-sample learning method 
that also outperforms existing methods in many ways since it is based on the 
structural risk reduction principle rather than the conventional empirical risk 
minimization concept. The optimal surface that resulted from the linearly se-
parable instance is described in two dimensions by the support vector machine 
[28].  

The Support Vector Machine (SVM) algorithm employs quantum rules to 
carry out calculations in the Quantum Support Vector Machine (QSVM) quan-
tum version. Classical SVM algorithms that run on traditional machines with 
CPUs or GPUs can perform better thanks to QSVM, which harnesses the power 
of quantum technology and software. The first significant stage in quantum 
machine learning is the conversion of classical data into quantum data using 
calculations on a quantum computer. The second key step is the conversion of 
the quantum result back into classical data using the same computer [29]. 

4. Finding Attention Loss and Short-Term Memory Loss  

To fulfill the demand of the study, after performing the classification process 
using a complete set of data with more features with machine learning it is 
needed to find the memory loss in the brain. The relative power of decomposed 
EEG sub band signals, as mentioned, Alpha, Beta and Theta signals, were inves-
tigated with respect to high and low EEG workload (High alpha and low beta 
power = high retention capacity) [30]. In this work, estimation of the short-term 
memory loss in the brain during high workload is introduced graphically by ra-
dar plot and area chart in excel after following some steps. 

4.1. Major Steps Involved for Finding Attention Loss and Memory  
Loss in Brain 

The following steps are involved for finding attention loss and short-term mem-
ory loss in brain during high workload: 

Relative Power Calculation from Decomposition Levels (D5-D8, and A8) 
Five decomposed signals or levels found applying wavelet decomposition tech-
nique of EEG signals are labeled by A8, D8, D7, D6 and D5 depicted by Figure 
5. The power of each signal was calculated and finally the relative power of them 
was measured. Finding attention loss and memory loss (short term) in the brain 
has been discussed in upcoming section 5. 

5. Numerical Analysis  

The proposed EEG signal classification for low and high mental workload esti-
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mation during simultaneous capacity (SIMKAP) tasks is validated in this sec-
tion. Discrete wavelet analysis for both cases (low and high mental workload) is 
presented graphically, and statistical parameters with classification results as well 
as performance parameters are extracted numerically. Finally, the attention loss 
and short-term memory loss in brain is predicted from the Radar plot and Area 
curve by using Excel. 

5.1. Results and Discussions 

In this section, the results from this work and its validation are discussed chro-
nologically. The reliability of a procedure cannot be improved by acting based 
just on accuracy. Sensitivity, specificity, F1-score, negative projected value, and 
other metrics are also necessary to support a technique’s performance. In states 
of high workload, sensitivity identifies a positive EEG signal; in states of low 
workload, specificity recognizes a real EEG signal. By assessing accuracy, sensi-
tivity, and specificity, precision, F1-score, and negative predicted value as speci-
fied below, the performances of the employed classifiers were calculated [31]. 
Several classification models with the proposed model is shown in Table 1 and 
comparative of performance of the proposed method with existing methods is 
also summarized in Table 2. 

TP TNAccuracy
TP TN FP FN

+
=

+ + +
                   (5) 

 
Table 1. High and low Workload Classification Result using different Classifiers algorithms. 

Classifier Type Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score (%) NPV (%) AUC 

SVM 80 80 80 80 80 80 0.84 

Neural Network (Bilayered) 82.2 85.4 79.61 77.8 81.42 86.7 0.85 

Ensemble Subspace 78.9 79.55 78.27 77.8 78.66 80 0.88 

Ensemble Bagged Trees 83.3 87.51 80 77.8 82.36 88.9 0.88 

Neural Network (Narrow) 86.7 88.37 85.07 84.4 86.33 88.9 0.91 

 
Table 2. Performance comparison with existing methods. 

Methods’ Ref. 
Data Preprocessing 

Techniques 
Task Type 

Used 
Classifier 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

[17] 

High-pass filter (fc = 1 Hz), 
Notch filter (50 Hz) with  

Artifact Independent  
Component Analysis (ICA) 

Two 
K-Nearest 
Neighbors 

(KNN) 
72.4 66.12 49.54 59.39 

[32] 
High-pass filter at 1 Hz  
with Artifact Subspace  
Reconstruction (ASR) 

Two 
Support Vector 

Regression 
(SVR) 

73.14 - - - 

Proposed  
Method 

Raw Two 
Neural Network 

(Narrow) 
86.7 88.37 85.07 84.4 
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TPSensitivity Recall
TP FN

= =
+

                    (6) 

TNSpecificity
TN FP

=
+

                      (7) 

TPPrecision
TP FP

=
+

                       (8) 

PPV TPR Recall PrecisionF1 score 2 2
PPV TPR Recall Precision

× ×
= × = ×

+ +
            (9) 

TPRecall
TP FN

=
+

                       (10) 

The relative power levels of theta, alpha and beta signals during low and high 
workload are shown from Figure 8. The area plot shows the graphical represen-
tation of them. Radar plot of Figure 9 and Figure 10 show the graphical repre-
sentation of the overall case according to the number of subjects. From these 
figures it is seen that, theta and alpha powers go higher from low to high work-
load. Literature showed that an increase in the alpha band is associated with a 
decrease in attention, and alertness [33].  

 

 
(a)                                  (b) 

Figure 8. Area plot of sub bands signals. 
 

 
Figure 9. Radar plot of sub bands signals during low workload. 
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Figure 10. Radar plot of sub bands signals during low workload. 

 
Moreover, a higher power spectrum in theta band indicates a decrease in vi-

gilance and alertness [33]. In this study, alpha and theta bands increase from low 
to high workload as depicted in Figure 8 resulting in subjects decreasing or los-
ing their attention during SIMKAP tasks going from low to high workload level. 
After analysis of Figure 9 and Figure 10 it is concluded that, subjects 41 and 31 
lost their attention going from low to high workload. Literature also showed that 
beta band is inversely associated with short term memory tasks [34]. As this 
study does not start with short term memory loss data, that is why beta power 
increases from low high workload condition resulting no short-term memory 
loss in this study.  

5.1.1. Classification Results 
In case of SIMKAP task during low and high (workload) Neural Network (Nar-
row) machine learning model was used to classify EEG data. The confusion ma-
trix generated from the Neural Network (Narrow) algorithm is depicted in Fig-
ure 7(a) having training results with 86.7% accuracy (max.) with two labels (low 
and high). Figure 7(b) is depicted for the confusion matrix of the same classifi-
cation algorithm using MRMR feature selection technique with 86.65% accuracy 
(max.). SVM, QSVM, Neural Network (Wide) and Ensemble Subspace models 
were also used to compare the performance parameters with the proposed model 
shown in Table 1. Performance comparison with existing methods of the pro-
posed method is also shown in Table 2.  

5.1.2. Performance Evaluation 
For SIMKAP tasks, the classification results are presented in Table 2 with accu-
racy 86.7% including two labels tasks (low and high) resulting from comparative 
studies among various classifiers models. The comparative study with literature 
is shown in Table 2 which outperformed cutting-edge techniques described in 
the literature by 86.7%.  
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6. Conclusion and Future Work 
6.1. Conclusion 

The suggested method analyzes EEG data from the occipital (O2) region of the 
brain. The proposed classifier responded most favorably to the proposed ap-
proach with 86.7% accuracy (max.), 84.4% precision, 86.33% F1 score and 88.37% 
recall including two tasks (low and high workload). This method is more effi-
cient and performs better than existing equivalent methods in terms of sensitivi-
ty, accuracy, precision and F1 Score. Moreover, a furnished and well decorated 
easy procedure is introduced to find out the short-term memory loss in the hu-
man brain with a large number of datasets by using only relative power consid-
erations of the sub band signals. It is envisaged that this work will help further in 
short term memory loss analysis using EEG data. 

6.2. Future Work 

The analysis in this study can be used as a gateway for further research on hu-
man brain short term memory loss associated with mild cognitive impairment 
using a large data set. 
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