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Abstract 
Epilepsy is a clinical syndrome caused by highly synchronized abnormal 
discharges of neurons in the brain. It is a common disease of the nervous 
system. The pathogenesis of epilepsy has not been fully understood yet. The 
main pathological changes after seizures are programmed neuronal death 
and glial proliferation. Autophagy is a catabolic process. Moderate autopha-
gy is critical to maintain the homeostasis and cell health, while abnormal 
autophagy can lead to disease. A number of studies have proved that abnor-
mal autophagy mechanism can lead to epilepsy, and there are also literatures 
that autophagy induced by endoplasmic reticulum stress can reduce the 
neuronal damage triggered by epilepsy, thus playing a protective role in 
neurons. This article reviews the relationship between autophagy and epi-
lepsy in order to provide basis for further study of autophagy pathway and 
pathophysiology of epilepsy.  
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1. Introduction 

Epilepsy is a neurological disease characterized by long-term recurrence. It is 
due to the imbalance between excitatory and inhibitory neurotransmission in 
the central nervous system, resulting in abnormal discharge of neurons in the 
cerebral cortex. Epilepsy affects more than 50 million people worldwide [1]. At 
present, there are more than 9 million epileptic patients in China, and the num-
ber of new cases is up to 65 - 70 million every year, of which 30% are intractable 
epilepsy. The most significant steady-state changes in epileptic seizure activity 
include the accumulation of intracellular calcium and the increase of reactive 
oxygen species (ROS) production, and trigger neuronal death through a variety 
of mechanisms. Its basis is cell necrosis and apoptosis, and the damage to neu-
rons depends on the entry of intracellular Ca2+ [2]. In addition, seizures can also 
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lead to ion channel dysfunction, mossy fiber sprouting, glial hyperplasia, neuro-
genesis and inflammation [3] [4]. The pathogenesis of epilepsy is complex. Au-
tophagy, as an important cell quality control method, also plays an important 
role in the occurrence and development of epilepsy. In mammals, autophagy is 
involved in many physiological processes, including the response to hunger, cell 
growth control, anti-aging mechanism and innate immunity. However, the dis-
order of autophagy plays a role in some diseases, such as cancer, cardiomyopa-
thy, muscle diseases and neurodegenerative diseases. Autophagy can protect 
cells from further damage by removing certain toxins and pathogens, as well as 
denatured cytoplasmic components, such as condensed proteins or damaged 
organelles formed by misfolded or unfolded proteins; On the other hand, over- 
activated autophagy can lead to cell death, so autophagy is a double-edged sword 
for cells [5]. Autophagy changes exist in the mechanisms of many nervous sys-
tem diseases, from neurodegenerative diseases to acute nerve injury, autophagy 
plays a corresponding role. The study of the correlation between autophagy and 
epilepsy is of great value for further elucidating the pathogenesis and prevention 
of epilepsy. Autophagy, as a biological research field that has attracted much at-
tention in recent ten years, provides a new perspective for us to study the poten-
tial pathogenesis of epilepsy. 

2. Molecular Mechanism and Biological Function of  
Autophagy 

Autophagy, as its name implies, can be defined as “self digestion” of cells, which 
refers to the process in which organelles, proteins, protein complexes/oligomers, 
pathogens and other cellular components are transported to lysosomes for de-
gradation and maintenance of cellular homeostasis [6]. According to different 
transmission mechanisms, autophagy can be divided into three types: macro-
phage, small autophagy and partner-mediated autophagy. These three activities 
are all related to nervous system diseases, because the transport mechanisms are 
different. There are also essential differences in the three processes of autophagy. 
[7]. Macrophage is an evolutionarily conservative lysosome mediated system for 
massive degradation of proteins, organelles and cellular components. It is cha-
racterized by inducing a small isolation membrane, which extends into a vacuole 
with a double membrane and can engulf a large number of cytoplasmic compo-
nents, such as unfolded protein aggregates, damaged organelles, and invasive 
pathogens, such as bacteria [8]; Small autophagy means that lysosome mem-
brane directly encapsulates substrate and degrades it in lysosome; Molecular 
chaperone mediated autophagy (CMA) is characterized by binding intracellular 
substrate proteins through molecular chaperones such as heat shock protein 70 
(HSC70) and delivering them to lysosomes for digestion. This pathway is selec-
tive in protein clearance [9]. The main type of autophagy is macrophage (herei-
nafter referred to as autophagy). 

Autophagy involves the following steps: first, autophagy begins with the for-
mation of autophagosomes at the assembly site of the phage, and the formation 
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of autophagosome precursors is mediated by the activities of class III phospha-
tidylinositol 3 kinase (PI3K) and vacuolar protein classification 34 (Vps34). 
Subsequently, the bilayer membrane elongates and vesicles are formed through 
two ubiquitin-like reactions, collectively referred to as autophagosome elonga-
tion. The first ubiquitin-like reaction leads to the formation of the Atg12-Atg5- 
Atg16L1 complex, and the other leads to the formation of the LC3-II complex, 
which, notably, can interact with each other; then, the autophagosomes are 
transported in a kinetic protein-dependent manner to the lysosomes around the 
microtubule tissue center, where tethering, docking and fusion take place to 
achieve autophagosome maturation and fusion. Eventually, lysosomal hydrolas-
es degrade cellular components captured in fused autophagy [10]. The close re-
lationship between autophagy and the mechanism of apoptosis shows that au-
tophagy not only plays a major role in cell survival, but also plays a vital role in 
type II programmed cell death. Autophagy is involved in both physiological and 
pathological processes [11]. Under physiological stress, autophagy mediates the 
clearance of misfolded, ubiquitinated proteins or damaged organelles, such as 
selective removal of mitochondria by autophagy to adapt to hunger [12], tumor 
inhibition [13], antigen presentation [14] and so on. In the pathological process, 
autophagy damage is also associated with a variety of human diseases, such as 
cancer [15], heart disease [16], autoimmune diseases [17] and nervous system 
diseases [18], including epilepsy [5]. In addition, autophagy is also considered as 
a target for the treatment of nervous system diseases. 

3. Interaction between Autophagy and Epilepsy 
3.1. Autophagy Mediates Epilepsy through mTOR Pathway 

Mammalian rapamycin target protein (mTOR) is one of the key regulatory fac-
tors of autophagy. It is the main inhibitory signal to turn off autophagy under 
the condition of rich growth factors and nutrients, and plays a negative regula-
tory role in autophagy [19]. mTOR is actively involved in most key steps of 
neural development, such as the establishment of neuronal structure, the main-
tenance of synaptic strength, and the production of excitatory pyramidal neu-
rons and inhibitory GABA neurons [20]. Abnormal activation of mTOR path-
way can lead to a variety of epileptic syndromes, including hereditary epilepsy 
and various acquired epilepsy. Studies have shown that 24 hours after seizures 
and 5 weeks 3 days after status epilepticus (SE), epileptic activity can up-regulate 
mTOR signal pathway in biphasic state, and the persistent state lasts more than 
30 minutes. The researchers used alginate, an ionic glutamate receptor agonist, 
to induce seizures in rats. Due to the wide distribution of glutamate receptors in 
the brain, the systemic application of alginate can stimulate many brain regions, 
especially hippocampal CA3 neurons. Alginate-induced discharges produce 
synchronous activity in a dense network of recurrent glutamate functional 
branching ligands, and this activity spreads to other marginal structures, in-
cluding the dentate gyrus, CA1 and the entorhinal cortex. This synchronous ac-
tivity activates many intracellular signal transduction pathways, including mTOR 
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signal transduction [21]. 
mTOR itself is strictly controlled by upstream regulatory factors, and the loss 

of function of these regulatory factors leads to abnormal over-activation of 
mTOR, which leads to epilepsy [22] [23]. mTOR-dependent translation control 
plays a key role in regulating the long-term morphological changes of neuronal 
spinous processes, dendrites and circuits. mTOR activation leads to the phos-
phorylation of multiple downstream effectors, such as eIF4E-binding proteins 
(4E-BPs) and S6 kinases, and stimulates the translation of mRNA subsets [24]. 
The role of the downstream mechanism of mTOR pathway in autophagy has al-
so been shown to be related to the loss of function of TSC1 or PTEN [25]. Tu-
berous sclerosis (TSC) is a common autosomal genetic disease caused by muta-
tions in tumor suppressor genes TSC1 and TSC2. It is characterized by lesions in 
multiple organs, including brain, skin, kidney, eyes and lungs [26]. Up to 80% - 
90% of the TSC patients develop severe epilepsy, causing a significant decrease 
in the quality of life and a high morbidity [27]. TSC1 deficient mice and TSC2 
deficient mice showed severe epileptic symptoms, accompanied by overactiva-
tion of mTOR and impaired autophagy. Hyperexcitability can be detected in the 
brains of patients with TSC and in neurons derived from induced pluripotent 
stem cells derived from patients with TSC [28]. It has been found that the de-
crease of inhibitory synaptic function can lead to overactivity of TSC1 deficient 
neurons [29]. On the other hand, PTEN deficiency can lead to severe epilepsy in 
mice with impaired autophagy [25]. PTEN and GATOR1 are both inhibitors of 
mTOR. PTEN is one of the tumor suppressor genes encoding plasma membrane 
lipid phosphatase, which can antagonize the upstream factor of PI3K-Akt signal 
of mTOR. GATOR1 activates GTPaseRagA/B, to inhibit activity under static and 
low amino acid conditions [30]. In view of the fact that many processes under 
the control of the mTOR pathway are likely to be accompanied by the loss of 
function of TSC1 or PTEN and other epileptogenic changes after the release of 
mTOR inhibition, the experimental data show that the impairment of autophagy 
may be one of several epileptogenic mechanisms downstream of mTOR [25]. 

Lafora disease (LD) is an autosomal recessive inherited disease characterized 
by seizures, progressive myoclonus, cognitive impairment, and basophilic inclu-
sion bodies (Lafora bodies). LD is Progressive myoclonus is the most common 
form of epilepsy [31]. This disease is caused by mutations in the epilepsy-related 
protein laforin (encoded by the PME2A gene) or Malin (encoded by the PME2B 
gene). Laforin is a glycogen 6 phosphatase that can degrade glycogen chains. 
Malin is a ubiquitin E3 ligase. Mutations in the Laforin and Malin genes cause 
the abnormal accumulation of Lafora bodies in the cerebral cortex, substantia 
nigra, globus pallidus, and dentate nucleus. These inclusion bodies are formed 
by abnormal accumulation of glycogen. Knockout of the laforin gene, Malin 
gene, or both in mice will reproduce most of the symptoms of LD. Normal Lafo-
rin can inhibit the mTOR complex, allowing the autophagy mechanism to oper-
ate normally and maintain its function. On the contrary, when laforin is mu-
tated, the autophagy pathway will be strongly inhibited by the excessive activa-
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tion of mTOR, leading to glycogen clearance dysfunction. Mutations in the Ma-
lin gene lead to failure of autophagosome formation. Unlike Laforin-regulated 
autophagy, Malin-regulated autophagy does not depend on mTOR. Therefore, 
mutations of Laforin gene and Malin gene can lead to impaired autophagy and 
lead to accumulation of Lafora bodies in neurons [32]. 

Epilepsy caused by cortical malformations, such as focal cortical dysplasia 
type IIb (FCDIIb type) is a type of refractory epilepsy, its histopathology is simi-
lar to TSC, mainly manifested as abnormal neuron morphology, especially mal-
formed neurons (DNs) and balloon cells (BCs). The BCs in the brains of FCD 
patients showed lysosome and autophagy-related proteins (including Beclin1, 
LC3, ATG5 and ATG12), as well as autophagy modulator DOR and autophagy 
receptor P62 Accumulation, which indicates that autophagy in FCD is impaired. 
This defect of autophagy can be reversed in vitro by inhibiting mTOR, which 
means that the abnormal activation of mTOR may directly lead to the defect of 
FCDIIb autophagy [33]. 

It can be seen that abnormal activation of mTOR is one of the main mechan-
isms of epilepsy. These findings may provide an important basis for further re-
search on the role of mTOR in the treatment of epilepsy. 

3.2. The Effect of Epilepsy on Autophagy 

Pilocarpine is used to induce status epilepticus (SE), and it is found that SE may 
also cause autophagy dysfunction. The covalent binding of light chain 3 (LC3) I 
(apparent mobility, 18kd, mammalian homolog of yeast Atg8) and phosphatidy-
lethanolamine forms LC3II (apparent mobility, 16kd), which is for autophagy It 
is an essential process called “LC3 drift” or “LC3 lipidation”. Therefore, LC3 has 
two forms: LC3I is a cytoplasmic form, which is activated and modified into 
membrane-bound LC3II. The ratio of LC3II to LC3I was used to semi-quantify 
the amount of autophagosome formation. The detection of LC3Ⅱ by western 
blotting is a simple and quantitative method to determine the autophagy activity 
of mammalian cells. Studies have found that at 2, 8, 16, 24, and 72 hours after 
SE, the ratio of LC3II to LC3I increases significantly, and the relative abundance 
peak appears at 24 hours. These data indicate that autophagy in the hippocam-
pus of rats is activated after SE [34]. Not only that, epilepsy is followed by oxida-
tive stress, and oxidative stress is related to the induction of autophagy. In addi-
tion, ATP depletion, tumor necrosis factor alpha (TNF-α) and other induction 
factors increase and ion flux imbalance, these factors will lead Increased neuron-
al autophagy induction [35]. As a result, the excessive activation of autophagy 
may further aggravate epileptic seizures and form a vicious circle. 

4. The Effect of Autophagy on Endoplasmic Reticulum Stress  
in Epilepsy 

4.1. The Biological Functions of Endoplasmic Reticulum and  
Endoplasmic Reticulum Stress 

The endoplasmic reticulum (ER) is the base for the synthesis of proteins, lipids 

https://doi.org/10.4236/jbm.2022.1010015


J. L. Mo et al. 
 

 

DOI: 10.4236/jbm.2022.1010015 187 Journal of Biosciences and Medicines 
 

and carbohydrates. It is a vital organelle for the survival of neurons. It contains 
molecular chaperones and enzymes, which have calcium storage, signal trans-
mission, and assist in protein folding and maturation [36]. Protein folding is a 
delicate process, and only correctly folded proteins will be modified in the Golgi 
apparatus and transferred to their destination [37]. On the other hand, mis-
folded or immature proteins will expose hydrophobic amino acid domains, the-
reby enhancing protein aggregation in the endoplasmic reticulum lumen, and 
are affected by the endoplasmic reticulum-related degradation (ERAD) mechan-
ism or autophagy degradation pathway degradation [38]. 

The release of Ca2+ from the endoplasmic reticulum lumen to the cytoplasm 
can be the cause of endoplasmic reticulum stress (ERS). Various cellular stresses, 
especially endoplasmic reticulum calcium homeostasis and oxidative stress, may 
cause endoplasmic reticulum stress [39] [40]. Endoplasmic reticulum stress can 
be roughly divided into three types: unfolded protein response (UPR), endop-
lasmic reticulum overload response (EOR), and cholesterol regulation cascade 
(SREBP). The most important one is the unfolded protein response reaction 
(URP) [41], which requires inositolase 1 (IRE1), PKR-like endoplasmic reticu-
lum kinase (PEKR), and active transcription factor 6 (ATF6) to complete the 
reaction process together [42]. The mammalian endoplasmic reticulum stress 
response includes four mechanisms: 1) inhibit protein synthesis to prevent fur-
ther aggregation and accumulation of proteins; 2) transcriptionally induce ER 
chaperone genes to enhance folding ability; 3) transcriptionally induce ERAD 
genes to increase ERAD capacity/capacity; 4) Induce apoptosis to remove 
stressed cells [43]. 

4.2. Autophagy Regulation Can Reduce Endoplasmic Reticulum  
Stress 

Epilepsy can cause endoplasmic reticulum stress by affecting the endoplasmic 
reticulum homeostasis, and then cause apoptosis through URP. The increase of 
intracellular Ca2+ has been shown to cause the initiation of autophagy, which can 
cause autophagy upregulation under endoplasmic reticulum stress. The increase 
in autophagic flux induced by endoplasmic reticulum stress also helps cells sur-
vive under adverse conditions [44]. Recent studies have shown that autophagy 
plays a key role in various neurodegenerative diseases, and FAM134B plays a 
functional role in autophagy [45]. Autophagy is an important process for main-
taining cell homeostasis. Many studies have shown that autophagy modification 
can reduce the effects of seizures. Moderate endoplasmic reticulum stress can 
improve cell survival through UPR, which is mediated by endoplasmic reticulum 
transmembrane receptors (including IRE1, PERK and ATF6). Activation of 
these receptors will up-regulate the expression of ER partners (such as GRP78). 
On the other hand, the enhancement of endoplasmic reticulum stress will pro-
mote the activation of pro-apoptotic factors (such as CHOP) [46]. In the study, 
it was found that FAM134B over-expression inhibited GRP78 and CHOP ex-
pression and neuronal apoptosis, while FAM134B knockdown was the opposite. 
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This indicates that FAM134B alleviates neuronal endoplasmic reticulum stress 
and apoptosis. Autophagy can inhibit apoptosis by eliminating damaged orga-
nelles and misfolded and unfolded proteins, inhibiting caspase activation and 
clearing SQSTM1/p62, thereby protecting cells under endoplasmic reticulum 
stress. FAM134B is involved in promoting autophagy to relieve endoplasmic re-
ticulum stress and prevent neuronal apoptosis, which means that FAM134B has 
a protective effect on endoplasmic reticulum stress and neuronal apoptosis 
caused by epileptic seizures, and this protective effect It is based on its regulation 
of autophagy [47]. 

5. Summary 

Autophagy plays an important role in maintaining cell homeostasis and main-
taining cell health. It is generally considered to be a major survival strategy for 
multicellular organisms. However, autophagy may also be caused by excessive 
self-digestion and degradation of main cell components. Autophagy can mediate 
epilepsy through the mTOR signaling pathway, however, epilepsy will in turn 
enhance autophagy, and excessively activated autophagy will aggravate epilepsy. 
On the other hand, studies have shown that the regulation of autophagy can re-
duce endoplasmic reticulum stress and nerve damage caused by epilepsy. It can 
be seen that the effects of autophagy on epilepsy are divided into advantages and 
disadvantages. Through in-depth research on the correlation between the two, it 
is of great value to further clarify the pathogenesis and prevention of epilepsy.  
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