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Abstract 
Purpose of the Study: COVID-19 is caused by the SARS-CoV-2 virus that 
had a global pandemic spread in the last two years. Symptoms of the disease 
include respiratory distress and, in severe cases may consequently lead to death. 
Blocking the viral proteins can aid in treating this disease and alleviating its 
symptoms. Two target proteins of the coronavirus that are hot spots in drug 
discovery are the papain-like protease PL-pro and the main protease M-pro. 
PL-pro is an enzyme that is required for processing viral polyproteins to gen-
erate a functional replicase complex and enable viral spread. M-pro is the 
major protease of SARS-CoV-2, which is a keystone in viral replication and 
transcription. Methods: In this study, we shed the light on the route of tar-
geting viral proteins for disease alleviation, by targeting the two aforemen-
tioned enzymes, PL-pro and M-pro using in silico studies. Docking experi-
ments, using AutoDock algorithms, were performed to predict the inhibitory 
effect of recently produced synthetic derivatives of curcumin on the viral 
proteins. Results: Most of the curcumin derivatives have shown variable le-
vels of inhibition, e.g., S1 - S6, mainly on the papain-like protease, and to a 
lesser extent on the main protease. Conclusion: The results indicated that 
curcumin derivatives can be potent anti-viral drug of SARS-CoV-2, namely 
targeting the papain-like protease.  
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1. Introduction 

Coronavirus disease 2019 (COVID-19) is a highly contagious viral infection 
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 
It had a tragic outcome on the world’s demographics with more than 5.9 million 
deaths worldwide [1]. As a consequence, it is the most far-reaching pandemic 
from the times of the viral influenza attack of 1918. Since being declared as a 
global pandemic, COVID-19 had a catastrophic impact on the healthcare sys-
tems in several countries across the globe [2]. 

Corona disease works on deficient respiratory failure and acute respiratory 
syndrome, so treatments should be investigated to prevent respiratory conse-
quences [3]. To overcome the requirements for hospitalization and supplemen-
tal oxygen therapy, the US Food and Drug Administration has allowed some 
drugs that relieve the disease [4]. 

Several drugs were recommended so far to alleviate the severe symptoms of 
COVID-19. An example is baricitinib, which is highly recommended for patients 
with critical COVID-19. Baricitinib belongs to the Janus kinase (JAK) inhibitors 
that hinder the overstimulation of the immune system [5]. It is recommended to 
be given corticosteroids. Baricitinib affords a substitute to interleukin-6 receptor 
blockers, which are a family of arthritis drugs [6]. 

In treating mild or moderate COVID-19 patients, WHO recommends the use 
of sotrovimab, a monoclonal antibody drug [7]. The drug is also introduced to 
persons with low immunity, including the elderly, immune-suppressed patients, 
or patients with chronic illnesses like diabetes, hypertension, and obesity. Other 
possible drugs are ruxolitinib and tofacitinib, which are still under experimenta-
tion [8] [9]. The minor symptoms can be also treated by home remedies or 
over-the-counter medications. These include: pain relievers (ibuprofen or ace-
taminophen), syrup or medicine for coughing as well as drinking fluids. 

The FDA approved, in part, some medications for the treatment of the dis-
ease, under the emergency use authorizations (EUAs). Examples include paxlo-
vid, molnupiravir, and fluvoxamine [10] [11] [12]. 

Curcumin is a spice with a yellow color produced by the plant Curcuma lon-
ga. Curcumin belongs to the ginger family [13], and several phytochemicals it 
contains are natural phenols. Curcumin has anti-oxidant, anti-inflammatory, 
antibacterial and antimicrobial benefits [13] [14]. One major problem in ex-
tracting curcumin compounds is the poor bioavailability due to malabsorption. 
Thus, several routines have been undertaken in order to increase its bioavailabil-
ity [15]. Curcumin has the ability to interact with its molecular targets e.g., against 
viruses, thereby triggering cellular signaling pathways such as programmed cell 
death and inflammation. Previous studies have shown that curcumin directly 
interacts with more than twenty proteins [16]. Curcumin can modify the protein 
structure of the hives, thus having an effect on the properties of the host’s lipid 
bilayer on the membrane. Additionally, it binds to the receptors and prevents 
the entry of the target virus [16]. 
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For the treatment of COVID-19 disease, viral and host proteins are essential 
in the development of therapeutic drugs and are targeted in drug discovery pro-
tocols. Thus, the mechanisms of inhibition of host and viral proteins should be 
uncovered. One hot topic in the targeted host proteins for the alleviation of 
SARS-CoV-2 virus is the angiotensin-converting enzyme 2 (ACE2). ACE2 is the 
host receptor that binds with SARS-CoV-2 spike glycoprotein which facilitates 
membrane fusion. As a result, viral infection occurs through endocytosis. There-
fore, spike glycoprotein is a potential candidate for the targeting of drugs to 
inhibit the entry of viruses. In silico docking studies revealed that curcumin 
could potentially inhibit ACE2 and suppress the entry of SARS-CoV-2 to the cell 
[17].  

The other route for inhibiting the viral attack is to target the viral proteins. 
Thus, the development of antiviral drugs would inhibit viral replication and re-
duce mortality associated with outbreaks of SARS-CoV-2 [18]. One target pro-
tein is the papain-like protease (PL-pro, PDB ID: 2FE8) [18]. PL-pro is an essen-
tial coronavirus enzyme that is required for processing the viral polyproteins to 
generate a functional replicase complex and enable viral spread. PL-pro under-
goes an evasion mechanism against host antiviral immune responses, where the 
protease undertakes the cleavage of post-translational modifications on host 
proteins [19]. The overall architecture of the catalytic core of SARS-CoV-2 
PL-pro adopts a fold that is strictly similar to known deubiquitinating enzymes. 
An added feature of PL-pro is the inclusion of an intact zinc-binding motif, an 
unhindered catalytic active site, and the ubiquitin-like N-terminal domain [19] 
[20].  

Another attractive drug target of the SARS-CoV-2 virus is the main protease 
(M-pro, PDB ID: 6LU7) [21], which is the key protease of SARS-CoV-2. The 
protein has a crucial role in the processes of viral replication and transcription. 
As a result, it is an attractive drug target for SARS-CoV-2 [21]. The M-pro pro-
tease consists of three domains: Domain I and domain II comprise an antiparal-
lel β-barrel structure. Domain III contains five α-helices organized into antipa-
rallel globular set. Domains II and III are connected by a long loop region. The 
substrate-binding site is positioned in a cleft between domain I and domain II, 
where a catalytic dyad of Cys and His amino acids is present [21].  

The pandemic spread of diseases, including COVID-19, increased due to the 
complexity in the global ecosystem. Science has developed in the field of infor-
matics. Accordingly, it flourished in the discovery of medicines through chemi-
cal information of materials and calculating the position of atom-atom connec-
tions, directions, inhibition constants and associated contacts. In this study, we 
examined the inhibitor properties and mechanisms of action of several curcumin 
derivatives on SARS-CoV-2 main and papain-like proteases in silico. 

2. Materials and Methods 

Input PDB files were prepared for the curcumin derivatives, which were synthe-
sized by Qneibi et al. (Table 1) [22]. The systemic IUPAC structures were used  
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Table 1. Curcumin derivatives [22]. 

 Name and structure 

S1 

 

5,7-bis[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1H- 
1,4-diazepine-2,3-dicarbonitrile 

S2 

 

4-[(E)-2-(2-[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]- 
5H-pyrido[2,3-b][1,4]diazepin-4-yl}ethenyl]-2-methoxyphenol 

S3 

 

6,8-bis[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-5H- 
pyrazino[2,3-b][1,4]diazepine-2,3-dicarbonitrile 
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Continued 

S4 

 

4-[(E)-2-(3-bromo-8-[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]- 
5H-pyrazino[2,3-b][1,4]diazepin-6-yl}ethenyl]-2-methoxyphenol 

S5 

 

4-[(E)-2-{8-bromo-4-[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]- 
1H-pyrido[2,3-b][1,4]diazepin-2-yl)ethenyl]-2-methoxyphenol 

S6 

 

4-[(E)-2-(5-[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-(pyrimidin-2-yl)- 
1H-pyrazol-3-yl}ethenyl]-2-methoxyphenol 

S7 

 

4-[(4Z)-5-amino-7-(4-hydroxy-3-methoxyphenyl)-3- 
iminohept-4-en-1-yl]-2-methoxyphenol 
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to get the SMILES structures of the compounds [23]. PDB structures were gen-
erated using the Open Babel server [24]. These compounds were docked against 
the apo forms for the structures of the SARS coronavirus papain-like protease 
(PDB: 2FE8) [25], and the COVID-19 main protease (PDB: 6LU7) [21] using the 
AutoDock program, version 4.2 [26]. In each docking experiment, the receptor 
protein was kept rigid.  Polar hydrogen atoms were added to the protein struc-
ture, heteroatoms were removed, and AutoDock tools were used to prepare in-
put files for docking [26]. Parallel rectangular grid boxes of 126 × 126 × 126 Å 
dimensions were prepared. The center of mass for the original protein receptor 
in its unbound form was used as the center of the grid. Starting from random 
coordinates, 20 independent docking runs were performed for each of the en-
zymes against each compound. After the runs, the resulting PDB files were ex-
tracted. Docking results were assessed for the best fit of the ligand-protein inte-
ractions for each of the compounds.  

3. Results 
3.1. Binding Free Energies and Inhibition Constants for the  

PL-Pro Protease and the M-Pro Protease 

Docking experiments showed good inhibitory results. Curcumin derivatives were 
tested for their binding affinities, inhibition constants, and the root mean square 
deviation (RMSD) values for the ligand structure upon docking from the refer-
ence structure (Table 2). All compounds showed more potent inhibition to 
PL-pro (PDB ID: 2FE8) than the M-pro (PDB ID: 6LLU7) proteases. Binding 
free energies of the two proteases to the several curcumin derivatives were in the 
range of (−1.81 - −7.71 Kcal/mol). However, the binding of PL-pro protease 
(PDB ID: 2FE8) to the several curcumin derivatives had lower overall binding 
energies (−5.35 - −7.71 Kcal/mol) and indicated more stable contacts. In con-
trast, the M-pro protease (PDB ID: 6LLU7) had higher overall binding energies 
(−1.81 - −5.06 Kcal/mol), what indicates overall weaker binding affinities for the 
main protease. Indeed, the inhibition constants (Ki) for the PL-pro protease 
binding interface to the S1 - S6 ligands were in the low range (2.24 - 18.30 µM), 
indicating a strong inhibition. Higher, but yet reasonable, binding affinity was 
found for the PL-pro: S7 interface (Ki = 120.19 µM). In contrast, much higher Ki 
values were found for the M-pro: (S1: S6) interfaces (199.76 - 414.92 µM), what 
shows comparably weaker inhibition. M-pro: S7 interface (Ki = 46.84 mM) pre-
sented almost no inhibition capacity. The root mean square deviations (RMSD) 
of the ligand crystal structures from the reference ones were in a reasonable 
range for both viral protein while bindings to the several inhibitors.  

3.2. Binding Interface for the PL-Pro Protease 

For the PL-pro protease (PDB ID: 2FE8) [19], and in all seven ligand-protein in-
teraction interfaces, weak (3.6 - 4.0 Å) and moderate (2.5 - 3.5 Å) electrostatic 
interactions between the ligand and the protein accounted for most of the bind-
ing energies at the binding interface (Figure 1). Few longer bonds contributed  
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(f) 

 
(g) 

Figure 1. Binding interfaces for the curcumin derivatives to the PL-pro protease (PDB 
ID: 2FE8). (a) S1-PL-pro; (b) S2-PL-pro; (c) S3-PL-pro; (d) S4-PL-pro; (e) S5-PL-pro; (f) 
S6-PL-pro; (g) S7-PL-pro.  
 
Table 2. Inhibitory action for the curcumin derivatives against the viral proteases. 

Viral Protein Inhibitor 

AutoDock 
binding free 

energy 
(Kcal/mol) 

AutoDock 
inhibition 
constant, 
Ki (µM) 

RMSD for the 
ligand from the 

reference 
structure (Å) 

PL-pro Protease 
(PDB ID: 2FE8) 

S1 −7.71 2.24 76.636 

S2 −6.25 26.29 74.940 

S3 −7.46 3.42 74.533 

S4 −6.46 18.30 75.068 

S5 −6.89 8.94 77.478 

S6 −7.45 3.49 61.06 

S7 −5.35 120.19 60.317 

M-pro Protease 
(PDB ID: 7LU6) 

S1 −5.06 196.76 65.892 

S2 −4.99 220.82 60.697 

S3 −4.79 309.06 60.494 

S4 −4.61 414.92 77.509 

S5 −4.84 281.83 62.522 

S6 −4.84 284.65 74.812 

S7 −1.81 46.84*103 62.307 
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to the binding process at the binding interface. Yellow color was used for polar 
contacts, while blue color for nonpolar ones. Several nonpolar amino acids con-
tributed to the binding interfaces (e.g., Ile, Val, Ala, Trp and Pro). Additionally, 
polar as well as charged amino acids were also strongly involved at the binding 
interfaces (e.g., Asp, Gln, Lys, Thr, Cys and Arg).  

3.3. Binding Interface for the M-Pro Protease 

For the M-pro protease (PDB ID: 6LU7) [21], and in all seven ligand-protein in-
teraction interfaces, weak (3.6 - 4.0 Å) electrostatic interactions had higher con-
tribution than the moderate (2.5 - 3.5 Å) interactions at the ligand-protein in-
terface in the binding energies (Figure 2). Few longer bonds contributed to the 
binding process at the binding interface. Contacts were sparse in comparison to 
the PL-pro contacts. Yellow color was used for polar contacts, while blue color 
for nonpolar ones. Nonpolar amino acids at the binding interfaces were promi-
nent (e.g., Val, Ala, Ile, Leu, Pro, and Trp). Similar to the PL-pro protease, sev-
eral polar contacts were found at the binding interface (e.g., Asn, Arg, and Glu), 
but with lower contribution to the binding process when compared to the 
PL-pro. 

4. Discussion 

Recently, Qneibi and colleagues have synthesized curcumin derivatives that are 
expected to act against a wide range of disease-causing effectors [22]. 

Curcuma longa has been reported as a potential anti-viral herb [16], yet the 
action mechanisms and the potential antiviral compounds in Curcuma longa 
that inhibit the viral proteins were not discussed and some were not identified. 
Curcumin, the main active compound in Curcuma longa, has the ability to inte-
ract with proteins and induce inhibitory actions [16]. Here, in silico studies us-
ing curcumin derivatives in targeting two viral proteases, the PL-pro and the 
M-pro are uncovered. Docking experiments were undertaken to understand the 
mechanism by which the curcumin would suppress the two enzymes. Ligands 
synthesized from the curcumin derivative compounds were screened for their 
inhibitory potency, binding interface, and structural fluctuations. The number of 
inhibitors that were predicted to work against the PL-pro protease was higher 
than those inhibiting M-pro protease. This can be attributed to the inhibition 
constant being much lower for the binding process to the PL-pro protease. In-
deed, binding free energies were of a marginal difference between the two pro-
teases, while RMSD values were comparable. However, in both proteins, S7 
showed the least inhibitory action (with the highest inhibition constants and 
binding energies among all curcumin derivatives). The deviations from the ref-
erence structure (the RMSD values) were highly reasonable for all plausible in-
hibitors. Of the common inhibitors, the binding interface showed predominant 
non-polar contacts. Thus, more polarity did not contribute to a more stable 
binding interface and the binding free energies as the hydrophobic contacts did.  
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(e) 

 
(f) 

 
(g) 

Figure 2. Binding interfaces for the curcumin derivatives to the M-pro protease (PDB ID: 
6LU7). (a) S1-M-pro; (b) S2-M-pro; (c) S3-M-pro; (d) S4-M-pro; (e) S5-M-pro; (f) 
S6-M-pro; (g) S7-M-pro. 
 
This is especially more valid for the M-pro protease, which has a lower contribu-
tion for the polar and charged residues to the several inhibitors. 

5. Conclusion 

Previous works suggested that viral protein inhibitors are a class of compounds 
that help in inhibiting viral replication and invasiveness [25] [27]. In essence, 
curcumin derivatives are a class of compounds derived from natural compounds 
that could aid in the treatment of several ailments. This study emphasizes the 
rule of these lead compounds in inhibiting the viral proteins of SARS-CoV-2, 
which serves as a hot topic for the devastating pandemic of COVID-19 that went 
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viral during the last two years. A special interest can be directed to the S1 - S6 
curcumin derivatives, which showed the best docking results. PL-pro protease 
was shown to be more interesting as a protein target for these compounds than 
the M-pro protease. These results were based on the binding affinities, inhibition 
constants as well as binding interfaces, which supports further investigations 
that reflect the papain-like protease as a hub target for these inhibitors, among 
others. Taken together, these in silico results provide powerful foundations for 
further in vitro and in vivo studies and drug identification for the treatment of 
COVID-19.  
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