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Abstract 
Pharmacokinetic compartment models are the only models that can extract 
pharmacokinetic parameters from data collected in clinical studies but their 
estimates lack accuracy, explanations and physiological significance. The ob-
jective of this work was to develop particular solutions to drug concentration 
and AUC in the form of mathematical series and Heaviside functions for re-
petitive intermittent infusions in the one- and two-compartment models, as a 
function of dose number and total time using differential calculus. It was 
demonstrated that the central and peripheral compartment volumes deter-
mined from regression analysis of the aminoglycoside antibiotic Sisomicin 
concentration in plasma represent the actual physiological body fluid vo-
lumes accessible by the drug. The drug peak time and peak concentration in 
the peripheral compartment were also calculated as a function of dose num-
ber. It is also shown that the time of intercompartmental momentary distri-
bution equilibrium can be used to determine the drug’s apparent volume of 
distribution within any dosing interval in multi-compartment models. These 
estimates were used to carry out simulations of plasma drug concentration with 
time in the one-compartment model. In conclusion, the two-compartment 
open mammillary pharmacokinetic model was fully explained for the ami-
noglycoside antibiotic sisomicin through the new concept of the apparent 
volume of distribution. 
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1. Introduction 

It has been almost 50 years since pharmacokinetics was recognized as an inde-
pendent scientific discipline, pharmacokinetic models are nonetheless described 
exclusively only within the first dosing time interval [1]. Both, one- and 
two-compartment models for intermittent intravenous infusion (IIV), lack ma-
thematical expressions that can relate drug concentration as a function of 
real-time after administration of multiple IIV doses [2]. The development of 
these multi dosing expressions may have not been a priority, as the assessment 
of common pharmacokinetic parameters using compartmental and noncom-
partmental approaches and model selection is usually done after administration 
of a single drug dose to subjects [3] [4]. However, the tremendous evolution of 
computer algebra systems (CAS) during the last five years coupled with in-
creased accessible computational power could make multi-dose mechanistic 
pharmacokinetic models useful tools in parameter model estimation. As many of 
past supercomputer tasks can now be performed on simple laptops, equations 
describing drug concentration as a function of time after repetitive dosing can be 
used, not only to verify pharmacokinetic linearity throughout therapy and op-
timize complex dosing regimens using the superposition principle but also to 
study temporal relationships of drug concentration in central and peripheral 
compartments.  

The different rate of drug administration as compared to the kinetics of dis-
tribution and elimination makes the intermittent intravenous infusion model 
among the most challenging to develop explicit solutions for repetitive or mul-
tiple dosing regimens. A systematic mathematical study of the multiple IIV route 
of administration in the one-compartment model was recently presented [5]. In 
that article, series equations of drug concentration with time within each dosing 
interval were first developed and then converted to real-time equations. In this 
manuscript, using standard mathematical processes we have obtained particular 
solutions for the one- and two-compartment multiple IIV models in the form of 
piecewise functions. The step equations describing both models were written in 
terms of Heaviside functions. Algorithms in MATLAB using iterative loops 
demonstrate the temporal “off/on switch” efficiency of these functions by accu-
rately describing drug concentration during the infusion and elimination pe-
riods after administration of multiple intermittent intravenous infusions. Pro-
grams written in Fortran language demonstrate the application of these equa-
tions by calculating drug concentration and AUC in the central and peripheral 
compartments, with and without loading doses, as a function of total time and 
infusion dose number. The time to reach peak time concentration in the peri-
pheral compartment after a constant drug infusion period in the central com-
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partment was found to vary systematically between doses. The time of momen-
tary distribution equilibrium between compartments, which was shown to be the 
same as the peripheral compartment peak time, was used to determine the 
drug’s apparent volume of distribution as a function of dose size and number. 
Finally, it is demonstrated that the estimated compartment volumes from data 
regression analysis are the actual volumes of body fluid accessible by the drug. 

2. Methods 
2.1. Explanation of Terms 

One-compartment model: 

dV : Drug apparent volume of distribution  
CL: Drug clearance  
k: Drug first-order elimination rate constant 

0k : zero-order rate of drug infusion into the system 

LD : Loading dose 
T: infusion time 
τ : dosing interval 
n: number of infusion doses 

,1aC : Drug concentration during infusion of the first dose ( 0 t T≤ ≤ ). 

,2aC : Drug concentration during infusion of the second dose ( t Tτ τ≤ ≤ + ). 

,1eC : Drug concentration during the elimination phase after infusion of the 
first dose is finished ( T t τ≤ ≤ ). 

,max,3aC  or max,3C  or ( )2C Tτ⋅ + : Maximum drug concentration after infu-
sion of the third dose at time 2t Tτ= ⋅ + . 

,min,3eC  or min,3C  or ( )3C τ⋅ : Minimum drug concentration after infusion of 
the third dose at time 3t τ= ⋅ , just before the administration of the fourth dose. 

Two-compartment model: 

,1,1ax : Drug amount in central or compartment 1 during infusion of the first 
dose ( 0 t T≤ ≤ ). 

,1,2ax : Drug amount in compartment 1 during infusion of the second dose 
( t Tτ τ≤ ≤ + ). 

,2,1ax : Drug amount in the peripheral or compartment 2 during infusion of 
the first dose ( 0 t T≤ ≤ ). 

,1,2ex : Drug amount in compartment 1 during the elimination period after 
infusion of the second dose has stopped ( 2T tτ τ+ ≤ ≤ ⋅ ). 

,2,1ex : Drug amount in the peripheral or compartment 2 after infusion of the 
first dose has stopped ( T t τ≤ ≤ ). 

,1,max,1aC  or 1,max,1C  or ( )1C T : Maximum drug concentration in compart-
ment 1 at the end of infusion of the first dose at t T= . 

,2, ,3a endiC  or 2, ,3endiC  or ( )2 2C Tτ⋅ + : Drug concentration in compartment 
2 at the end of the infusion period of the third dose at 2t Tτ= ⋅ + .  

,1,min,3eC  or 1,min,3C  or ( )1 3C τ⋅ : Minimum drug concentration in compart-
ment 1 after infusion of the third dose at 3t τ= ⋅ . 

https://doi.org/10.4236/jbm.2022.101012


M. Savva 
 

 

DOI: 10.4236/jbm.2022.101012 153 Journal of Biosciences and Medicines 
 

,2,min,3eC  or 2,min,3C  or ( )2 3C τ⋅ : Minimum drug concentration in the peri-
pheral compartment at the end of the third dosing interval ( 3t τ= ⋅ ). 

2.2. Compartment Models 

Particular solutions to concentration and AUC were developed for repetitive in-
termittent infusions in two pharmacokinetic models (Figure 1). The approach 
followed for each compartment model and mode of drug administration is step-
wise described below: 
• Construction of differential equations for the two time periods of drug infu-

sion and drug elimination with initial conditions. 
• Analytical solutions to the initial value problems for each period and dose 

number. 
• Derivation of the terms of a sequence after administration of multiple doses 

by applying the principle of superposition. 
• Derivation of the pattern of the sequence and the partial sums of the series. 
• Derivation of the final series formula of drug amount or concentration as a 

function of dose number and total time. 
• AUC calculation from series formulas using Equation (1), 

( )
( )

( )

1
max, 1 1

AUC d d
n T n

n a en n T
C t C t

τ τ

τ τ

− ⋅ + ⋅

− ⋅ − ⋅ +
= +∫ ∫                (1) 

• If loading doses are involved, series formulas are modified by reducing the 
dose number index n by the number of loading doses administered previous 
to the maintenance doses and by taking the loading dose concentration terms 
outside of the series maintenance dose summation formula. 

2.3. Computer Simulations 

Simulations of drug concentration and AUC as a function of time were carried 
out using Fortran 2003, Mingw-w64, v7.00 and MATLAB R2019b [5]. The 
two-compartment pharmacokinetic parameters that were used to carry out si-
mulations in this study were taken from the published work of Pechere and co-
workers and are listed below [6]:  

1
10 0.0115 mink −= ; 1

12 0.0316 mink −= ; 1
21 0.0259 mink −=  

1
1 0.0722 minλ −= ; 1

2 0.0044 minλ −=  (eigenvalue negative signs are included 
in the equations) 

1 5.17 LV = ; 2 6.61 LV =  

The dosing rate, infusion time and dosing interval, 0 2 mg mink = ,  
30 minT =  and 180 minτ = , respectively, were based on a calculated sisomicin 

elimination half-life of approximately 3 hours. Comparative multiple IIV simu-
lations in a one-compartment model were carried out using the same dose, infu-
sion time, and dosing interval, elimination rate constant k equal to 2λ  and an 
apparent volume of distribution dV  of 12.16 L, unless if it is otherwise specified 
in the particular section of the study. 
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Figure 1. One-compartment (Top) and two-compartment 
mammillary model (Bottom). Drug input is provided by 
zero-order infusion while drug elimination from the central 
compartment follows first-order kinetics.  

3. Results 
3.1. Intermittent Intravenous Infusion (IIV) in the  

One-Compartment Model 

Differential equations for inputs and outputs: 
Input: Drug administered at a constant rate over infusion time, T. 
Output: First-order kinetics 

( )0
d ; 0 0 0
d
x k k x x t T
t
= − ⋅ = ≤ ≤  

( ) ( )d ;
d
x k x x t T x T T t
t

τ= − ⋅ − = ≤ ≤   

Analytical solutions: 
During drug infusion, 0 t T≤ ≤ : 
Using the integrating factor method and the initial condition, 

( ) ( )0 1 e k tk
x t

k
− ⋅= ⋅ −  

( ) ( )0 1 e k tk
C t

CL
− ⋅= ⋅ −                       (2) 

where 
d

xC
V

=  and dCL k V= ⋅  

( ) ( )0
max,1 1 e k Tk

C C T
CL

− ⋅= = ⋅ −   

During the period of drug elimination when infusion has stopped, T t τ≤ ≤ : 
( ) ( )e k t Tx t c − ⋅ −= ⋅ ; where c is a constant of integration 

( ) ( )0 1 e k Tk
c x T

k
− ⋅= = ⋅ −   
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( ) ( ) ( )0 1 e e k t Tk Tk
x t

k
− ⋅ −− ⋅= ⋅ − ⋅   

( ) ( ) ( ) ( )0
max,11 e e ek t T k t Tk Tk

C t C
CL

− ⋅ − − ⋅ −− ⋅= ⋅ − ⋅ = ⋅             (3) 

( ) ( ) ( ) ( )0
min,1 max,11 e e ek T k Tk Tk

C C C
CL

τ ττ − ⋅ − − ⋅ −− ⋅= = ⋅ − ⋅ = ⋅         (4) 

Sequence terms for multiple doses: 
During the first infusion ( 1n = ): 

( )0
,1 1 e k t

a
k

C
CL

− ⋅= ⋅ −  0 t T≤ ≤  

( )0
max,1 1 e k Tk

C
CL

− ⋅= ⋅ −  t T=  

( ) ( )0
,1 1 e e k t Tk T

e
k

C
CL

− ⋅ −− ⋅= ⋅ − ⋅  T t τ≤ ≤  

( ) ( )0
min,1 1 e e k Tk Tk

C
CL

τ− ⋅ −− ⋅= ⋅ − ⋅  t τ=  

During the second infusion ( 2n = ): 

( ) ( )( )0
,2 min,1 e 1 ek t k t

a
k

C C
CL

τ τ− ⋅ − − ⋅ −= ⋅ + ⋅ −  t Tτ τ≤ ≤ +  

( )( )0
max,2 1 e 1 ek T kk

C
CL

τ− ⋅ − ⋅= ⋅ − +  t Tτ= +  

( )( ) ( )0
,2 1 e 1 e e k t Tk T k

e
k

C
CL

ττ − ⋅ − −− ⋅ − ⋅= ⋅ − + ⋅  2T tτ τ+ ≤ ≤  

( ) ( ) ( )0
min,2 1 e 1 e e k Tk T kk

C
CL

ττ − ⋅ −− ⋅ − ⋅= ⋅ − ⋅ + ⋅  2t τ=  

Pattern of Sequence  

{ } ( ) ( )( )10
max, 1 e e k nk T

n
k

C
CL

τ− ⋅ − ⋅− ⋅ = ⋅ − ⋅ 
 

  

{ } ( ) ( )0
min, 1 e e k n Tk T

n
k

C
CL

τ− ⋅ ⋅ −− ⋅ = ⋅ − ⋅ 
 

  

{ } ( )
( )( ) ( )( )( )1 10

, min, 1 e 1 ek t n k t n
a n n

k
C C

CL
τ τ− ⋅ − − ⋅ − ⋅ − − ⋅

−
 = ⋅ + ⋅ − 
 

  

( ) ( )1 1n t n Tτ τ− ⋅ ≤ ≤ − ⋅ +  

{ } ( )( ){ }1
, max, e k t n T

e n nC C τ− ⋅ − − ⋅ −= ⋅  ( )1n T t nτ τ− ⋅ + ≤ ≤ ⋅  

Partial Sums and final formula of Series  

( ) ( )( )

( ) ( )( )( )

10
max, 1

10

1 e e

1 e 1 e e

k nk T
n n

k nk T k

k
C

CL
k
CL

τ

ττ

∞ − ⋅ − ⋅− ⋅
=

− ⋅ − ⋅− ⋅ − ⋅

= ⋅ − ⋅

= ⋅ − ⋅ + + +

∑



  

Multiplying and diving the above by ( )1 e k τ− ⋅− , 
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( ) ( )
( )

0
max,

1 e
1 e

1 e

n k
k T

n k

k
C

CL

τ

τ

− ⋅ ⋅
− ⋅

− ⋅

−
= ⋅ − ⋅

−
                 (5) 

( ) ( )
( )

( )0
min,

1 e
1 e e

1 e

n k
k Tk T

n k

k
C

CL

τ
τ

τ

− ⋅ ⋅
− ⋅ −− ⋅

− ⋅

−
= ⋅ − ⋅ ⋅

−
              (6) 

( )
( )( )

( )
( )( ) ( )( )( )

1
2 10 0

, ,

1 e
1 e e 1 e

1 e

k n
k t n T k t nk T

a n t k

k k
C

CL CL

τ
τ τ

τ

− ⋅ −

− ⋅ − − ⋅ − − ⋅ − − ⋅− ⋅
− ⋅

−
= ⋅ − ⋅ ⋅ + ⋅ −

−
 (7) 

( ) ( )
( )

( )( )10
, ,

1 e
1 e e

1 e

n k
k t n Tk T

e n t k

k
C

CL

τ
τ

τ

− ⋅ ⋅
− ⋅ − − ⋅ −− ⋅

− ⋅

−
= ⋅ − ⋅ ⋅

−
            (8) 

AUC formulas (Appendix A). 

( ) ( )0 0
max,AUC 1 e e k n Tk T

n
k k

T
CL k CL

τ− ⋅ ⋅ −− ⋅= ⋅ − ⋅ − ⋅
⋅

            (9) 

Series Formulas for multiple loading doses ( LD ) followed by maintenance 
doses. 

The method is demonstrated by deriving a series formula for administration 
of two consecutive initial IIV loading doses ( LD ) followed by multiple IIV 
maintenance doses ( 0k ). Drug concentration after administration of each load-
ing dose can be calculated using Equation (7) and Equation (8), with LD  re-
placing 0k  in the formulas. 

For 1,2n = : 

( )
( )( )

( )
( )( ) ( )( )( )

1
2 1

, ,

1 e
1 e e 1 e

1 e

k n
k t n T k t nk TL L

a n t k

D DC
CL CL

τ
τ τ

τ

− ⋅ − ⋅

− ⋅ − − ⋅ − − ⋅ − − ⋅− ⋅
− ⋅

−
= ⋅ − ⋅ ⋅ + ⋅ −

−
 (10) 

( ) ( )
( )

( )( )1
, ,

1 e
1 e e

1 e

n k
k t n Tk TL

e n t k

DC
CL

τ
τ

τ

− ⋅ ⋅
− ⋅ − − ⋅ −− ⋅

− ⋅

−
= ⋅ − ⋅ ⋅

−
            (11) 

For 2n > , min,2C  was taken outside the maintenance series formulas while 
the index n was reduced by the number of loading doses administered before the 
maintenance doses. 

( ) ( )
( )

( )

( )
( )( )

( )
( )( )

( )( )( )

2

, 2,

3
20

10

1 e
1 e e

1 e

1 e
1 e e

1 e

1 e

k
k t Tk TL

a n t k

k n
k t n Tk T

k

k t n

DC
CL

k
CL

k
CL

τ
τ

τ

τ
τ

τ

τ

− ⋅ ⋅
− ⋅ − −− ⋅

> − ⋅

− ⋅ − ⋅

− ⋅ − − ⋅ −− ⋅
− ⋅

− ⋅ − − ⋅

−
= ⋅ − ⋅ ⋅

−

−
+ ⋅ − ⋅ ⋅

−

+ ⋅ −

        (12) 

( ) ( )
( )

( )

( )
( )( )

( )
( )( )

2

, 2,

2
10

1 e
1 e e

1 e

1 e
1 e e

1 e

k
k t Tk TL

e n t k

k n
k t n Tk T

k

DC
CL

k
CL

τ
τ

τ

τ
τ

τ

− ⋅ ⋅
− ⋅ − −− ⋅

> − ⋅

− ⋅ − ⋅

− ⋅ − − ⋅ −− ⋅
− ⋅

−
= ⋅ − ⋅ ⋅

−

−
+ ⋅ − ⋅ ⋅

−

 [ ]2,n∈ ∞    (13) 
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Peak and trough concentrations were determined from Equation (12) and 
Equation (13) at ( )1t n Tτ= − ⋅ +  and t n τ= ⋅ , respectively, whereas the AUC 
was determined with Equation (16), as shown below: 

( ) ( )
( )

( )

( )
( )( )

( )
( ) ( )

2
2

max, 2,

3

0 0

1 e
1 e e

1 e

1 e
1 e e 1 e

1 e

k
k nk TL

n t k

k n
k Tk T k T

k

DC
CL

k k
CL CL

τ
τ

τ

τ

τ
τ

− ⋅ ⋅
− ⋅ − ⋅− ⋅

> − ⋅

− ⋅ − ⋅

− ⋅ −− ⋅ − ⋅
− ⋅

−
= ⋅ − ⋅ ⋅

−

−
+ ⋅ − ⋅ ⋅ + ⋅ −

−

   (14) 

( ) ( )
( )

( )( )

( )
( )( )

( )
( )

2
1

min, 1,

2

0

1 e
1 e e

1 e

1 e
1 e e

1 e

k
k n Tk TL

n t k

k n
k Tk T

k

DC
CL

k
CL

τ
τ

τ

τ

τ
τ

− ⋅ ⋅
− ⋅ − ⋅ −− ⋅

> − ⋅

− ⋅ − ⋅

− ⋅ −− ⋅
− ⋅

−
= ⋅ − ⋅ ⋅

−

−
+ ⋅ − ⋅ ⋅

−

           (15) 

( ) ( )
( )

( )

1
max, 2 1 1 1

AUC d d d
L

n n T n
n D a en n n T

C t C t C t
τ τ τ

τ τ τ

⋅ − ⋅ + ⋅

> − ⋅ − ⋅ − ⋅ +
= + +∫ ∫ ∫  

⇒  

( ) ( ) ( )( )

( ) ( )( )

22
max, 2

20 0

AUC 1 e 1 e e

1 e e

k n Tk T kL
n

k n Tk T

D
CL

k k
T

CL k CL

ττ

τ

− ⋅ − ⋅ −− ⋅ − ⋅ ⋅
>

− ⋅ − ⋅ −− ⋅

= ⋅ − ⋅ − ⋅

+ ⋅ − ⋅ − ⋅
⋅

        (16) 

As n →∞ , Equation (16) approaches the area under the curve at steady state 
conditions, 

0AUCss
k

T
CL

= ⋅ .                       (17) 

Notice that the last part of Equation (16) is the same as Equation (9) with the 
index n reduced by the number of loading doses administered before the main-
tenance doses. Also, the first part of Equations (12) and (13) is the same, al-
though the temporal domain during the infusion and elimination periods is dif-
ferent because drug concentration is expressed as a function of real-time. This is 
a real advantage of writing series equations in terms of total time. Administering 
a new dose doesn’t require replacing any of the terms of the mathematical series. 
The only change is the addition of the new time-shifted term to account for the 
new dose. 

Converting the real-time equations into drug concentration as a function of 
dosing time interval can easily be done by replacing the total time t with the in-
fusion time variable t′  and the time from the termination of the infusion with-
in a dosing interval *t , using Equation (18) and Equation (19), respectively. 

( )1t t n τ′= + − ⋅                           (18) 

( )* 1t t n Tτ= + − ⋅ −                         (19) 

Simulations were carried out with two consecutive initial loading doses in-
fused at a rate of 4 mg/min followed by infusion of multiple 2 mg/min mainten-
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ance doses. Infusion of a loading dose twice the size of the maintenance dose re-
sulted in twice as high drug concentration and AUC (Figure 2 and Table 1). It 
takes three or more half-lives following the infusion of the two initial loading 
doses, for the drug concentration to return to regular levels.  

3.2. Heaviside Function for Multiple IIV in the One-Compartment  
Model 

The Heaviside function can be thought of as a switch that is off and has the value 
of zero until a certain time at which the function turns on and takes the value of 
1. Within each dosing interval of intermittent infusion, the kinetics of zero-order 
drug input changes at the end of the infusion time into first-order drug elimina-
tion. The two-step analytical solution that we have obtained for a single infusion 
is: 

( )
( ) ( ) [ ]

( ) ( ) ( ) [ ]

0

0

1 e 0,

1 e e ,

k t

k t Tk T

k
f t t T

kx t
k

g t t T
k

τ

− ⋅

− ⋅ −− ⋅

 = ⋅ − ∈= 
 = ⋅ − ⋅ ∈


 

 

 

Figure 2. Drug concentration in a one-compartment model without 
loading doses (dashed line) and with two initial loading infusion 
doses of 4 mg/min followed by multiple maintenance doses of 2 
mg/min (dotted line).  

 
Table 1. AUC (mg/L∙min) after multiple intermittent infusions in the one-compart- 
ment model without and with loading doses using Equation (9) and Equation (16), re-
spectively. 

n AUCone_comp AUCone_comp_DL 
1 578.91 *1157.83 
2 876.20 *1752.41 

3 1010.86 1442.80 

4 1071.85 1267.49 

5 1099.47 1188.09 

6 1111.99 1152.12 

*Loading doses at a rate of 4 mg/min were infused for 30 minutes. 
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The mathematical expressions for the drug amount x can be written as a sin-
gle step function with u as the Heaviside notation. The drug infusion function 
( )f t  is turned on at time t and it is turned off when the elimination function 
( )g t  is turned on at t = T, by subtracting the infusion function ( )f t  from 
( )g t , for the first infusion. 

( ) ( ) ( ) ( )1 ( )x t f t g t f t u t T= + − ⋅ −                  (20) 

( ) ( ) ( )( ) ( )0 0
1 1 e 1 e k t Tk tk k

x t u t T
k k

− ⋅ −− ⋅  = ⋅ − − ⋅ − ⋅ −  
         (21) 

Using a real-time variable instead of the dosing interval makes it easier to 
write Heaviside functions for all subsequent drug infusions. As shown below, at 
time t τ=  the amount of drug from the first dose is transferred inside the Hea-
viside function for the second dose and the function representing drug infusion 
( )f t  has been turned on. At time t Tτ= −  the elimination function ( )g t  

has been turned on while ( )f t  is turned off. 
For 2n = , 

( ) ( ) ( )( ) ( )

( )( ) ( )

0
2 1

0

1 e

1 e

k t

k t T

k
x t x t u t

k
k

u t T
k

τ

τ

τ

τ

− ⋅ −

− ⋅ − −

 = + ⋅ − ⋅ −  
 − ⋅ − ⋅ − −  

 

For 3n = , 

( ) ( ) ( )( ) ( )

( )( ) ( )

20
3 2

20

1 e 2

1 e 2

k t

k t T

k
x t x t u t

k
k

u t T
k

τ

τ

τ

τ

− ⋅ − ⋅

− ⋅ − ⋅ −

 = + ⋅ − ⋅ − ⋅  
 − ⋅ − ⋅ − ⋅ −  

 

  

( ) ( ) ( )( )( ) ( )( )

( )( )( ) ( )( )

10
1

10

1 e 1

1 e 1

k t n
n n

k t n T

k
x t x t u t n

k
k

u t n T
k

τ

τ

τ

τ

− ⋅ − − ⋅
−

− ⋅ − − ⋅ −

 = + ⋅ − ⋅ − − ⋅  
 − ⋅ − ⋅ − − ⋅ −  

       (22) 

( ) ( ) ( )( )( ) ( )( )

( )( )( ) ( )( )

10
1

10

1 e 1

1 e 1

k t n
n n

k t n T

k
C t C t u t n

CL
k

u t n T
CL

τ

τ

τ

τ

− ⋅ − − ⋅
−

− ⋅ − − ⋅ −

 = + ⋅ − ⋅ − − ⋅  
 − ⋅ − ⋅ − − ⋅ −  

       (23) 

Equation (21) can be recovered by substituting 1n =  on Equation (22), 

( ) ( ) ( ) ( )( ) ( )0 0
1 0 1 e 1 e k t Tk tk k

x t u t u t T
k k

− ⋅ −− ⋅   = + ⋅ − ⋅ − ⋅ − ⋅ −      
    (21) 

The suitability of the Heaviside function for simulating drug concentrations 
after administration of multiple IIV doses in a one-compartment model was 
tested using the pharmacokinetic parameters for sisomicin as described in Sup-
plemental information. A script written in MATLAB iterates Equation (23) for 
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six intermittent intravenous infusion doses. Each loop of the algorithm calcu-
lates drug concentration as a function of time during the periods of drug infu-
sion and after the infusion was stopped. Simulations of the last loop at the end of 
the sixth dosing interval are plotted in Figure S1. The advantage of using a Hea-
viside function is that with each administration, all information about drug 
concentration from the previous doses is passed on in the Heaviside function of 
the new dose, while the Heaviside functions of all previous doses are turned off. 
The disadvantage is that the last Heaviside function with all the history of drug 
concentration stored in it, gets awfully big, to the point that computations could 
be slowed down significantly. Also, contrary to Equations (6) and (7) which can 
calculate drug concentration independently of dosing order, the Heaviside func-
tion only allows sequential drug concentration calculations. 

3.3. Continuous Constant Rate Intravenous Infusion in a  
One-Compartment Model 

Dosing interval does not apply and drug concentration is calculated by Equation 
(2). The infusion time is equal to the total time whereas the rate of infusion 0k , 
is equal to the total dose divided by the total time of therapy.  

3.4. Intermittent Intravenous Infusion (IIV) in a  
Two-Compartment Mammillary Model 

Analytical solutions and sequence terms for multiple intermittent infusion 
doses 

First dose ( 1n = ): 
Input: Zero-order kinetics of drug administration into the central compart-

ment. 
Output: First-order drug elimination from the central compartment. 
During drug infusion, 0 t T≤ ≤ : 

( ) ( )1
10 12 1 21 2 0 1

d
; 0 0

d
x k k x k x k x
t
= − + ⋅ + ⋅ + =             (24) 

( )2
12 1 21 2 2

d
; 0 0

d
x k x k x x
t
= ⋅ − ⋅ =                  (25) 

( )3
0 3

d
; 0

d
x

k x T
t
= − =  

The last equation is just the source compartment for the drug in the infusion 
tank and it can be solved easily to: 

( ) ( )3 0x t k T t= ⋅ −  0 t T≤ ≤                   (26) 

The remaining of this lengthy process of obtaining analytical solutions to 
concentration as a function of total time has been moved to Appendix B. 

Pattern of sequence and series equations 
The analytical solutions to concentration for the two-compartment model as a 

function of dose number and total time are: 
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( )
( ) ( )( ) ( )( )

( )
( )( )

( ) ( )( ) ( )( )
( )

( )( )

( )
( )( )

( )
( )( )

1

2

1 2

21 1 1 21 2 1
,1,

1 2 1

21 2 1 21 2 1

1 2

1 10 21 21 1 21 2

1 1 2 1 1 2 2 2 1

1 1
e

1 1
e

e e

t n
a n

n

t n

t n t n

k C n k C n
C t

k C n k C n

k k k k
V

λ τ

λ τ

λ τ λ τ

λ τ τ
λ λ

λ τ τ
λ λ

λ λ
λ λ λ λ λ λ λ λ

∞
− ⋅ − − ⋅

=

− ⋅ − − ⋅

− ⋅ − − ⋅ − ⋅ − − ⋅

− ⋅ − ⋅ + ⋅ − ⋅
= ⋅

−

− ⋅ − ⋅ + ⋅ − ⋅
+ ⋅

−

 − −
+ ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 

∑

 (27) 

( )
( ) ( )( ) ( )( )

( )
( )( )

( ) ( )( ) ( )( )
( )

( )( )

( )
( )( )

( )
( )( )

1

2

1 2

10 12 1 2 12 1 1
,2,

1 2 1

10 12 2 2 12 1 1

1 2

1 10 12

2 1 2 1 1 2 2 2 1

1 1
e

1 1
e

1 1 1e e

t n
a n

n

t n

t n t n

k k C n k C n
C t

k k C n k C n

k k
V

λ τ

λ τ

λ τ λ τ

λ τ τ
λ λ

λ τ τ
λ λ

λ λ λ λ λ λ λ λ

∞
− ⋅ − − ⋅

=

− ⋅ − − ⋅

− ⋅ − − ⋅ − ⋅ − − ⋅

+ − ⋅ − ⋅ + ⋅ − ⋅
= ⋅

−

+ − ⋅ − ⋅ + ⋅ − ⋅
+ ⋅

−

 ⋅
+ ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 

∑

 (28) 

( )
( ) ( )( ) ( )( )

( )
( )( )

( ) ( )( ) ( )( )
( )

( )( )

1

2

21 1 1 21 2 1
,1,

1 2 1

21 2 1 21 2 1

1 2

1 1
e

1 1
e

t n T
e n

n

t n T

k C n T k C n T
C t

k C n T k C n T

λ τ

λ τ

λ τ τ
λ λ

λ τ τ
λ λ

∞
− ⋅ − − ⋅ −

=

− ⋅ − − ⋅ −

− ⋅ − ⋅ + + ⋅ − ⋅ +
= ⋅

−

− ⋅ − ⋅ + + ⋅ − ⋅ +
+ ⋅

−

∑
 (29) 

( )
( ) ( )( ) ( )( )

( )
( )( )

( ) ( )( ) ( )( )
( )

( )( )

1

2

10 12 1 2 12 1 1
,2,

1 2 1

10 12 2 2 12 1 1

1 2

1 1
e

1 1
e

t n T
e n

n

t n T

k k C n T k C n T
C t

k k C n T k C n T

λ τ

λ τ

λ τ τ
λ λ

λ τ τ
λ λ

∞
− ⋅ − − ⋅ −

=

− ⋅ − − ⋅ −

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
= ⋅

−

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
+ ⋅

−

∑
 (30) 

Maximum and minimum drug amounts in the two compartments were de-
rived from the above formulas at ( )1t n Tτ= − ⋅ +  and t n τ= ⋅ , respectively. 

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

( ) ( )

1

2

1 2

21 1 1 21 2
,1,max,

1 2 1

21 2 1 21 2

1 2

0 21 21 1 21 2

1 1 2 1 1 2 2 2 1

1 1
e

1 1
e

e e

T
a n

n

T

T T

k C n k C n
C

k C n k C n

k k k k
V

λ

λ

λ λ

λ τ τ
λ λ

λ τ τ
λ λ

λ λ
λ λ λ λ λ λ λ λ

∞
− ⋅

=

− ⋅

− ⋅ − ⋅

− ⋅ − ⋅ + ⋅ − ⋅
= ⋅

−

− ⋅ − ⋅ + ⋅ − ⋅
+ ⋅

−

 − −
+ ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 

∑

   (31) 

( ) ( )( ) ( )( )
( )

( ) ( )( ) ( )( )
( )

( ) ( )

1

2

1 2

10 12 1 2 12 1
,2, ,

1 2 1

10 12 2 2 12 1

1 2

0 12

2 1 2 1 1 2 2 2 1

1 1
e

1 1
e

1 1 1e e

T
a endi n

n

T

T T

k k C n k C n
C

k k C n k C n

k k
V

λ

λ

λ λ

λ τ τ
λ λ

λ τ τ
λ λ

λ λ λ λ λ λ λ λ

∞
− ⋅

=

− ⋅

− ⋅ − ⋅

+ − ⋅ − ⋅ + ⋅ − ⋅
= ⋅

−

+ − ⋅ − ⋅ + ⋅ − ⋅
+ ⋅

−

 ⋅
+ ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 

∑

 (32) 

where,  

( ) ( )
1 20 21 21 1 21 2

,1,max,1
1 1 2 1 1 2 2 2 1

e eT T
a

k k k kC
V

λ λλ λ
λ λ λ λ λ λ λ λ

− ⋅ − ⋅ − −
= ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 
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( ) ( )
1 20 12

,2, ,1
2 1 2 1 1 2 2 2 1

1 1 1e eT T
a endi

k k
C

V
λ λ

λ λ λ λ λ λ λ λ
− ⋅ − ⋅ ⋅

= ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 
 

We must keep in mind that ,2, ,a endi nC  represents the drug concentration in 
the peripheral compartment at the end of the infusion period. It cannot be the 
true maximum concentration in the peripheral compartment as drug distribu-
tion from the central to the peripheral compartment is not instantaneous.  

( ) ( )( ) ( )( )
( )

( )

( ) ( )( ) ( )( )
( )

( )

1

2

21 1 1 21 2
,1,min,

1 2 1

21 2 1 21 2

1 2

1 1
e

1 1
e

T
e n

n

T

k C n T k C n T
C

k C n T k C n T

λ τ

λ τ

λ τ τ
λ λ

λ τ τ
λ λ

∞
− ⋅ −

=

− ⋅ −

− ⋅ − ⋅ + + ⋅ − ⋅ +
= ⋅

−

− ⋅ − ⋅ + + ⋅ − ⋅ +
+ ⋅

−

∑
 (33) 

( ) ( )( ) ( )( )
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( ) ( )( ) ( )( )
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2

10 12 1 2 12 1
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1 2 1
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1 2

1 1
e

1 1
e

T
e n

n

T

k k C n T k C n T
C

k k C n T k C n T

λ τ

λ τ

λ τ τ
λ λ

λ τ τ
λ λ

∞
− ⋅ −

=

− ⋅ −

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
= ⋅

−

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
+ ⋅

−

∑
 (34) 

AUC formulas 
The AUC per dosing interval was calculated at the end of each dosing period 

as a function of dose number for the central and peripheral compartment with 
Equation (1), and results of the Fortran subroutine “twocomp_AUC” (Supple-
ment A) are shown in Table 2. 
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Table 2. AUC (mg/L∙min) after multiple IIV infusions calculated by Equations (35)-(36) 
in the Fortran subroutine “twocomp_AUC” (Supplemental Material). 

n 1,AUC T  2,AUC T  ( )1,AUC Tτ −  ( )2,AUC Tτ −  
1AUC  2AUC  

1 117.8 26.1 378.0 452.4 495.7 478.5 

2 158.1 85.8 497.2 629.4 655.3 715.2 

3 172.6 107.4 540.2 693.2 712.7 800.6 

4 177.8 115.1 555.6 716.2 733.4 831.4 

5 179.7 117.9 561.2 724.5 740.9 842.5 

6 180.3 118.9 563.2 727.5 743.6 846.7 

3.5. Analytical Solutions of the Constant Rate Continuous IV  
Infusion 

In agreement with the pioneering work of Gibaldi, drug concentration in the 
two compartments was calculated using the analytical solutions that we have de-
rived before for the infusion time period of the first intermittent intravenous in-
fusion (Appendix B) [7]. The difference between the continuous infusion from 
the intermittent one is that during continuous infusion the same dose is infused 
at a slower rate over the whole dosing interval. Thus,  

0
60 mg 0.333 mg min

180 min
dosek
τ

= = = . 

( ) ( ) ( )
1 20 21 21 1 21 2

1
1 1 2 1 1 2 2 2 1

e et tk k k kC t
V

λ λλ λ
λ λ λ λ λ λ λ λ

− ⋅ − ⋅ − −
= ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 

     (37) 

( ) ( ) ( )
1 20 12

2
2 1 2 1 1 2 2 2 1

1 1 1e et tk k
C t

V
λ λ

λ λ λ λ λ λ λ λ
− ⋅ − ⋅ ⋅

= ⋅ + ⋅ + ⋅  ⋅ ⋅ − ⋅ − 
    (38) 

The phase portrait of the constant rate continuous infusion in the two-com- 
partment model was constructed from the system of nonhomogeneous linear 
differential equations with constant coefficients (Equations (24)-(25)). The para-
metric curves of the phase portrait ( ( )1x t , ( )2x t ) were conveniently overlaid 
on the plot of the explicit solutions to drug amount x against time. Since both 
eigenvalues are distinct real negative numbers, 1 0.0722λ = −  and  

2 0.0044λ = − , all trajectories move inward and converge toward the critical 
point which is an asymptotically stable node. As shown by the vector direction 
in Figure 3, the trajectories that are far away from the critical point bend toward 
the direction of the eigenvector of the eigenvalue with the biggest absolute value, 

( )1n . The trajectories near the critical point move roughly in the same direction 
as the eigenvector ( )2n . The critical point was calculated from Equations (24)-(25) 
and a zero-order rate of drug administration 0 20 mg hk =  to be  
( ) ( )1 2, 28.99,35.36x x = . It is shown in Figure 3 as the explicit solutions (solid 
lines) of the drug amount in the two compartments at very long times. 

The AUC in the two compartments per hypothetical dosing interval, since the 
infusion is continuous, was calculated by integration of Equations (37) and (38) 
from ( )1n τ− ⋅  to t (Table 3). 
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Figure 3. Phase plane (axes not labeled) and particular solutions (solid lines) to 
drug amount as a function of time after constant rate continuous infusion of the 
drug in the two-compartment model. The two eigenvectors, ( )1n  and ( )2n , are 
presented with dotted and dashed lines whereas the bottom and top solid lines 
are the explicit solutions of the central and peripheral drug amount, 1x  and 

2x , respectively. 
 

Table 3. AUC (mg/L∙min) after continuous constant rate infusion, calculated over a hy-
pothetical dosing interval (n) of 180 minutes in the one- and two-compartment models. 

n AUC1 AUC2 AUCone-comp 

1 359.99 243.27 347.10 

2 684.50 602.10 771.21 

3 827.65 766.66 963.30 

4 892.49 841.20 1050.31 

5 921.86 874.96 1089.72 

6 935.16 890.25 1107.57 

12 946.08 902.81 1122.22 

13 946.13 902.87 1122.29 
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       (39) 
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       (40) 

3.6. Heaviside Function for Multiple IIV in the Two-Compartment  
Mammillary Model 

Heaviside functions for the two-compartment mammillary model were based on 
the algorithm of Figure 4, without the inner time loops, but some additional 
components. In general, you need as many Heaviside functions as the disconti-
nuities in your system. In a fashion similar to the one-compartment model, drug 
concentrations within the infusion and elimination periods are written as the 
Heaviside off/on switches, ( ) ( )1 2,f t f t  and ( ) ( )1 2,g t g t , respectively (Supple-
ment B, MATLAB program “heavis_loop_two_comp_n”). However, unlike the 
one-compartment model, the lack of series formulas for the two-compartment 
model requires subtracting the concentration of the previous dose ( )C t  from 
the infusion function ( )f t  to effectively turn off the elimination function 
during the period of drug infusion. At the end of each dosing interval, drug 
concentration for the central and peripheral compartment are calculated using, 

 

 

Figure 4. Algorithm for the drug concentration in central and peri-
pheral compartments as a function of infusion number and total time. 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1, 1,1, 1 1, 1

1, 1,

1

1

n nn n

n n

C t C t u t f t C t u t n

g t f t u t n T

τ

τ

− −
 = ⋅ + − ⋅ − − ⋅ 

 − − ⋅ − − ⋅ − 
    (41) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2, 2,2, 1 2, 1

2, 2,

1

1

n nn n

n n

C t C t u t f t C t u t n

g t f t u t n T

τ

τ

− −
 = ⋅ + − ⋅ − − ⋅ 

 − − ⋅ − − ⋅ − 
    (42) 

Figure S2 shows the drug concentration calculated by the Heaviside functions 
in the central and peripheral compartment after eight intermittent infusions. 
There is an absolute agreement between these results and those shown in Figure 
5, but computationally the Heaviside functions are extremely demanding as they 
perform point by point function subtraction within each dosing interval.  

 

 
 

 

Figure 5. Top: Sisomicin concentration in the central compartment of a two- 
compartment model (continuous-line) and in the plasma of a one-compart- 
ment model (dashed line) after multiple IIV infusions. Bottom: Drug concen-
tration in the central (continuous line) and peripheral (dashed-line) compart-
ment after multiple IIV infusions. Constant rate continuous infusion in the 
central (empty circles) and peripheral (empty squares) compartment of the two- 
compartment mammillary model, and in the plasma for the one-compartment 
model (continuous line). 
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4. Discussion 
4.1. Drug Concentration as a Function of Time, Average and Peak  

Drug Concentrations as a Function of Dose Number 

Despite the lack of series formulas for multiple intermittent infusions in the 
two-compartment model Equations (27)-(34) can still be used to calculate the 
drug concentration as a function of total time. As shown in Figure 4, in the first 
step of the dose iterative loop, the concentration of the drug in the two com-
partments, ,1,1aC  and ,2,1aC , is calculated during the period of infusion, fol-
lowed by calculation of the drug concentration at the end of the infusion period 

,1,max,1aC  and ,2, ,1a endiC . These two concentrations are then utilized to calculate 
the drug concentration during the elimination periods, ,1,1eC  and ,2,1eC . The 
concentration of the two minima at the end of the dosing interval, ,1,min,1eC  and 

,2,min,1eC  was computed in the last step of the first loop. The results are then fed 
back into the loop to calculate the drug concentration during the infusion period 
of the second dose. The order of computing drug concentration within each in-
ner time loop is irrelevant since the maximum and minimum drug concentra-
tions are not used to calculate drug concentration during the infusion and eli-
mination periods, respectively. 

Simulations of drug concentration with time in the two-compartment model 
were implemented in the Fortran subroutine “twocomp_C1_C2_t” (Supple-
mental Material). The output of this subroutine was calculated using a fixed 
10-minute time step loop, saved as a comma-separated value file and imported 
into an excel spreadsheet. As shown in Figure 5, after six doses, the maximum 
drug concentration at the end of the infusion in the central compartment is 
about 8.5 mg/L, whereas peak concentration in the peripheral tissues is reached 
after infusion has stopped during the drug elimination period.  

The average drug concentration during the infusion period is lower than the 
drug concentration at the end of the infusion whereas the average drug concen-
tration after infusion is over is higher than the drug concentration at the end of 
the dosing intervals, in both compartments (Table 4). The average concentra-
tion over the whole dosing interval in the peripheral compartment, which was 
obtained by averaging the average concentration values during the infusion and 
elimination periods, is higher than that of the central compartment. Movement 
of the drug out of the central compartment is affected by the relative magnitudes 
of the first-order rate constants 10k , 12k  and 21k  and the available drug con-
centration in each compartment. Evidently, when the infusion is over, the com-
bined higher rate of elimination and diffusion of the drug out of the central 
compartment is the reason for the higher overall AUC and aveC  in the peri-
pheral compartment.  

Maximum drug concentration in the peripheral compartment was determined 
at the peripheral compartment peak time as a function of dosing number from 
the first derivative of Equation (30) with respect to time. 
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Table 4. Drug concentration at the end of infusion periods and the end of dosing inter-
vals after multiple IIV infusions calculated by Equations (31)-(32) and Equations (33)-(34), 
respectively by the fortran subroutine “twocomp_maxmin” (Supplement A). Average 
values of drug concentrations in the two compartments were calculated by dividing the 
AUC in Table 2 with the corresponding infusion and elimination periods.  

n ,1,a TC  ,1,a aveC  ,2,a TC  ,2,a aveC  ,1,eC τ  ( ),1,e ave TC τ −  ,2,eC τ  ( ),2,e ave TC τ −  

1 6.69 3.93 2.23 0.87 1.54 2.52 2.27 3.02 

2 7.90 5.27 4.03 2.86 2.09 3.31 3.09 4.20 

3 8.33 5.75 4.67 3.58 2.29 3.60 3.39 4.62 

4 8.49 5.93 4.91 3.84 2.36 3.70 3.49 4.77 

5 8.54 5.99 4.99 3.93 2.39 3.74 3.53 4.83 

6 8.56 6.01 5.02 3.96 2.39 3.75 3.54 4.85 

,1, ,1,maxa T aC C= ; ,1, ,1,mine eC Cτ = ; ,2, ,2,mine eC Cτ = . 

 

( ),2,d
0

d
e nC t

t
=  

⇒  

( ) ( )( ) ( )( )
( )

( )( )

( ) ( )( ) ( )( )
( )

( )( )

1
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2 1

10 12 2 ,2 12 ,1 1
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1 2
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e

1 1
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k k C n T k C n T
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λ τ

λ τ

λ τ τ
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λ τ τ
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− ⋅ − − ⋅ −

− ⋅ − − ⋅ −

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
− ⋅ ⋅

−

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
− ⋅ ⋅ =
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⇒  
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( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )

1 2 21 ,2 12 ,1

2 1 21 ,2 12 ,1
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1 2

1 1
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1 1
1

a a

a a
n

k C n T k C n T

k C n T k C n T
t n T

λ λ τ τ

λ λ τ τ
τ

λ λ

  ⋅ − ⋅ − ⋅ + + ⋅ − ⋅ +  
  ⋅ − ⋅ − ⋅ + + ⋅ − ⋅ +  = − ⋅ + +

−
 (43) 

For the first infusion, 1n = , 

( ) ( ) ( )
( ) ( ) ( )

( )

1 2 21 ,2 12 ,1

2 1 21 ,2 12 ,1
2,max,1

1 2

ln a a

a a

k C T k C T
k C T k C T

t T

λ λ

λ λ

λ λ

  ⋅ − ⋅ + ⋅  
  ⋅ − ⋅ + ⋅  = +

−
         (44) 

Replacing time with 2,max,nt  on Equation (30) yields Equation (45) which can 
be used to calculate peak concentrations in the peripheral compartment as a 
function of infusion number. 

( ) ( )( ) ( )( )
( )

( )( )

( ) ( )( ) ( )( )
( )

( )( )

1 2,max,

2 2,max,

110 12 1 ,2 12 ,1
,2,max,

2 1

110 12 2 ,2 12 ,1

1 2

1 1
e

1 1
e

n

n

t n Ta a
e n

t n Ta a

k k C n T k C n T
C

k k C n T k C n T

λ τ

λ τ

λ τ τ
λ λ

λ τ τ
λ λ

− ⋅ − − ⋅ −

− ⋅ − − ⋅ −

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
= ⋅

−

+ − ⋅ − ⋅ + + ⋅ − ⋅ +
+ ⋅

−

 (45) 

As Table 5 shows, the time to reach peak concentration in the peripheral 
compartment was reduced from 27.7 minutes during the first infusion to 18.1  
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Table 5. Peripheral compartment peak times and concentrations as a function of infusion 
number. 

n 2,maxt  ( )2,max 1t n τ− − ⋅  ( )2,max 1t n Tτ− − ⋅ −  ( )2,max mg LC  

1 57.69 57.69 27.69 3.60 

2 231.29 51.29 21.29 5.02 

3 409.21 49.21 19.21 5.55 

4 588.48 48.48 18.48 5.74 

5 768.22 48.22 18.22 5.81 

6 948.13 48.13 18.13 5.84 

2,maxt : real-time in minutes; ( )2,max 1t n τ− − ⋅ : time within a dosing interval in minutes; 

( )2,max 1t n Tτ− − ⋅ − : the time lapsed after infusion has been terminated, within a dosing 

interval, in units of minutes. 
 

minutes after the sixth drug infusion. In addition to being the longest peak time, 
as indicated by Equation (44), the first infusion peripheral compartment peak 
time is also the only peak time that is truly independent of dose size. 

4.2. Dose Size Effect on Peripheral Compartment Peak Time 

Drug concentration after IIV loading doses was calculated as described in the 
respective methods section. Our results indicated that the time to reach peak 
concentration in the peripheral compartment 2,maxt  depends on the dose and 
the drug concentration in the two compartments. The smaller the concentration 
difference in the two compartments at the time of drug administration the 
shorter the 2,maxt . Also, 2,maxt  is shorter when L MD D< , longer than antic-
ipated when L MD D>  but it can never get bigger than the 2,max,1t  of the first 
dose. Due to a higher first-order intercompartmental mass transfer rate constant 

12k , the higher the ( ),1,a TC τ +  the more drug is transferred into the peripheral  

compartment, the smaller the ,1,

,2,

a T

a T

C
C

 ratio at the end of the drug infusion pe-

riod and the shorter the 2,maxt . This conclusion can be verified from the infor-

mation in Tables 4-6. The biggest difference between ,1,a TC  and ,2,a TC  and 

the longer 2,maxt  are both noted during the first infusion, 1n = .  

To understand why 2,max,1t  of the first intermittent infusion will always be the 
longest time to reach peak concentration in the peripheral compartment, re-
gardless of dose size, we need to discuss Equation (43). In our simulations, as 
absolute numbers, 1 12 21 10 2k k kλ λ> > > > . Thus, the first part of the numerator 
is negative, as ( )10 12 1 0k k λ+ − < , whereas the first part of the denominator is 
positive ( )10 12 2 0k k λ+ − > . It is the numerator that plays the determining role 
in the final value of Equation (43) and more specifically the relative difference 
between the drug concentration in the two compartments at infusion time T. 
The time to reach peak concentration in the peripheral compartment gets small-
er with a smaller difference between the two concentrations at time T. Since the  
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Table 6. Drug concentration and peripheral compartment peak times after an initial in-
fusion of 2 mg/min, a second infusion of 4 mg/min and a third infusion of 0.5 mg/min, all 
for 30 minutes, followed by three more regular 2 mg/min intermittent infusions.  

n ,1,a TC  ,2,a TC  ,2,maxeC  ,1,eC τ  ,2,eC τ  ( )2,max 1t n Tτ− − ⋅ −  

1 6.69 2.23 3.60 1.54 2.27 27.69 

2 14.58 6.26 8.61 3.63 5.36 24.34 

3 4.52 4.79 ----- 1.69 2.50 ---- 

4 8.02 4.21 5.17 2.14 3.17 20.70 

5 8.37 4.74 5.60 2.31 3.42 19.01 

6 8.50 4.93 5.76 2.37 3.50 18.41 

 
biggest difference between the concentrations in the two compartments at the 
end of the infusion time is always observed during the first dose, regardless of 
the magnitude of the following doses, the time to reach peak concentration in 
the peripheral compartment, 2,max,1t , will be the longest. In Table 6, we have 
administered an initial maintenance dose of 2 mg/min for 30 minutes. The 
second and third infusion was 4 mg/min and 0.5 mg/min, respectively, for the 
same infusion time of 30 minutes followed by three more maintenance infusion 
doses of 2 mg/min. Administering a higher second dose increases the time to 
reach peak concentration in the peripheral compartment from 21.29 (Table 5) 
to 24.34 minutes (Table 6) after the infusion was stopped. In accord with our  

hypothesis, the ,1,

,2,

a T

a T

C
C

 ratio during the second infusion, 14.58 2.33
6.26

= , is high-

er than 7.90 1.96
4.03

= , but both ratios are lower than the first dose-independent 

ratio 6.69 3
2.23

=  (Table 4).  

We must keep in mind that Equation (43) collapses to an undefined form 
when ( )( ) ( )( ),2 ,11 1a aC n T C n Tτ τ− ⋅ + > − ⋅ + , which could happen if the infu-
sion dose is way lower than the previous dose. In these cases, the equation sug-
gests that the peripheral drug concentration follows a monotonic decrease with 
time without the occurrence of a maximum. Accordingly, administration of the 
eight times lower dose of 0.5 mg/min, resulted in a ratio between the two con-
centrations ,1,a TC  and ,2,a TC  little less than 1 and the absence of a maximum 
peripheral concentration (Figure 6). 

4.3. Momentary Distribution Equilibrium and Apparent Volume  
of Distribution 

Recently, we have defined the apparent volume of distribution as an intensive 
property of matter and provided proof that the compartment volumes deter-
mined from regression analysis of measured concentration-time data in the  
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Figure 6. Drug concentration in the central (continuous-line) and peripheral 
(dash line) compartment after an initial infusion of 2 mg/min, a second infusion 
of 4 mg/min and a third infusion of 0.5 mg/min followed by three more regular 2 
mg/min intermittent 30-minute infusions. 

 
two-compartment model are the actual physiological volumes accessible by the 
drug [8] [9]. We further hypothesized that the positively charged at physiologi-
cal pH hydrophilic drug sisomicin, partitions into two kinetically different com-
partments of extracellular fluid, and proven that in the absence of other phases 
in the central compartment, the drug’s actual volume of distribution equals the 
drug’s apparent volume of distribution. As an equilibrium property of the sys-
tem, the drug apparent volume of distribution can be determined at the time at 
which the solute transfer rates between the two compartments are equal [10]. 
The time of momentary distributional equilibrium between the two compart-
ments ( ,eq nt ) is the same as the peak peripheral compartment time, 2,max,nt , that 
we have previously computed from the solute rate of change in the peripheral 
compartment as a function of infusion number (Equation (43)).  

The value of the drug’s apparent volume of distribution ( dV ) was calculated 
from the drug amount in the two compartments at 2,maxt  using a mass preser-
vation equation, to be consistently 12.16 L, regardless of infusion number [9]. 
We have also conducted ascending-dose studies where dV  can be determined 
from the slope of the amount of drug in the body versus the drug concentration 
in the central compartment at momentary distribution equilibria (Equation (46); 
Figure 7). Simple linear regression of the data suggests the presence of linear 
pharmacokinetics where drug concentration changes with time at a rate directly 
proportional to the remaining plasma drug concentration. Although nonlinear 
pharmacokinetics is usually correlated with saturated metabolism or absorption 
in reality the elimination rate constant is dependent on both clearance and ap-
parent volume of distribution. 
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Figure 7. The amount of drug in the body after the first infusion ( 1n = ), 

,1,s eqx , was plotted against drug concentration in the central compartment at 

momentary distribution equilibrium 1,1,eqC  in dose-escalation studies car-

ried out at 0k  of 1, 1.5, 2, 2.5 and 3 mg/min 30-minute intermittent infu-
sions. The sisomicin apparent volume of distribution was determined from 
the slope of the line using Equation (46) to be 12.16 L. 

 
The terms, 1,eqx , 2,eqx , ,s eqx  and 1,eqC  are the amount of drug in the cen-

tral and peripheral compartments, in both compartments in the body and the 
drug concentration in the central compartment, respectively, at momentary dis-
tribution equilibrium. 

Furthermore, the peripheral to central compartment drug mass distribution 

ratio at equilibrium 2, ,

1, ,

eq n

eq n

x
x

 
  
 

 was also calculated to be constant with all infu-

sion doses at 1.22. This value is exactly equal to the one calculated by Equation  
(48), as was first shown by Gibaldi, not for the intermittent infusion, but for the 
constant rate continuous IV infusion [7]. This provides an additional proof that 
the ,eq nt , although not a plasma drug concentration steady state, it is the time of 
true momentary distribution equilibrium of the drug between the two compart-
ments. 

The non-equilibrium apparent volume of distribution of sisomicin in the cen-
tral phase was also calculated using non-equilibrium parameters on Equation 
(46). As the partition coefficient and the apparent volume of distribution are 
parameters reserved for equilibrium conditions, we are going to call this volume 
at intercompartmental solute distribution pseudo-equilibrium (apparent) quo-
tient of distribution volume, qV . As shown in Figure 8, with every intermittent 
infusion, the quotient of distribution volume decreases during the first 20 mi-
nutes of drug infusion and increases thereafter, and in the purely elimination 
phase. Equation (46) can be converted to Equation (47), specifically for the eli-
mination phase of the IIV [9]. 
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Figure 8. Central compartment sisomicin quotient of distribution volume, 

,1qV , was plotted as a function of total time after repetitive 30-minute intermit-

tent infusions every 180 minutes. 
 

The ratio of the drug in the two compartments under intercompartmental 

drug distribution pseudo-equilibrium ,2

,1

e

e

x
x

, was evaluated from Equation (29)  

and Equation (30) (see also Appendices) to approach 1.48, as opposed to 1.22 at 

,eq nt . As time increases within the elimination phase of each dosing interval, the 
time exponentials drop in the two equations and the drug ratio stays constant, 
hence the plateau phase of the distribution volume quotient in Figure 8. It is 
called pseudo-equilibrium because the system is at steady state as the mass ratio 
in the two compartments and the value of the ,1qV  (Figure 8) appear to change 
only negligibly during the elimination phase of the drug, but it is not a true dis-
tribution equilibrium [7] [11]. 

The largest value of qV  is known as the terminal or area volume of distribu-

tion, Vβ  and can be calculated using 0
,1

2 1AUC
k

Vβ λ
=

⋅
 [12] [13]. From the in-

formation listed in Table 3, we have calculated a terminal or area distribution  
volume of 14.4 L as opposed to a ,1dV  of 12.16 L. Both parameters are valuable 
but the value of the apparent volume of distribution is particularly important as 
it can be used to carry out comparative simulations in the one-compartment 
model and it can be used to calculate the partition coefficient of the drug in the 
two compartments or phases. 

4.4. Constant Rate Continuous Intravenous Infusion and Drug  
Exposure 

Unlike the intercompartmental momentary distributional equilibrium of the 
drug observed after intermittent intravenous infusion mode of administration, 
the constant rate continuous infusion offers a long-term equilibrium of the drug 
transfer rate between the two compartments at steady-state conditions. The 
asymptotically stable node or critical point ( 1x , 2x ) originally computed from 
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the system of nonhomogeneous differential equations (Figure 3) can also be de-
termined as t →∞  from Equations (37)-(38) to be ( ) ( )1 2, 5.61,5.35C C =  
mg/L. Similarly to the one-compartment model, the drug amount in the central 
compartment at steady state is dependent only on the administration and elimi-
nation rate constants 0k  and 10k . Substituting 1,ssx  from Equation (37) onto 
Equation (38), yields a time-independent expression for solute transfer rate 
equilibrium between the two compartments at steady-state after constant rate 
continuous infusion. This result is not new. Milo Gibaldi was the first one to de-
rive Equation (48) in his excellent work on the effect of mode of administration 
on drug distribution in a two-compartment mammillary model [7].  

1, 21

2, 12

ss

ss

x k
x k

=                            (48) 

Could the plasma concentration of a drug that follows a two-compartment 
model be approximated by a one-compartment model? The new definition of 
the apparent volume of distribution has made simulation comparisons possible 
that have been hitherto prevented [8] [9]. As the physical significance of phar-
macokinetic parameters estimated from two-compartment models is now fully 
understood, some of these parameters are compatible with the one-compart- 
ment model. We now know that drug concentration in the central compartment 
is equal to plasma drug concentration and that the drug’s apparent volume of 
distribution with respect to the central phase, as estimated from the two-com- 
partment model, is equal to the apparent volume of distribution of the drug as-
sociated with the plasma. Although sisomicin follows a two-compartment kinet-
ic model, we wanted to examine how plasma drug concentration varies with 
time in the one-compartment model. Drug concentration in the central and pe-
ripheral compartment was plotted along with plasma drug concentration in the 
one-compartment model using the same 0k  and dV , and a first-order syste-
matic elimination rate constant 2k λ= . As shown in Figure 5 (top), if sisomicin 
were to be given by intermittent intravenous infusion, it would have achieved 
lower and higher, peak and trough concentration, respectively, at early times and 
about the same peak and a higher trough concentration at steady-state in the 
one-compartment model. Equation (2) and Equation (37) are the analytical so-
lutions to drug concentration after constant rate continuous infusion of the drug 
in the one-compartment model and in the central compartment of the two- 
compartment open model, respectively. Equation (49) is the ratio of the two eq-
uations as the time tends to infinity and can be used to estimate how closely the 
one-compartment model can approximate steady-state plasma concentration for 
drugs that follow a two-compartment model. Carrying out sisomicin dosage 
calculations using the much simpler equation of the one-compartment model 
would result in an average steady-state concentration about 26% higher in the 
one-compartment model (Figure 5, bottom). 

,one-comp 1

1, 12 21

ss

ss

C
C k k

λ
=

+
                     (49) 
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With respect to the body exposure to sisomicin, as shown in Table 3, there is 
an absolute agreement between the drug concentration and the AUC in the two 
models. The only time the concentration and the AUC of the central compart-
ment are higher than the concentration and AUC of the one-compartment 
model is during the administration of the first infusion dose. The AUC of the 
two compartments cannot be added as they represent drug exposure in different 
parts of the body. Drug exposure in the two-compartment model should be eva-
luated either by the average AUC or by considering the AUC of each compart-
ment independently. One of the PK/PD indices for evaluating aminoglycoside 
and glycopeptide antibiotic efficacy is the AUC0-24/MIC ratio. The ratio of the 
average drug concentration, obtained from the AUC divided by the length of the 
time interval, to the minimum inhibitory concentration (MIC) is another useful 
index of antibiotic efficacy. This index offers a direct measure of the number of 
times the MIC is contained within the average drug concentration in the body.  

It is important to say that these antibiotics are better described by multicom-
partment pharmacokinetic models, yet, the AUC is calculated from plasma drug 
concentration. This issue is critical as the movement of the drug in the peripher-
al compartment is directly related to the ability of antibiotics to destroy patho-
genic microhabitats that lead to the creation of biofilms within the connective 
tissue of the interstitial matrix. On the other hand, compartment models are se-
lected from the regression analysis of drug concentration as a function of time 
after a single dose. It remains a possibility that the kinetically different but com-
positionally similar compartments, cease to exist after the second or third dose. 
Until it is proven that the two-compartment or multicompartment pharmaco-
kinetic models, in general, are still followed after repeated drug administration, 
the one-compartment model remains an important pharmacokinetic model in 
dosage calculations of therapeutic regimens, especially for the hydrophilic ami-
noglycoside antibiotics that are mostly excreted unmodified by glomerular filtra-
tion with a very short systemic half-life of 2 - 3 hours. 

5. Conclusion 

Compartment models are routinely used to gain insight into drug disposition 
through computer simulations. As simulations imitate a process with another 
process, the predictive power of a pharmacokinetic compartment model can be 
unveiled only after you explain your model. In the absence of other analytical 
methods, the explicit solutions described in this work can explore the properties 
of a two-compartment model and explain how drug concentration is expected to 
vary with real-time and repetitive dosing in the central and peripheral compart-
ments. Most importantly, the classical pharmacokinetic models have now a phy-
siological significance with the compartment volumes being the actual body flu-
id volumes accessible by the drug. Also, pharmacokinetic parameters estimated 
from the two-compartment model can be used to carry out simulations of drug 
concentration in the one-compartment model. The ratio of the hybrid distribu-
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tion rate constant to the sum of the distribution micro rate constants can be used 
to estimate the difference in the levels of the average steady-state plasma con-
centration in the two models. 
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Appendices 
Appendix A 

AUC in the one-compartment model 
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Appendix B 

Analytical solutions and sequence terms for multiple intermittent infusion 
doses in the two-compartment model. 

Writing Equation (24) and Equation (25) in matrix form x A x b′ = ⋅ +


  : 
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Applying the Laplace transform to the initial value problem, 

{ } { }x A x b′ − ⋅ =    
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Using the Cramer’s rule, 
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Taking the inverse transforms of the above gives us the solutions for the 
amount of drug as a function of time in the two compartments. 
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In the drug elimination phase when drug infusion has stopped, T t τ≤ ≤ : 
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Applying the Laplace transform,  
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Using the Cramer’s rule, 
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Taking the inverse transforms, 
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Second dose ( 2n = ): 
During drug infusion, t Tτ τ≤ ≤ + : 
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Following the same approach as before, 
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Taking the inverse transforms, 
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When drug infusion has stopped, 2T tτ τ+ ≤ ≤ ⋅ : 
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Taking the inverse transforms of the above yields the amount of drug during 
the elimination phase at the end of the second drug infusion in the two com-
partments. 
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Supplemental Information 

Real-time analytical solutions as series formulas and Heaviside off/on switch functions for multiple intermit-
tent intravenous infusions in one- and two-compartment models. 
Michalakis Savva 

Supplement A 

Module Shared_data 
! Purpose: 
! To declare data to share between subroutines 
! Record of revisions: 
! Date  Programmer  Description of change 
! ====  ==========  ===================== 
! 08/30/20  M. Savva   Original Code 
 
implicit none 
SAVE 
!Declare parameters 
real,parameter:: F=1.0   ! Bioavailability factor of oral absorption 
integer,parameter:: tau_h=3   ! Dosing interval in units of h  
integer,parameter:: tau=180   ! Dosing interval in units of min  
integer,parameter:: P=30   ! Infusion time in units of min 
real,parameter::DM=60    ! Maintenance dose for dosage interval in units of mg 
real,parameter:: k_0=DM/real(P)  ! Constant drug infusion rate (zero-order) units of mg/min 
real,parameter::DL=0.0    ! Loading dose for one dosage interval in units of mg 
real,parameter:: L_2=0.0044   ! Eignevalue lambda 2 or macro beta rate constant (elimination) in min-1 
real,parameter:: L_1=0.0722   ! Eignevalue lambda 1 or macro alpha rate constant (distribution) in min-1 
real,parameter:: k_10=0.0115   ! Micro rate constant elimination from comp 1 (central) in min-1 
real,parameter:: k_12=0.0316   ! Micro rate constant of drug diffusion from comp 1 to 2 in units min-1 
real,parameter:: k_21=0.0259   ! Micro rate constant of drug diffusion from comp 2 to 1 in min-1 
real,parameter:: V_1=5.17   ! Volume of compartment 1 (central) in L 
real,parameter:: V_2=6.61   ! Volume of compartment 2 (peripheral) in L 
integer,parameter::s_t=10   ! loop increment in units of min 
integer,parameter::istart=1   ! istart of the loop and corresponds to the firts infusion 
integer,parameter::iend=6   ! iend of the loop and corresponds to the last infusion 
integer,parameter::incr=1   ! increment of the loop in units of n (infusion #) 
 
!Declare variables 
integer:: n        ! Infusion number (times of injection) 
integer:: t        ! Time in minutes 
real:: Ca_1_max=0.0, Ca_2_endi=0.0   ! “Maximum” drug concentration in compartments 1 and 2 in mg/L  
real:: Ce_1_min=0.0, Ce_2_min=0.0   ! Maximum drug concentration in compartments 1 and 2 in mg/L 
real:: Ca_1=0.0,Ca_2=0.0,Ce_1=0.0,Ce_2=0.0 ! Drug concentration in compartments 1 and 2 during infusion and 
         elimination  
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real:: AUC_1_P=0.0, AUC_2_P=0.0   ! AUC in central and peripheral compartment at the end of infusion in 
         mg*min/L 
real:: AUC_1_tau_P=0.0, AUC_2_tau_P=0.0  ! AUC in the two compartment during elimination phase in mg*min/L 
real:: AUC_1=0.0, AUC_2=0.0    ! Total AUC in the two compartment per dosing interval in mg*min/L 
 
end module Shared_data 
 
program twocomp_miiv 
! Purpose: 
! To calculate drug concentration in the central and peripheral compartments 
! after multiple IIV infusions as a function of infusion number and total time 
! in a two-compartment mammillary model 
 
! Record of revisions: 
! Date   Programmer    Description of change 
! ====   ==========   ===================== 
! 08/30/20  M. Savva    Original Code 
 
USE Shared_data 
implicit none 
 
CALL twocomp_C1_C2_t 
 
!CALL twocomp_maxmin 
 
!CALL twocomp_AUC 
 
end program twocomp_miiv 
 
Subroutine twocomp_C1_C2_t 
! Purpose: 
! To calculate drug C1 and C2 as a function of total time, 
! in a two-compartment mammillary model  
 
! Record of revisions: 
! Date  Programmer  Description of change 
! ====  ==========  ===================== 
! 08/30/20  M. Savva   Original Code 
 
USE Shared_data 
implicit none 
 
!Print column headings 
write(*,30) ‘Drug concentrations as a function of time in a two-compartment model’ 
30 format (//,A40,/) 
write(*,31) 
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31 format(T4,’dose,n’,T15,’t (min)’,T30,’Ca_1’,T45,’Ca_2’,T60,’Ce_1’,T75,’Ce_2’) 
write(*,32) 
32 format  
(T4,’======‘,T15,’=======‘,T25,’===========‘,T40,’===========‘,T55,’===========‘,T80,’=========
==‘) 
 
Do n=istart,iend,incr  
inf: Do t=(n-1)*tau,P+(n-1)*tau,s_t 
 Ca_1=((k_21-L_1)*Ce_1_min+k_21*Ce_2_min)/(L_2-L_1)*exp(-L_1*real(t-(n-1)*tau))+& 
    ((k_21-L_2)*Ce_1_min+k_21*Ce_2_min)/(L_1-L_2)*exp(-L_2*real(t-(n-1)*tau))+& 
   k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*real(t-(n-1)*tau))+& 
    (k_21-L_2)/(L_2*(L_2-L_1))*exp(-L_2*real(t-(n-1)*tau))) 
 
 Ca_2= ((k_10+k_12-L_1)*Ce_2_min+k_12*Ce_1_min)/(L_2-L_1)*exp(-L_1*(real(t-(n-1)*tau)))+& 
    ((k_10+k_12-L_2)*Ce_2_min+k_12*Ce_1_min)/(L_1-L_2)*exp(-L_2*(real(t-(n-1)*tau)))+& 
   k_0*k_12/V_2*(1.0/(L_1*L_2)+1.0/(L_1*(L_1-L_2))*exp(-L_1*(real(t-(n-1)*tau)))+& 
   1.0/(L_2*(L_2-L_1))*exp(-L_2*real(t-(n-1)*tau))) 
 
 write(*,33) n,t,Ca_1,Ca_2 
 33 format (T4,I3,T15,I5,T25,F10.4,T40,F10.4) 
 end Do inf 
 
 Ca_1_max=((k_21-L_1)*Ce_1_min+k_21*Ce_2_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
    ((k_21-L_2)*Ce_1_min+k_21*Ce_2_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
    k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*real(P))+& 
    (k_21-L_2)/(L_2*(L_2-L_1))*exp(-L_2*real(P))) 
 
 Ca_2_endi= ((k_10+k_12-L_1)*Ce_2_min+k_12*Ce_1_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
    ((k_10+k_12-L_2)*Ce_2_min+k_12*Ce_1_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
    k_0*k_12/V_2*(1/(L_1*L_2)+1/(L_1*(L_1-L_2))*exp(-L_1*real(P))+1/(L_2*(L_2-L_1)) 
    *exp(-L_2*real(P))) 
 
elim: Do t=P+(n-1)*tau,n*tau,s_t  
 Ce_1=((k_21-L_1)*Ca_1_max+k_21*Ca_2_endi)/(L_2-L_1)*exp(-L_1*real(t-(n-1)*tau-P))+& 
   ((k_21-L_2)*Ca_1_max+k_21*Ca_2_endi)/(L_1-L_2)*exp(-L_2*real(t-(n-1)*tau-P)) 
 
 Ce_2=((k_10+k_12-L_1)*Ca_2_endi+k_12*Ca_1_max)/(L_2-L_1)*exp(-L_1*real(t-(n-1)*tau-P))+& 
    ((k_10+k_12-L_2)*Ca_2_endi+k_12*Ca_1_max)/(L_1-L_2)*exp(-L_2*real(t-(n-1)*tau-P)) 
 
 write(*,34) n,t,Ce_1,Ce_2 
 34 format (T4,I3,T15,I5,T55,F10.4,T75,F10.4) 
 end Do elim 
 
 Ce_1_min=((k_21-L_1)*Ca_1_max+k_21*Ca_2_endi)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
    ((k_21-L_2)*Ca_1_max+k_21*Ca_2_endi)/(L_1-L_2)*exp(-L_2*(real(tau-P))) 
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 Ce_2_min=((k_10+k_12-L_1)*Ca_2_endi+k_12*Ca_1_max)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
      ((k_10+k_12-L_2)*Ca_2_endi+k_12*Ca_1_max)/(L_1-L_2)*exp(-L_2*(real(tau-P)))  
 
end Do 
end subroutine twocomp_C1_C2_t 
 
Subroutine twocomp_maxmin 
! Purpose: 
! To calculate drug Cmax and Cendi at the end of infusion period as a function of oral dose #, 
! in a two-compartment mammillary model  
 
! Record of revisions: 
! Date  Programmer  Description of change 
! ====  ==========  ===================== 
! 08/30/20  M. Savva   Original Code 
 
USE Shared_data 
implicit none 
 
!Print column headings 
write(*,30) ‘Maximum and minimum drug concentration upon multiple IIV in a two-compartment mammillary 
model’ 
30 format (//,A100,/) 
write(*,31) 
31 format(T4,’dose number’,T18,’Ca_1_max’,T31,’Ca_2_endi’,T46,’Ce_1_min’,T61,’Ce_2_min’) 
write(*,32) 
32 format  
(T4,’===========‘,T17,’===========‘,T30,’===========‘,T45,’===========‘,T60,’===========‘) 
 
Do n=istart,iend,incr  
 Ca_1_max=((k_21-L_1)*Ce_1_min+k_21*Ce_2_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
      ((k_21-L_2)*Ce_1_min+k_21*Ce_2_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
      k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*real(P))+& 
      (k_21-L_2)/(L_2*(L_2-L_1))*exp(-L_2*real(P))) 
 
 Ca_2_endi= ((k_10+k_12-L_1)*Ce_2_min+k_12*Ce_1_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
      ((k_10+k_12-L_2)*Ce_2_min+k_12*Ce_1_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
      k_0*k_12/V_2*(1/(L_1*L_2)+1/(L_1*(L_1-L_2))*exp(-L_1*real(P))+1/(L_2*(L_2-L_1)) 
      *exp(-L_2*real(P))) 
 
 Ce_1_min=((k_21-L_1)*Ca_1_max+k_21*Ca_2_endi)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
      ((k_21-L_2)*Ca_1_max+k_21*Ca_2_endi)/(L_1-L_2)*exp(-L_2*(real(tau-P))) 
 
 Ce_2_min=((k_10+k_12-L_1)*Ca_2_endi+k_12*Ca_1_max)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
      ((k_10+k_12-L_2)*Ca_2_endi+k_12*Ca_1_max)/(L_1-L_2)*exp(-L_2*(real(tau-P))) 
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 write(*,33) n,Ca_1_max,Ca_2_endi,Ce_1_min,Ce_2_min 
 33 format (T4,I3,T17,F10.4,T30,F10.4,T45,F10.4,T60,F10.4) 
end Do 
end subroutine twocomp_maxmin 
 
Subroutine twocomp_AUC 
! Purpose: 
! To calculate drug AUC in central and peripheral compartment  
! after multiple IIV as a function of infusion, 
! in a two-compartment mammillary model  
 
! Record of revisions: 
! Date  Programmer  Description of change 
! ====  ==========  ===================== 
! 08/31/20  M. Savva   Original Code 
 
USE Shared_data 
implicit none 
 
!Print column headings 
write(*,40) ‘AUC during infusion and elimination phases for multiple IIV in a two-compartment mammillary model’ 
40 format (//,A100,/) 
write(*,41) 
41 format(T4,’dose number’,T18,’AUC_1_P’,T31,’AUC_2_P’,T46,’AUC_1_tau_P’,T61,’AUC_2_tau_P’,& 
  T79,’AUC_1’,T91,’AUC_2’) 
write(*,42) 
42 format  
(T4,’=========‘,T17,’===========‘,T30,’===========‘,T45,’===========‘,T60,’===========‘,& 
T75,’===========‘,T90,’===========‘) 
 
Do n=istart,iend,incr 
 AUC_1_P=((k_21-L_1)*Ce_1_min+k_21*Ce_2_min)/(L_1*(L_2-L_1))*(1-exp(-L_1*real(P)))+& 
     ((k_21-L_2)*Ce_1_min+k_21*Ce_2_min)/(L_2*(L_1-L_2))*(1-exp(-L_2*real(P)))+& 
     k_0/V_1*(k_21*real(P)/(L_1*L_2)+(k_21-L_1)/(L_1**2*(L_1-L_2))*(1-exp(-L_1*real(P)))+& 
     (k_21-L_2)/(L_2**2*(L_2-L_1))*(1-exp(-L_2*real(P)))) 
 
 AUC_2_P=((k_10+k_12-L_1)*Ce_2_min+k_12*Ce_1_min)/(L_1*(L_2-L_1))*(1-exp(-L_1*real(P)))+& 
     ((k_10+k_12-L_2)*Ce_2_min+k_12*Ce_1_min)/(L_2*(L_1-L_2))*(1-exp(-L_2*real(P)))+& 
     k_0*k_12/V_2*(real(P)/(L_1*L_2)+1.0/(L_1**2*(L_1-L_2))*(1-exp(-L_1*real(P)))+& 
     1.0/(L_2**2*(L_2-L_1))*(1-exp(-L_2*real(P)))) 
 
 Ca_1_max=((k_21-L_1)*Ce_1_min+k_21*Ce_2_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
     ((k_21-L_2)*Ce_1_min+k_21*Ce_2_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
     k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*real(P))+& 
     (k_21-L_2)/(L_2*(L_2-L_1))*exp(-L_2*real(P))) 
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 Ca_2_endi= ((k_10+k_12-L_1)*Ce_2_min+k_12*Ce_1_min)/(L_2-L_1)*exp(-L_1*real(P))+& 
      ((k_10+k_12-L_2)*Ce_2_min+k_12*Ce_1_min)/(L_1-L_2)*exp(-L_2*real(P))+& 
      k_0*k_12/V_2*(1/(L_1*L_2)+1/(L_1*(L_1-L_2))*exp(-L_1*real(P))+1/(L_2*(L_2-L_1)) 
      *exp(-L_2*real(P))) 
 
 Ce_1_min=((k_21-L_1)*Ca_1_max+k_21*Ca_2_endi)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
     ((k_21-L_2)*Ca_1_max+k_21*Ca_2_endi)/(L_1-L_2)*exp(-L_2*(real(tau-P))) 
 
 Ce_2_min=((k_10+k_12-L_1)*Ca_2_endi+k_12*Ca_1_max)/(L_2-L_1)*exp(-L_1*(real(tau-P)))+& 
      ((k_10+k_12-L_2)*Ca_2_endi+k_12*Ca_1_max)/(L_1-L_2)*exp(-L_2*(real(tau-P))) 
 
 AUC_1_tau_P=((k_21-L_1)*Ca_1_max+k_21*Ca_2_endi)/(L_1*(L_2-L_1))*(1-exp(-L_1*(real(tau-P))))+& 
        ((k_21-L_2)*Ca_1_max+k_21*Ca_2_endi)/(L_2*(L_1-L_2))*(1-exp(-L_2*(real(tau-P)))) 
 
 AUC_2_tau_P=((k_10+k_12-L_1)*Ca_2_endi+k_12*Ca_1_max)/(L_1*(L_2-L_1))*(1-exp(-L_1*(real(tau-P)))) 
        +&((k_10+k_12-L_2)*Ca_2_endi+k_12*Ca_1_max)/(L_2*(L_1-L_2)) 
        *(1-exp(-L_2*(real(tau-P)))) 
 
 AUC_1=AUC_1_P+AUC_1_tau_P 
 AUC_2=AUC_2_P+AUC_2_tau_P 
 
 write(*,43) n,AUC_1_P,AUC_2_P,AUC_1_tau_P,AUC_2_tau_P,AUC_1,AUC_2 
 43 format (T4,I3,T18,F10.4,T31,F10.4,T46,F10.4,T61,F10.4,T76,F10.4,T91,F10.4) 
end Do 
end subroutine twocomp_AUC 

Supplement B 

One-Compartment model: Heaviside function 
MATLAB program “heavis_loop_one_comp_n-sisomicin” 
syms C(t)  
T=30 %min;  
k=0.0044 %min^-1;  
k0=2 %mg/min;  
tau=180 %min;  
V=12.1566 %L; 
istart=1; istep=1; iend=6; 
C(t)=0; 
for n=istart:istep:iend 
 C(t)=C(t)+(k0/(k*V)*(1-exp(-k*(t-(n-1)*tau))))*heaviside(t-(n-1)*tau)-... 
 (k0/(k*V)*(1-exp(-k*(t-(n-1)*tau-T))))*heaviside(t-(n-1)*tau-T) 
end 
fplot(C(t)) 
axis([0 1080 0 9]) 
xlabel ‘time (min)’,ylabel ‘C (mg/L)’ 
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Figure S1. Sisomicin concentration as a function of time using 
Heaviside function (Equation (22)) implemented in MATLAB for 
six 30-minute intermittent drug infusions at a constant rate of k0 
= 2 mg/min. The pharmacokinetic parameters declared in the 
script are: infusion time T = 30 min, elimination rate constant k = 
0.0044 min−1, dosing interval, tau = 180 min and apparent volume 
of distribution of the one-compartment model, V = 15.1566 L. 

 
Two-Compartment model: Heaviside function 
MATLAB program “heavis_loop_two_comp_n_sisomicin” 
syms Ca_1 Ca_2 Ce_1 Ce_2 f_1(t) f_2(t) g_1(t) g_2(t) C_1(t) C_2(t) n t 
T=30; tau=180; 
L_1=0.0722; L_2=0.0044; k_10=0.0115;k_12=0.0316 ; k_21=0.0259; k_0=2 
V_1=5.17 ; V_2=6.61 
istart=1; istep=1; iend=8; 
Ce_1=0; 
Ce_2=0; 
C_1(t)=0; 
C_2(t)=0; 
for n=istart:istep:iend 
 Ca_1=((k_21-l_1)*Ce_1+k_21*Ce_2)/(L_2-L_1)*exp(-L_1*T)+... 
  ((k_21-L_2)*Ce_1+k_21*Ce_2)/(L_1-L_2)*exp(-L_2*T)+... 
  k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*T)+... 
  (k_21-L_2)/(L_2*(L_2-L_1 ))*exp(-l_2*T)) 
 Ca_2=((k_10+k_12-L_1)*Ce_2+k_12*Ce_1)/(L_2-L_1)*exp(-L_1*T)+... 
  ((k_10+k_12-L_2)*Ce_2+k_12*Ce_1)/(L_1-L_2)*exp(-L_2*T)+... 
  k_0*k_12/V_2*(1/(L_1*L_2)+1/(L_1*(L_1-L_2))*exp(-L_1*T)+... 
  1/(L_2*(L_2-L_1 ))*exp(-L_2*T)) 
 f_1(t)=((k_21-L_1)*Ce_1+k_21*Ce_2)/(L_2-L_1)*exp(-L_1*(t-(n-1)*tau))+... 
  ((k_21-L_2)*Ce_1+k_21*Ce_2)/(L_1-L_2)*exp(-L_2*(t-(n-1)*tau))+... 
 k_0/V_1*(k_21/(L_1*L_2)+(k_21-L_1)/(L_1*(L_1-L_2))*exp(-L_1*(t-(n-1)*tau))+... 
  (k_21-L_2)/(L_2*(L_2-L_1 ))*exp(-L_2*(t-(n-1)*tau))) 
 f_2(t)=((k_10+k_12-l_1)*Ce_2+k_12*Ce_1)/(L_2-L_1)*exp(-L_1*(t-(n-1)*tau))+... 

https://doi.org/10.4236/jbm.2022.101012


M. Savva 
 

 

DOI: 10.4236/jbm.2022.101012 189 Journal of Biosciences and Medicines 
 

  ((k_10+k_12-L_2)*Ce_2+k_12*Ce_1)/(L_1-L_2)*exp(-L_2*(t-(n-1)*tau))+... 
  k_0*k_12/V_2*(1/(L_1*L_2)+1/(L_1*(L_1-L_2))*exp(-L_1*(t-(n-1)*tau))+... 
  1/(L_2*(L_2-L_1 ))*exp(-L_2*(t-(n-1)*tau))) 
 Ce_1=((k_21-L_1)*Ca_1+k_21*Ca_2)/(L_2-L_1)*exp(-L_1*(tau-T))+... 
  ((k_21-L_2)*Ca_1+k_21*Ca_2)/(L_1-L_2)*exp(-L_2*(tau-T)) 
 Ce_2=((k_10+k_12-L_1)*Ca_2+k_12*Ca_1)/(L_2-L_1)*exp(-L_1*(tau-T))+... 
  ((k_10+k_12-L_2)*Ca_2+k_12*Ca_1)/(L_1-L_2)*exp(-L_2*(tau-T)) 
 g_1(t)=((k_21-L_1)*Ca_1+k_21*Ca_2)/(L_2-L_1)*exp(-L_1*(t-(n-1)*tau-T))+... 
  ((k_21-L_2)*Ca_1+k_21*Ca_2)/(L_1-L_2)*exp(-L_2*(t-(n-1)*tau-T)) 
 g_2(t)=((k_10+k_12-L_1)*Ca_2+k_12*Ca_1)/(L_2-L_1)*exp(-L_1*(t-(n-1)*tau-T))+... 
  ((k_10+k_12-L_2)*Ca_2+k_12*Ca_1)/(L_1-L_2)*exp(-L_2*(t-(n-1)*tau-T)) 
 C_1(t)=C_1(t)*heaviside(t)+(f_1(t)-C_1(t))*heaviside(t-(n-1)*tau)+... 
  (g_1(t)-f_1(t))*heaviside(t-(n-1)*tau-T) 
 C_2(t)=C_2(t)*heaviside(t)+(f_2(t)-C_2(t))*heaviside(t-(n-1)*tau)+... 
  (g_2(t)-f_2(t))*heaviside(t-(n-1)*tau-T) 
end 
fplot(C_1(t)) 
axis([0 1600 0 9]) 
xlabel ‘time(min)’,ylabel ‘drug concentration, C (mg/L)’  
hold on 
fplot(C_2(t),’--’) 
axis([0 1600 0 9]) 
 

 

Figure S2. Drug concentration profile as a function of time in the 
central (continuous line) and peripheral (dotted line) compartment 
after eight 30-minute intermittent drug infusions at a constant rate of 
2 mg/min using Heaviside functions. 
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