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ABSTRACT 
With the amalgamation of wearable systems equipped with inertial sensors, such as a gy-
roscope, and machine learning a therapy regimen can be objectively quantified, and then 
the initial phase and final phase of a one year therapy regimen can be distinguished through 
machine learning. In the context of rehabilitation of a hemiplegic ankle, a longitudinal 
therapy regimen incorporating stretching and then a series of repetitions for raising and 
lowering the foot of the hemiplegic ankle can be applied over the course of a year. Using a 
smartphone equipped with an application to function as a wearable and wireless gyroscope 
platform mounted to the dorsum of the foot by an armband, the initial phase and final 
phase of a one year longitudinally applied therapy regimen can be objectively quantified 
and recorded for subsequent machine learning. Considerable classification accuracy is at-
tained to distinguish between the initial phase and final phase by a support vector machine 
for a one year longitudinally applied hemiplegic ankle therapy regimen based on the gy-
roscope signal data obtained by a smartphone functioning as a wearable and wireless iner-
tial sensor system.  

 

1. INTRODUCTION 
Wearable and wireless systems equipped with internal sensors, such as the gyroscope, are uniquely 
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suited for discerning the efficacy of a therapy regimen for rehabilitation [1-3]. For example, the smart-
phone with its gyroscope sensor has been demonstrated to objectively quantify the characteristics of a he-
miplegic affected ankle relative to the associated unaffected ankle [4]. The dorsiflexion of the ankle can be 
quantified through the gyroscope internal to the smartphone through an appropriate software application 
with the smartphone mounted about the dorsum of the ankle by an elastic band. The associated software 
application can convey the gyroscope signal data as an attachment to an email representing a provisional 
Cloud computing resource [4-6].  

Furthermore, the gyroscope signal data can be post-processed into a feature set for machine learning 
to distinguish between the hemiplegic affected ankle and unaffected ankle [4, 7]. The application of the 
smartphone as a wearable and wireless inertial sensor platform in conjunction with machine learning has 
also been demonstrated to differentiate various knee joint orientations that influence the ability to dorsif-
lex the ankle and the influence of ankle stretching duration [5, 6]. The implications of these preliminary 
research achievements suggest that the amalgamation of wearable and wireless inertial sensor systems, 
such as enabled by the smartphone, and machine learning classification can determine the efficacy of a 
long-term hemiplegic ankle rehabilitation regimen over a longitudinal span, such as one year. 

An advantage of the gyroscope signal acquired through an inertial sensor is the ability to record the 
quantified data in a manner suitable for historic retention [1-7]. The ramification is the ability to contrast 
gyroscope signal data regarding ankle dorsiflexion while engaging in a therapy regimen for rehabilitation 
of the hemiplegic ankle. The gyroscope signal data can then be post-processed to a feature set for machine 
learning for distinguishing between the initial state of the rehabilitation endeavor and resultant effect in an 
longitudinal context, such as after one year of conducting the therapy regimen. Also, an assortment of 
machine learning algorithms are recommended for consideration, in order to determine the machine 
learning algorithm that provides the best performance, such as in terms of classification accuracy and time 
to compose the machine learning model. Therefore, the research objective is to ascertain the ability of an 
assortment of machine learning algorithms to distinguish between the initial phase and final phase after 
one year of a hemiplegic ankle rehabilitation therapy regimen using the quantified gyroscope signal data 
acquired through a smartphone functioning as a wearable and wireless inertial sensor system platform. 

2. BACKGROUND 
2.1. Significance of Dorsiflexion during Gait 

The ability to dorsiflex the ankle serves as an influential role for the quality of gait. The musculature 
that enables dorsiflexion is the tibialis anterior, and antagonist musculature are the gastrocnemius and so-
leus. Ankle dorsiflexion facilitates the smooth procedure of gait swing phase while mitigating adverse con-
tact with the ground. Transition to initiating stance phase of gait through preliminary contact of the heel 
requires sufficient dorsiflexion. Additionally, during a subphase of stance the dorsiflexion musculature un-
dergoes eccentric contraction in order to mitigate foot-slap, which from a long term perspective, can in-
duce morbidities associated with gait [8, 9]. 

2.2. Influence of Hemiparesis on Dorsiflexion and Gait 

With respect to hemiparesis the affected ankle displays impairment to the ankle’s ability to dorsiflex 
with the antagonist plantar flexors predominating and even adversely impacting range of motion. Hemip-
legic gait characteristically associates with foot drop, which can adversely impact swing phase, the initia-
tion of stance, and the sub-phases of stance [8, 10-15]. The predominance of the plantar flexors can be at-
tenuated through the prescription of an ankle stretching intervention, such as through a wedge board to 
stretch the plantar flexor musculature [5, 16, 17]. 

2.3. Rehabilitation of the Hemiplegic Affected Ankle 

In addition to stretching of the plantar flexor musculature, the strengthening of the dorsiflexion 
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musculature can potentially further benefit the rehabilitation process of the hemiplegic affected ankle. The 
application of numerous dorsiflexion cycles of the hemiplegic affected ankle promotes a means of streng-
thening the ankle dorsiflexion musculature [18]. The ability to dorsiflex the ankle, especially with regards 
to a hemiplegic ankle, is dependent on multiple factors, such as knee joint angle and associated ankle stret-
ching duration [5, 6, 16, 17, 19]. 

The gastrocnemius, which contributes to plantar flexion, has an origin at the lateral and medial con-
dyles of the femur [9]. The implication is the knee joint angle influences the characteristics of the gastroc-
nemius, such as the amount of stretch, which impacts the ability to dorsiflex the associated ankle [6, 9, 19]. 
With respect to the evaluation of hemiplegic ankle rehabilitation in terms of the ability to dorsiflex the 
hemiplegic affected ankle, a recommendation would be to evaluate the quality of dorsiflexion with the 
constraint of applying the relatively same knee joint angle. For example, an angle between the femur and 
tibia, such as 120 degrees, could be applied during the evaluation of the hemiplegic affected ankle dorsif-
lexion for a longitudinal evaluation of the efficacy of a hemiplegic ankle rehabilitation therapy regimen.  

Another variable that influences the ability to dorsiflex the ankle is the duration of stretching the 
plantar flexor musculature through a wedge board prior to dorsiflexing the ankle [5, 16, 17]. The duration 
of stretching the ankle has been demonstrated to influence the ability of a hemiplegic ankle to dorsiflex [5]. 
For example, consistently first stretching the ankle through a wedge board, such as for a 15 minute dura-
tion at a 30 degree angle, would likely provide a benefit to rehabilitation of a hemiplegic affected ankle 
through a series of dorsiflexion cycles as a prescribed therapy regimen. 

2.4. Wearable and Wireless Systems for Movement Quantification 

LeMoyne and Mastroianni have implemented numerous applications for wearable and wireless sys-
tems for the domain of healthcare from a proof of concept perspective [1-7, 13, 20, 21]. In particular, many 
of these applications have featured the smartphone as a wearable and wireless system for the quantification 
of health status. The smartphone is equipped with an inertial sensor package that consists of an accelero-
meter and gyroscope. The gyroscope signal data has been deemed as highly representative for clinical 
purposes, since the gyroscope signal provides a quantified perspective of a joint’s rotational attributes [1-7, 
20, 21].  

Preliminarily, LeMoyne et al. developed an ankle rehabilitation system that relied upon a 3D printed 
foot plate with a rotational joint connected to 3D printed brackets. A smartphone was mounted to the foot 
plate to quantify the ability to dorsiflex the ankle. The smartphone was equipped with a software applica-
tion that enabled the recording of the gyroscope signal. The signal data was then transmitted wirelessly as 
an email attachment with the email account serving as a provisional Cloud computing resource. The signal 
data was post-processed for machine learning classification using the Waikato Environment for Know-
ledge Analysis (WEKA), and considerable classification accuracy was attained [20]. 

In light of the implications of the preliminary ankle rehabilitation system equipped with a smart-
phone functioning as a wireless inertial sensor signal platform, notable opportunity for improvement was 
apparent. The primary issue was 3D printed aspects of the system, which were susceptible to damage. Ad-
ditionally, the securing of the foot to the 3D printed foot plate was an awkward process, especially in con-
sideration of the risk of breaking the 3D printed foot plate and brackets.  

Generally, the smartphone functioning as a wearable and wireless system for the quantification of 
human movement, such as gait and reflex response, involved mounting the smartphone through an elastic 
band, such as through a sock [1, 2]. During 2016 LeMoyne and Mastroianni utilized an armband intended 
for securing the smartphone to the arm for mounting the smartphone as a wearable and wireless inertial 
sensor system near the wrist for quantifying reduced arm swing for hemiplegic gait [21]. The strategy of 
using the equivalence of the elastic band for mounting a smartphone through an armband also was dem-
onstrated for the quantification of various dorsiflexion activities regarding the characteristics of ankle dor-
siflexion, such as for conditions influencing hemiplegic ankle dorsiflexion and contrast to the associated 
unaffected ankle [4-6]. 
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2.5. Machine Learning in Conjunction with Wearable and Wireless Systems 

Machine learning has been demonstrated for the distinction of hemiplegic ankle dorsiflexion relative 
to the unaffected ankle and also for an assortment of conditions that influence the ability to dorsiflex the 
hemiplegic affected ankle, such as based on knee joint orientation and ankle stretch duration. These ma-
chine learning endeavors featured the smartphone as a functional wearable and wireless inertial sensor 
platform for quantifying ankle dorsiflexion through the available gyroscope signal [4-6, 20]. The Waikato 
Environment for Knowledge Analysis (WEKA) provides an assortment of machine learning algorithms: 
 K-nearest neighbors  
 Random forest  
 Support vector machine 
 Logistic regression 
 Naïve Bayes 
 Multilayer perceptron neural network [22-24] 

The evaluation of multiple machine learning algorithms is recommended in order to ascertain the 
performance characteristics of each algorithm. Machine learning algorithm performance can be estab-
lished in terms of both classification accuracy and time to develop the machine learning model. 

3. MATERIALS AND METHODS 
The research objective was realized through a single subject with chronic hemiparesis from the pers-

pective of engineering proof of concept. The Waikato Environment for Knowledge Analysis (WEKA) 
served as the machine learning platform to enable the respective machine learning algorithms, and tenfold 
cross validation was incorporated [22-24]. A long term therapy regimen was applied in a longitudinal one 
year context. Additionally, an experimental protocol was conducted upon the initial phase and final phase 
after one year of the longitudinal therapy regimen. 

3.1. Longitudinal Ankle Rehabilitation Therapy Regimen 

A therapy regimen was applied with the desire of improving the functionality of the hemiplegic ankle. 
The role of first stretching the hemiplegic ankle for an extended duration constitutes a benefit to the ki-
nematic properties of the hemiplegic ankle [5, 16, 17]. Lifting and lowering the ankle multiple times 
represents a viable therapy strategy [18]. Therefore, the therapy regimen incorporated an extended stretch 
using a wedge board followed by numerous repetitions of raising and lowering the foot of the hemiplegic 
ankle, based on the following procedure: 

1) Stretch the hemiplegic ankle on a wedge board set to approximately 30 degrees for a duration on 
the order of a minimum of 15 minutes. 

2) From a sitting position raise and lower the foot of the hemiplegic ankle on the order of 1000 times. 

3.2. Experimental Protocol for Acquiring the Longitudinal Phases of the Therapy Regimen 

The experimental protocol obtained gyroscope signal data from the initial phase and final phase after 
one year of the therapy regimen. The gyroscope signal data was recorded by means of an application for a 
smartphone equipped with a gyroscope sensor. The gyroscope signal has been demonstrated as highly ro-
bust for the acquisition of clinically representative kinematic data for measuring human movement [1-7, 
20, 21]. The application recorded the gyroscope signal data at a sampling rate of 100 Hz. The recorded gy-
roscope signal data was wirelessly transmitted as an email attachment to an email account that represented 
a provisional Cloud computing resource.  

The gyroscope signal data was post-processed to an Attribute-Relation File Format (ARFF) suitable 
for WEKA by automation software enabled by Python. The Python automation software consolidated the 
gyroscope signal data to numeric attributes. These five numeric attributes that have been previously ap-
plied for machine learning classification of ankle kinematic properties based on inertial sensor data: 
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 Maximum of the gyroscope signal data  
 Minimum of the gyroscope signal data  
 Mean of the gyroscope signal data  
 Standard deviation of the gyroscope signal data  
 Coefficient of variation of the gyroscope signal data [1-7, 20] 

A combined total of 60 instances were obtained that encompassed both the initial phase and final 
phase after one year of the longitudinally applied therapy regimen. The initial phase of the longitudinal 
study consisted of three days of recording in conjunction with a 10 second window. Likewise, the final 
phase after one year of the longitudinal study was comprised of three days of recording in conjunction 
with a 10 second window. 

The following experimental protocol was applied for obtaining the kinematic characteristics of the 
hemiplegic ankle, respective of the initial phase and one year phase of the prescribed therapy regimen: 

1) Enclose the smartphone within an armband and secure the armband about the hemiplegic foot in a 
manner such that the smartphone is positioned about the dorsum of the foot and representative of Figure 
1.  

2) Align the knee joint in a manner such that the angle between the femur and tibia is approximately 
120 degrees.  

3) Activate the smartphone application in order to record the gyroscope signal. 
4) Continually raise and lower the foot of the hemiplegic ankle until the completion of the gyroscope 

signal recording from the smartphone application.  
5) Using the smartphone’s wireless connectivity to the Internet, email the gyroscope signal data as an 

attachment to an email account functioning as a provisional Cloud computing resource.  

4. RESULTS AND DISCUSSION 
The smartphone equipped with an application to serve as a functional wearable and wireless gyros-

cope platform provides a uniquely suitable system for ascertaining the efficacy of a therapy regimen, such 
as for the improvement of kinematic characteristics of a hemiplegic ankle [4-6, 20]. Other systems for 
quantifying the kinematic properties through gyroscope sensor measurement exist, such as a conformal 
wearable capable of acquiring FDA certified medical grade data. However, the more sophisticated confor-
mal wearable requires a relatively more advanced level of expertise for operation [7]. By contrast, the 
smartphone application is equipped with a user friendly graphic user interface, which is intuitively logical 
to operate and readily accessible [1-6, 20, 21]. 

The post-processing of the gyroscope signal data reveals a notable increase in kinematic range for the 
hemiplegic ankle with regards to the initial phase compared to the one year phase, for which the rehabilitation  
 

 
Figure 1. Illustration of the mounting procedure for the smartphone representing a wearable and 
wireless gyroscope platform about the dorsum of the foot and supported by an armband. 
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therapy regimen has been prescribed. Figure 2 presents the kinematic conditions of the hemiplegic ankle 
in the context of the initial phase. After one year of persistent implementation of the prescribed rehabilita-
tion therapy regimen considerable improvement of the kinematic attributes of the hemiplegic ankle are 
illustrated in Figure 3. Figure 2 and Figure 3 are perceptibly distinguishable. With the consolidation of 
the gyroscope signal data to five numeric attributes for an ARFF file, the perceptible distinction of the vi-
sualization inferred by Figure 2 and Figure 3 can be distilled to machine learning classification accuracy 
established by numerous instances of the initial phase and one year final phase. 

In addition to machine learning classification accuracy, which represents the quantity of correctly clas-
sified instances relative to the total number of instances, the time to compose the machine learning model 
constitutes another significant performance parameter. Machine learning classification accuracy represents 
the primary performance parameter, and the time to develop the machine learning model serves as the 
performance parameter of secondary significance. Through WEKA six machine learning algorithms are 
evaluated in terms of the performance parameters: 
 K-nearest neighbors  
 Random forest  
 Support vector machine 
 Logistic regression 
 Naïve Bayes 
 Multilayer perceptron neural network [22-24] 

Prior to full consideration of the machine learning algorithms’ performance capability, the multilayer 
perceptron neural network presents a visualized machine learning algorithm. The multilayer perceptron 
neural network for this machine learning classification endeavor is featured in Figure 4. This multilayer 
perceptron neural network consists of five input layer nodes based on the five numeric attributes, three 
hidden layer nodes, and two output layer nodes based on the two respective classes (initial phase and final 
phase after one year) for the longitudinal study. 

The six selected machine learning algorithms are contrasted in terms of their classification accuracy 
as represented in Figure 5. Additionally, the time to compose the machine learning models for the six se-
lected machine learning algorithms are presented in Figure 6. Based on consideration of Figure 5 and 
Figure 6 the support vector machine achieves the optimal machine learning classification accuracy with a 
classification accuracy of 96.7%, and the support vector machine requires 0.04 seconds to be composed. 
The naïve Bayes is developed in less than 0.01 seconds with a 95% classification accuracy. 
 

 
Figure 2. Initial phase assessment of the kinematic characteristics of the hemiplegic ankle quantified 
by a smartphone functioning as a wearable and wireless gyroscope platform. 
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Figure 3. One year final phase assessment of the kinematic characteristics of the hemiplegic ankle 
after a prescribed rehabilitation therapy regimen. The gyroscope signal data is acquired through a 
smartphone serving as a wearable and wireless gyroscope platform. Note the considerable amplifi-
cation of gyroscope signal kinematic characteristics subsequent to the one year adherence to the 
prescribed rehabilitation therapy regimen. 
 

 
Figure 4. Multilayer perceptron neural network for distinguishing between the initial phase and final 
phase after one year of a longitudinal application of a therapy regimen. 
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Figure 5. The classification accuracy respective of the six selected machine learning algorithms 
(K-nearest neighbors, random forest, support vector machine, logistic regression, naïve Bayes, and 
multilayer perceptron neural network) for the differentiation of the preliminary initial phase and 
final phase after one year of the longitudinally applied therapy regimen. 
 

 
Figure 6. The time to develop the machine learning models respective of the six selected machine 
learning algorithms (K-nearest neighbors, random forest, support vector machine, logistic regres-
sion, naïve Bayes, and multilayer perceptron neural network) for the distinction of the preliminary 
initial phase and final phase after one year of the longitudinally applied therapy regimen. The naïve 
Bayes machine learning model is developed within less than 0.01 seconds. 

https://doi.org/10.4236/jbise.2023.169009


 

 

https://doi.org/10.4236/jbise.2023.169009 129 J. Biomedical Science and Engineering 
 

Based on the prioritization of the performance parameters the support vector machine achieves the 
optimal overall performance. Depending on whether the machine learning classification is conducted at a 
Cloud computing environment or in proximity to the sensor level, the significance of the machine learning 
algorithms time to develop the model and classification accuracy may vary according to system level re-
quirements. For example, with respect to an architecture that features machine learning classification uti-
lizing Cloud computing resources with considerable processing capabilities, classification accuracy pre-
dominates the time to develop the machine learning model, for which the support vector machine pro-
vides the most preferable machine learning algorithm.  

However, there are scenarios that imply restricted processing power requirements. In consideration 
of limited processing resources proximal to the sensor level, the time to develop the machine learning 
model constitutes a parameter of increasing significance. In the event of highly limited processing capabil-
ity the naïve Bayes machine learning algorithm may prove to be more desirable if the associated classifica-
tion accuracy is deemed sufficient. 

Based on the present findings this application of a smartphone as a functional gyroscope platform 
and machine learning algorithms to ascertain the distinguishable efficacy of a therapy regimen, there are 
multiple observations for improvement. The application that enables the gyroscope signal recording 
through the smartphone is a subject of continuous improvement for accommodating the user. Additional-
ly, remote activation of the respective smartphone application, such as through a locally situated tablet, 
may serve to facilitate the ability of the subject to minimize movement prior to the activation of the re-
spective smartphone application.  

Other machine learning algorithms should be considered. For example, deep learning by means of the 
convolutional neural network, is representative of the visual cortex from a conceptual perspective [25]. 
Rather than relying on a prescribed feature set consisting of numeric attributes, deep learning utilizes the 
original signal data, which has been successfully demonstrated for classifying movement disorder status 
using inertial sensor signal data [25, 26]. 

5. CONCLUSION 
In summary, the research achievement advocates the benefit of utilizing wearable and wireless sys-

tems, such as enabled by a smartphone, for visualizing inertial sensor signal data in conjunction with ma-
chine learning classification. Considerable classification accuracy is attained for distinguishing the initial 
phase and final phase of a therapy regimen through an assortment of machine learning algorithms. The 
therapy regimen incorporated a minimum of 15 minutes of stretching the hemiplegic ankle followed by a 
series of approximately 1000 repetitions of raising and lowering the foot of the hemiplegic ankle. During 
the initial phase and final phase after a one year longitudinal application of the therapy regimen a smart-
phone functioning as a wearable and wireless gyroscope platform recorded the ability of the hemiplegic 
ankle to raise and lower the foot of the hemiplegic ankle for a 10 second window for three days of each 
phase. The gyroscope signal data was consolidated to a series of numeric attributes for machine learning 
evaluation. The primary performance parameter was established as the classification accuracy, and the 
time to develop the machine learning model constituted the secondary performance parameter. The sup-
port vector machine was determined to provide the greatest classification accuracy while developing the 
model within a brisk timeframe. However, naïve Bayes machine learning algorithm displayed the fastest 
time to compose the machine learning model while achieving sufficient classification accuracy. Additional 
machine algorithms are warranted for consideration, such as deep learning. These achievements establish 
a pathway toward the development of patient-specific and optimized rehabilitation.  
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