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ABSTRACT 
In this paper, we follow up with our preliminary biological studies that showed that Re-
peated electromagnetic field stimulation (REMFS) decreased the toxic amyloid-beta (Aβ) 
levels, which is considered to be the cause of Alzheimer’s disease (AD). The REMFS para-
meters of these exposures were a frequency of 64 MHz and a Specific absorption rate (SAR) 
of 0.4 to 0.9 W/Kg in primary human neuronal cultures. In this work, an electromagnetic 
field (EMF) model was simulated using high-frequency simulation system (HFSS/EMPro) 
software. Our goal was to achieve the EM parameters (EMF Frequency and SAR) required to 
decrease the toxic Aβ levels in our biological studies in a simulated human head. The simu-
lations performed here will potentially lead to the successful development of an exposure 
system to treat Alzheimer’s disease patients. A popular VFH (very high frequency) patch 
microstrip antenna system was considered in the study. The selection was based on simple 
and easy construction and appropriateness to the VHF applications. The evaluation of the 
SAR and temperature distribution on the various head layers, including skin, fat, dura, the 
cerebrospinal (CSF), and grey matter, brain tissues, were determined for efficacy SAR and 
safety temperature increase on a simulated human head. Based on a current pulse of 1 A 
peak current fed to the antenna feeder, a maximum SAR of 0.6 W/Kg was achieved. A range 
of 0.4 to 0.6 SAR was observed over the various layers of the simulated human head. The 
initial design of the antenna indicated an antenna size in the order of 1 m in length and 
width, suggesting a stationary practical model for AD therapy. Future direction is given for 
wearable antenna and exposure system, featuring high efficiency and patient comfort. 
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1. INTRODUCTION 
Alzheimer’s disease (AD) had been spreading worldwide with little development in treatment. The 

number of people living with Alzheimer’s disease (AD) and other dementias worldwide was estimated at 
46 million in 2015, with an estimated prevalence reaching 131 million in 2050 [1]. Research efforts to slow 
down, or stop the disease, will potentially impact the healthcare system and the global economy. AD is a 
complex and heterogeneous disorder. The drugs approved by the U.S. Food and Drug Administration 
(FDA) for the treatment of AD do not stop the progression of the disease [2]. Research efforts have also 
examined strategies with antibody treatment against Aβ and alternative modalities to slow down the dis-
ease progress [3, 4]. Given the poor tolerability of pharmaceuticals in the treatment of AD, there is a 
growing interest to explore other potential noninvasive mechanisms including EMF exposures. A recent 
clinical trial of electromagnetic exposure (915 MHz) to AD patients found no significant side effects or 
physiologic changes [5]. Active research in the use of noninvasive brain stimulation as a potential therapy 
for AD has included several pilot studies and small clinical trials that have highlighted the potential for 
neuroenhancement and improvement in cognitive function in healthy individuals via noninvasive brain 
stimulation (NBS) [6]. Mechanism of action, efficacy, and reproducibility [7-9] were issues to be further 
addressed in future research. The EMF clinical trial mentioned above used 915 MHz with a high frequency 
is probably not effective in the sense that radiation does not reach important deep tissues of a human head 
(only 3 to 4 cm tissue penetration depth). In our proposed efforts in this study, we explore the use of re-
peated electromagnetic field stimulation (REFMS), as a non-invasive potential strategy to lower the Aβ 
peptide load observed in AD. REMFS uses a non-thermal mechanism to produce biological effects, this 
occurs at the molecular level and involves multitarget interactions between signaling pathways [10, 11]. 
Computer simulations for EMF exposures at a frequency of 64 MHz and a SAR of 0.4 - 0.9 W/Kg may es-
tablish a framework for safe human exposure [12-14]. Overall efforts to develop noninvasive therapeutic 
strategies point to the development of portable devices for AD treatment. 

In this research work, the repeated electromagnetic field stimulation (REMFS) was found to be de-
creasing the toxic amyloid-beta (Aβ) levels [15], which is considered to be the cause of Alzheimer’s disease 
(AD). HFSS was utilized to obtain the antenna parameters and the field distribution following the prelim-
inary results reported in [15].  

2. THE FIELD MODEL  
The following field equations that are combined to determine the field distribution and the SAR val-

ues are given by Maxwell’s equations combined with the heat equations over the various boundaries of the 
human head tissues. The solutions of the following equations via HFFS/EMPro give the field and SAR dis-
tribution over the human head tissues.  

jωµ∇× =E H                                    (1) 

jωε∇× = −H E                                   (2) 

0∇ ⋅ =E                                      (3) 

0∇ ⋅ =H                                      (4) 
where E is the electric field, H is the magnetic field, ω is the radian frequency, μ is the mobility, and ε is the 
permittivity of the material. 

With the lossy media, considering the conductivity, σ, the power equation is given as [16, 17]: 
2

02vP f Eε ε ′′π=                                    (5) 

The average power as function of the electric field, E, in lossy media is given by: 
20.5 davP E vσ= ∫                                   (6) 

where dv is the differential volume.  
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The dielectric loss in a material due to electric conductivity is given by: 

02 fε σ ε′ = π′                                      (7) 
The microwave dissipated power term is considered as the source term in Fourier heat transfer equa-

tion [18]: 

( )2 , , ,p vC T t k T P x y z tρ ∂ ∂ = ∇ +                              (8) 

where ρ is the mass density, and Cp is the specific heat capacity. 
The SAR may be evaluated by the equation: 

( ) 2SAR 2σ ρ= E                                   (9) 

The change in thermal energy/temperature change is given by: 

pq mC T= ∇                                     (10) 

The SAR is then can be calculated by SAR pC T t∆ = ∆ ∆ , where ΔT is the change in temperature re-
lated to change in SAR by a value of ΔSAR over time Δt. 

3. ANTENNA STRUCTURE 
Based on the 64 MHz radiation pattern, the dimensions of the patch antenna are given in the range of 

1.07 m × 1.38 m. The Matlab estimation is based on the following equations:  
The width of the patch, w, is given by [19]: 

0 2
2 1r reff

vW
f ε

=
+

                               (11) 

where v0 = speed of light, and fr is the desired frequency. The effective dielectric constant is given by [18]:  
0.5
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2 2
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r eff
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−+ −  = + + 
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where rε  = dielectric constant of the substrate;  
,r effε  = effective dielectric constant: , .1 r eff rε ε<<  

The extension length, ΔL, is given by: 
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where h = height of the dielectric substrate.  
The length of the patch, L, and the notch width, g, are given by: 

0

,

2
2 r r eff

vL L
f ε

= − ∆                               (14) 

12
0 4.65 10

2 eff

vg
fε

−×
=                              (15) 

The inset feed depth, Fi is given by: 

(
)
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3 2
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The feed line width, Wf, is given by: 

( )
( )

2
8e , 2

2e 2
ln 1 0.39

2 12 1 ln 2 1 , 2,0.612 2
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              (17) 

where A & B are defined as: 

0

1
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0

377
2 r

B
Z ε

π
=                                     (19) 

where Z0 = characteristic impedance, and Zin = input impedance. 
The data given are: 0.01h = , 64 MHzrf = , 0 50Z = Ω , and 4.8.rε =  

4. SIMULATION RESULTS  
HFSS/EMPro was used in the estimation of the scattering S11 parameter, the Antenna SAR distribu-

tion with and without brain tissues, the E field, and SAR at the various layers of the simulated human 
head. The antenna device was estimated for a 64 MHz homogeneous pattern and 0.6 SAR in the brain si-
mulation. Figure 1 gives the patch antenna structure. The scattering S11 parameter is given in Figure 2, 
and the current pulse that fed the antenna is given in Figure 3.  
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Figure 1. The patch antenna structure.  
 

 

Figure 2. S11 parameter indicating radiation at 64 MHZ with −20 dbs magnitude. 
 

 

Figure 3. The current pulse applied to the antenna feed to produce the 0.6 SAR required SAR. 
 

The antenna E-field is given in Figure 4. With maximum field given in the x-direction reaching the 
simulated brain. The SAR distribution in the XY plane and the XZ plane are given in Figure 5(a) and 
Figure 5(b) respectively. As it can be seen the SAR ranges from 0.2 to 0.9 in the simulated brain tissue. 
The SAR value decreased as the power radiated decreased from the brain tissue out towards the skin. The 
SAR value was higher before the power was absorbed by the human head. Figure 6 shows that the simu-
lated antenna provides SAR values that range from 2 to 9 W/kg before simulated human head absorbs the 
EMF energy.  
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Figure 4. The E field distribution from the feed region at x = 0 till Emax of 8.5 V/m.  
 

 
(a) 
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(b) 

Figure 5. The SAR distribution: (a) in the XY plane, and (b) in the XZ plane. SAR values within tis-
sues 0.2 to 0.9 SAR. 
 

 

Figure 6. The SAR value generated by the antenna before application in the simulated brain tissue.  
 
The 64 MHZ radiating frequency was appropriate for the penetration depth needed to reach multiple 

layers until the brain tissue. With enough penetration depth, the current need to drive the antenna and to 
reach the required power is reasonably well. As it can be seen, the input power is sufficient to reach the 
required SAR. The 64 HMz is also appropriate for the medical applications since it is the same frequency 
used for the MRI imaging. The data with the big size patch antenna suggests a stationary practical model 
for the EMP device Alzheimer treatment. The matching impedance from the feeder to the antenna should 
be considered in order to optimize the power transmission into the head phantom.  
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(a) The antenna structure 

 
(b) The E field distribution 

Figure 7. Future proposed antenna for wearable device system, (a) the antenna structure, and (b) the 
field distribution.  
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Figure 8. Proposed head phantom simulation with detailed anatomic layers for enhancing SAR re-
sults. 

5. CONCLUSION AND FUTURE WORK 
In this work, we successfully used HFSS in estimating the SAR values at the various tissues of a simu-

lated human head with a simple strip antenna. The size of the antenna was found to be in the meter range, 
suggesting a stationary EMR system to be used for AD therapy. A meander line antenna [20] may be a po-
tential candidate for miniaturizing an antenna system in order to achieve a wearable comfortable system 
with manageable wearable devices. Figure 7 gives a proposed antenna for wearable device system in the 
helmet form. The system was initially simulated and the field distribution was given in Figure 7(b). The 
details of this antenna wearable system are reserved for future considerations.  

An accurate human model is essential in wearable antenna design. The accuracy of the simulation 
may be enhanced by the Zubal anthropomorphic phantom where original X-ray CT images were recon-
structed [21]. Figure 8 shows the head phantom under consideration for future work. Also, the accuracy 
of the simulation for individual patients can be enhanced using Digital Imaging and Communication in 
Medicine (DICOM) based anthropomorphic phantom voxel data [22]. 
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