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ABSTRACT 
The quantification of gait is uniquely facilitated through the conformal wearable and wire-
less inertial sensor system, which consists of a profile comparable to a bandage. These 
attributes advance the ability to quantify hemiplegic gait in consideration of the hemiplegic 
affected leg and unaffected leg. The recorded inertial sensor data, which is inclusive of the 
gyroscope signal, can be readily transmitted by wireless means to a secure Cloud. Incorpo-
rating Python to automate the post-processing of the gyroscope signal data can enable the 
development of a feature set suitable for a machine learning platform, such as the Waikato 
Environment for Knowledge Analysis (WEKA). An assortment of machine learning algo-
rithms, such as the multilayer perceptron neural network, J48 decision tree, random forest, 
K-nearest neighbors, logistic regression, and naïve Bayes, were evaluated in terms of classi-
fication accuracy and time to develop the machine learning model. The K-nearest neighbors 
achieved optimal performance based on classification accuracy achieved for differentiating 
between the hemiplegic affected leg and unaffected leg for gait and the time to establish the 
machine learning model. The achievements of this research endeavor demonstrate the util-
ity of amalgamating the conformal wearable and wireless inertial sensor with machine 
learning algorithms for distinguishing the hemiplegic affected leg and unaffected leg during 
gait. 
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1. INTRODUCTION 
The opportunity to quantify gait patterns is an inherent aspect for the feedback of rehabilitation effi-

cacy. However, traditional gait analysis apparatus for quantifying gait characteristics is generally reserved 
for a clinical gait laboratory [1-4]. The development of wearable and wireless systems that incorporate in-
ertial sensors enables the ability to quantify gait at the convenience of a setting of the subject’s preference 
[1, 3, 5-12].  

The evolutionary pathway of wearable and wireless inertial sensor systems has transitioned from lo-
cally dependent wireless connectivity to connectivity with the Internet through email using a smartphone 
or a portable media device [1, 3, 5-13]. The amalgamation of machine learning with wearable and wireless 
inertial sensor systems enables the ability to distinguish between various scenarios, such as hemiplegic gait 
for the affected leg contrasted to the unaffected leg [1, 7-11, 14]. 

The next evolutionary phase involves the development of the conformal wearable and wireless inertial 
sensor system, such as the BioStamp nPoint. The BioStamp nPoint is applied to any aspect of the human 
anatomy through an adhesive medium, and the profile is on the order of a bandage. The acquired inertial 
sensor signal data can be wirelessly transmitted to a secure Cloud. Additionally, the BioStamp nPoint has 
achieved FDA 510(k) certification for the acquisition of medical grade data of clinical quality [11, 15]. The 
objective of the research endeavor was to differentiate between an affected leg and an unaffected leg for 
hemiplegic gait using the conformal wearable and wireless inertial sensor system provided by the BioS-
tamp nPoint and an assortment of machine learning algorithms, such as the multilayer perceptron neural 
network, J48 decision tree, random forest, K-nearest neighbors, logistic regression, and naïve Bayes. The 
performance of these machine learning algorithms was evaluated in the context of the classification accu-
racy achieved to differentiate the affected leg and unaffected leg respective of hemiplegic gait and the time 
to develop the machine learning model. 

2. BACKGROUND 
2.1. Gait and the Effect of Traumatic Brain Injury 

Characteristically healthy gait involves rhythmic transition between alternating phases, such as stance 
and swing [4, 16, 17]. The neurological basis for the highly coordinated process of gait derives from inter-
neuronal, subcortical, and cortical aspects of the neuroanatomy [4, 16, 18]. The motor regulation of gait 
can be disrupted by traumatic brain injury [17]. 

For example, traumatic brain injury inducing hemiplegia can cause spastic movement disorder, which 
leads to impairment of gait [4, 5, 16, 19-21]. This development can lead to non-optimal motor strategies 
for gait. Mass extension and mass flexion primitive locomotion patterns can manifest [17]. Compensatory 
gait strategies can involve vaulting and circumduction [4, 19]. Wearable and wireless inertial sensor sys-
tems have been proposed for the quantification and determination of rehabilitation efficacy for the resto-
ration of gait to more optimal functionality [1, 3, 5-11]. 

2.2. Evolutionary Pathway to Conformal Wearable and Wireless Inertial Sensor Systems 

Preliminary inertial sensor systems were successfully applied for the analysis of gait in alignment with 
the progressive evolution of inertial sensor systems for disparate industries with considerable manufac-
turing economies of scale [3, 5]. The integral evolution with wireless systems rendered tethering tech-
niques obsolete [22]. Effectively wearable and wireless inertial sensor systems, such as enabled through 
accelerometers, identified hemiplegic gait disparity of the affected leg contrasted to the unaffected leg in a 
quantified context, and also enabled real-time modification of the hemiplegic affected leg to a more re-
semblant acceleration waveform of the unaffected leg [19, 20, 23-25]. The next progressive evolution of 
wearable and wireless inertial sensor systems for gait quantification and analysis incorporated the smart-
phone and portable media device [1, 6-11, 13]. 

During 2010 LeMoyne and Mastroianni demonstrated the notable utility of incorporating a smart-
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phone as a functionally wearable and wireless inertial sensor system for quantifying gait [26-28]. A notable 
feature of the smartphone as a functional wearable and wireless inertial sensor system is the observation 
that the experimentation site and location for post-processing the trial data can be remotely situated any-
where in the world. The trial data can be wirelessly conveyed to the Internet as an email attachment [1, 
6-10, 13].  

The portable media device possesses functional resemblance to the smartphone with the requirement 
of a local wireless zone for wireless Internet connectivity. During 2011 LeMoyne and Mastroianni suc-
cessful tested and evaluated the portable media device for quantifying gait status [29]. With two portable 
media devices mounted to the hemiplegic affected leg and unaffected leg the quantified disparity of he-
miplegic gait was successfully identified [30]. 

In order to utilize the smartphone as a functionally wearable and wireless inertial sensor system for 
quantifying and comparing hemiplegic gait, a treadmill was incorporated to maintain constant gait veloci-
ty. Using one smartphone the hemiplegic affected leg would be quantified in terms of the accelerometer 
signal, and the unaffected leg would be quantified in terms of the accelerometer signal with the same 
treadmill speed. Using the accelerometer signal the smartphone identified notable quantified disparity 
between the hemiplegic affected leg and unaffected leg [31].  

With a similar approach of incorporating a treadmill with constant speed and a single smartphone, 
the gyroscope signal was measured for hemiplegic gait. During this experiment, the multilayer perceptron 
neural network was applied as the machine learning classification algorithm [32]. The development of 
conformal wearable and wireless inertial sensor systems constitutes a considerable advance relative to 
standard wearable and wireless inertial sensor systems [11]. 

The state of the art conformal wearable and wireless inertial sensor system is represented by the Bi-
oStamp nPoint. The BioStamp nPoint has a profile on the order of a bandage with a mass less than ten 
grams. The device utilizes wireless connectivity to a tablet and smartphone for operation, and the recorded 
accelerometer and gyroscope data is conveyed wirelessly to a secure Cloud for subsequent post-processing 
[11, 15]. The apparatus for operating the BioStamp nPoint is presented in Figure 1. 

The research objective was to utilize the BioStamp nPoint as a conformal wearable and wireless iner-
tial sensor system for the quantification of hemiplegic gait using an assortment of machine learning algo-
rithms, such as the multilayer perceptron neural network, J48 decision tree, random forest, K-nearest 
neighbors, logistic regression, and naïve Bayes, to distinguish between the hemiplegic affected leg and un-
affected leg. With the experimental gait data downloaded from the secure Cloud the inertial signal data 
can be post-processed using Python as automation software and consolidated into a feature set suitable for 
machine learning classification. The Waikato Environment for Knowledge Analysis (WEKA) provides the 
machine learning platform for applying the assortment of machine learning algorithms to distinguish he-
miplegic gait. 

3. MATERIALS AND METHODS 
Preliminary testing and evaluation of the BioStamp nPoint for gait analysis was conducted from the 

perspective of engineering proof of concept for one subject with chronic hemiparesis. Given the conformal 
features of the BioStamp nPoint as a wearable and wireless inertial sensor system, the mounting of the de-
vice was about the distal aspect of the femur relative to the hip joint for both the affected leg and unaf-
fected leg superior to the patella as illustrated in Figure 2. Since the BioStamp nPoint has a profile compa-
rable to that of a bandage, the wearable and wireless inertial sensor nodes secure to the thigh in a highly 
non-intrusive manner.  

The gyroscope signal has been observed as providing a clinically representative interpretation of hu-
man movement about a jointed system [32-34]. The gyroscope signal of the BioStamp nPoint was selected 
as the inertial sensor signal of interest. In particular, given the orientation of the BioStamp nPoint about 
the thigh, the Y-direction of the gyroscope was considered most appropriate for characterizing the sagittal 
plane of the thighs during gait. The Y-direction gyroscope signal was the basis for composing the feature 
set for machine learning classification. The sampling rate of the BioStamp nPoint was set to 250 Hz.  
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Figure 1. The apparatus for operating the BioStamp nPoint 
consisting of the conformal wearable and wireless inertial 
sensor system, docking station, smartphone, and tablet. 

 

 
Figure 2. Mounting of the BioStamp nPoint for quantify-
ing gait about the femur distal relative to the hip joint and 
superior to the patella. 

 
The post-processing of the acquired inertial sensor signal data was achieved through Python. Python 

provided a highly automated basis for both visualizing the data and consolidating the data into numeric 
attributes for the feature set in a manner amenable for the Waikato Environment for Knowledge Analysis 
(WEKA). The following machine learning algorithms were applied: 
● multilayer perceptron neural network 
● J48 decision tree 
● random forest 
● K-nearest neighbors 
● logistic regression 
● naïve Bayes 

The machine learning procedure utilized tenfold cross-validation [35-37]. The feature set was com-
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posed of five numeric attributes from the gyroscope signal: maximum, minimum, mean, standard devia-
tion, and coefficient of variation. These numeric parameters have been successfully applied in previous 
machine learning classification endeavors involving inertial sensor signal data for measuring gait characte-
ristics [32, 38].  

The recording of hemiplegic gait through the conformal wearable and wireless inertial sensor system 
provided by the BioStamp nPoint was conducted in an indoor environment. A treadmill was utilized and 
set to a speed of 1.0 mile per hour. Subsequently, the inertial sensor signal data acquired by the BioStamp 
nPoint as a conformal wearable and wireless inertial sensor system was conveyed by wireless transmission 
to a secure Cloud for post-processing. The following experimental protocol was applied: 

1) Mount the BioStamp nPoint by adhesive medium superior to the patella and distal regarding the 
femur relative to the hip joint about the top of the thigh for both the hemiplegic affected leg and unaf-
fected leg.  

2) Initiate the treadmill to a speed of 1.0 mile per hour.  
3) Have the subject begin to walk on the treadmill. 
4) Commence the recording of BioStamp nPoint by local wireless connectivity for a duration suffi-

cient to record approximately two minutes and thirty seconds to provide thirty time slices of five seconds.  
5) Upon completion stop the recording of the BioStamp nPoint using local wireless connectivity. 
6) Wirelessly transmit the BioStamp nPoint inertial sensor signal data to the secure Cloud for 

post-processing. 

4. RESULTS AND DISCUSSION 
The BioStamp nPoint enables highly robust acquisition of gait characteristics by inertial sensor data 

in a functionally autonomous environment. Using an adhesive medium, the inertial nodes of the BioStamp 
nPoint can be conveniently worn about any aspect of the body for gait analysis. The flexible bandage-like 
profile induces minimal encumbrance to the gait cycle. After the gait experiment, the signal data can be 
readily wirelessly conveyed to a secure Cloud for post-processing anywhere in the world. 

The inertial sensor nodes of the BioStamp nPoint reveal notable quantified disparity by comparison 
of the hemiplegic affected leg relative to the unaffected leg. Figure 3 illustrates the gyroscope signal of gait 
for the unaffected leg. Figure 4 represents the gyroscope signal of gait with respect to the hemiplegic af-
fected leg. The comparison of the gyroscope signals between the hemiplegic affected leg and unaffected leg 
demonstrates impaired and less rhythmically fluid movement of the hemiplegic leg.  

An automation software program using Python was applied to consolidate the gyroscope signal data 
to an Attribute-Relation Format File (ARFF) for WEKA. The feature set consists of 30 instances for the 
hemiplegic affected leg and 30 instances for the unaffected leg. The multilayer perceptron neural network 
was one of the selected machine learning classification algorithms. Figure 5 demonstrates the multilayer 
perceptron neural network generated by WEKA for distinguishing between the hemiplegic affected leg and 
unaffected leg during hemiplegic gait. The multilayer perceptron neural network consisted of five input 
layer nodes, three hidden layers nodes, and two output layer nodes. The multilayer perceptron neural 
network achieved 98.3% classification accuracy for differentiating between the hemiplegic affected leg and 
unaffected leg. Regarding the confusion matrix one unaffected leg instance was misclassified as a hemip-
legic affected leg instance. The time to develop the machine learning algorithm lasted 0.2 seconds.  

The J48 decision tree achieves a classification accuracy of 98.3%, and the J48 decision tree was visua-
lized in Figure 6, which inferred the significance of the numeric attribute representing the minimum of 
the gyroscope signal. In terms of the confusion matrix one instance of the affected leg was misclassified as 
the unaffected leg. The J48 decision tree was developed within the span of 0.03 seconds. 

The random forest achieves a classification accuracy of 96.7%. In consideration of the confusion ma-
trix two instances were misclassified. One instance of the affected leg was misclassified as the unaffected 
leg, and one instance of the unaffected leg was misclassified as the affected leg. The random forest machine 
learning algorithm required 0.19 seconds to be developed. 
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Figure 3. Gyroscope signal acquired by the BioStamp nPoint for the unaf-
fected leg. 

 

 
Figure 4. Gyroscope signal acquired by the BioStamp nPoint for the he-
miplegic affected leg. 

 
The K-nearest neighbors machine learning algorithm established impressive performance with re-

spect to both classification accuracy and time to develop the machine learning model. The K-nearest 
neighbors machine learning algorithm attained 100% classification accuracy to distinguish between the  
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Figure 5. The multilayer perceptron neural network for distinguishing between a hemiplegic affected 
leg and unaffected leg using the gyroscope signal quantified by the BioStamp nPoint conformal 
wearable and wireless inertial sensor system. 
 

 
Figure 6. The J48 decision tree for distinguishing between a hemiplegic affected leg and unaffected 
leg using the gyroscope signal quantified by the BioStamp nPoint conformal wearable and wireless 
inertial sensor system. 
 
affected leg and unaffected leg during hemiplegic gait. Additionally, the time to develop the machine 
learning model occurred within less than 0.01 seconds. 

The logistic regression algorithm achieved 95% classification accuracy with the misclassification of 
three instances. One affected leg instance was misclassified as an unaffected leg instance, and two unaf-
fected leg instances were misclassified as affected leg instances. The machine learning model required less 
than 0.01 seconds to be established. 

The naïve Bayes machine learning algorithm attained 98.3 classification accuracy. In consideration of 
the confusion matrix one unaffected leg instance was misclassified as an affected leg instance. The time to 
develop the naïve Bayes machine learning algorithm occurred within less than 0.01 seconds. 

Deep learning algorithms are recommended for the evaluation of gait rehabilitation status, especially 
in light of the considerable increase in the amount of gait data derived from conformal wearable and wire-
less inertial sensor systems. These developments are also anticipated to develop the presence of data 
science for the optimization of gait rehabilitation strategies. Another similar themed evolution in cohe-
rence with the testing and evaluation of conformal wearable and wireless inertial sensor systems involves 
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sensor fusion to represent highly clinically discernible information regarding spatial and temporal repre-
sentation of gait [1, 39]. 

Another conceptual amalgamation is the integration of Virtual Proprioception with conformal wear-
able and wireless inertial sensor systems for modifying gait strategy respective of a real-time and auto-
nomous environment of the subject’s preference. Inertial sensor feedback could involve modifying the gait 
strategy of the affected leg to achieve a restorative semblance to the unaffected leg. Targeted limb joint re-
lationships of the leg could be specified according to the mounting position of the conformal wearable and 
wireless inertial sensor system, and quantified feedback regarding the degree of convergence for the af-
fected leg to the unaffected leg could be provided according to the optimal learning process specific to the 
patient, such as visual, auditory, and haptic methods. Applications of Virtual Proprioception have been 
achieved for real-time hemiplegic gait rehabilitation and eccentric training of the upper arm [19, 20, 40, 
41]. 

5. CONCLUSIONS 
Hemiplegic gait has been successfully distinguished through the application of the BioStamp nPoint, 

which is a conformal wearable and wireless inertial sensor system, and an assortment of machine learning 
algorithms. The BioStamp nPoint has a profile similar to that of a bandage and mounted by adhesive me-
dium to effectively any aspect of the human anatomy. Software automation, such as through Python, was 
applied to consolidate the gyroscope signal data into a feature set using descriptive statistics as numerical 
attributes. The K-nearest neighbors machine learning algorithm achieved optimal performance in terms of 
classification accuracy attained for differentiating between the hemiplegic affected leg and unaffected leg 
for gait and the time to develop the machine learning model. 

Future extrapolations of the research objective are envisioned, such as the evolution to more sophis-
ticated deep learning algorithms. The development of sensor fusion algorithms is recommended for the 
further visualization of clinically relevant parameters for gait. Real-time rehabilitation feedback tech-
niques, such as Virtual Proprioception, can enable the development of patient specific optimal motor 
strategies for gait.  
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