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ABSTRACT 
There are few EEG studies on finger movement directions because ocular artifacts also 
convey directional information, which makes it hard to separate the contribution of EEG 
from that of the ocular artifacts. To overcome this issue, we designed an experiment in 
which EEG’s temporal dynamics and spatial information are evaluated together to improve 
the performance of brain-computer interface (BCI) for classifying finger movement direc-
tions. Six volunteers participated in the study. We examined their EEG using decoding 
analyses. Independent components (ICs) that represented brain-source signals successfully 
classified the directions of the finger movements with higher rates than chance level. The 
weight analyses of the classifiers revealed that maximal performance of the classification was 
recorded at the latencies prior to the onset of finger movements. The weight analyses also 
revealed the relevant cortical areas including the right lingual, left posterior cingulate, left 
inferior temporal gyrus, and right precuneus, which indicated the involvement of the vi-
suospatial processing. We concluded that combining spatial distribution and temporal dy-
namics of the scalp EEG may improve BCI performance. 
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1. INTRODUCTION 
Our hands are involved in essential aspects of our daily lives, and loss of their function has a disastr-

ous effect on the individual. Prosthetic limbs aim to restore the normal function of the missing body part. 
Brain-machine interfaces (BMI) can be used to better control prostheses, especially when electromyogra-
phy (EMG) signals are insufficient [1]. The best methods of control so far involve surgically implanting 
electrodes to receive neuronal commands, but they come with the inherent risk associated with surgeries, 
uncertainty about long-term stability, and the need for highly trained personnel [2]. Recent invasive elec-
trocorticography (ECoG) studies focused mainly on the sensorimotor cortex to decode different move-
ments. The participants of these studies were epilepsy patients. In [3], three hand gestures and finger tap-
ping movements were classified from electrodes in the somatosensory areas with a classification accuracy 
of 96.5% with high-density sensorimotor coverage. Another study [4] aimed to classify four different arti-
culators and four different tongue movement directions using a small area in the sensorimotor cortex. 
They achieved 92% and 85% classification accuracy respectively, using only a 1 cm2 patch in the sensori-
motor cortex. In [5], the authors focused on rapid gesture decoding and they achieved 80% accuracy in 
classifying three hand gestures after 0.5 s of detecting the movement. The most important electrodes were 
near the central sulcus. A rather interesting finding was shown in [6] where they found that contralateral 
representations of finger movements in the sensorimotor cortex are driven by both active movement and 
sensory stimulation, whereas ipsilateral representations are mainly engaged during active movement. 
Non-invasive methods for controlling prostheses are becoming more popular. In particular, electroence-
phalography (EEG) has been utilized to evaluate whether motor commands can be reliably decoded. EEG 
records brain activity at a high temporal resolution which can be exploited to extract movement-related 
information. EEG sensors are wearable and hence suitable for rehabilitation and building flexible BMI [7]. 

On the other hand, the use of EEG to classify movement directions for controlling prostheses is often 
controversial due to the contamination of EEG with motion artifacts, especially eye movements [8]. The 
primary concern is whether the contaminated signals possess information representing visual processing 
or merely eye movements only. Electrophysiological findings suggest that visuospatial areas could be use-
ful in extracting information about movement direction since neurons in the visual cortex exhibit a certain 
preference to a variety of conditions such as orientation [9] and direction (directional tuning). Previous 
studies showed that many brain regions are involved in motor planning and motor control: a functional 
magnetic resonance imaging (fMRI) study [10] showed the involvement of the primary sensorimotor area, 
medial frontal gyrus, and middle frontal gyrus during hand movement. Another fMRI study [11] showed 
that the dorsal anterior cingulate cortex modulates supplementary motor area (SMA) during unimanual 
motor behavior. Another fMRI study of finger tapping showed the involvement of contralateral primary 
sensorimotor cortex, SMA, ipsilateral anterior cerebellum, and occipital cortices. EEG recorded from the 
scalp may also reflect information from these brain regions. The Lingual gyrus and calcarine sulcus have 
been shown to produce stronger signals during goal-oriented limb movements than stimulus detection 
without motor movements [12]. 

Independent component (IC) analysis (ICA) has been widely used to unmix signals of interest from 
those of non-interest in EEG [13]. In a previous study, hand movement direction was decoded using EEG 
signals that were cleaned from artifacts using ICA [14], and binary movement direction (left vs right) 
could be predicted from ICs in the posterior parietal cortex [15]. Furthermore, ICA-derived scalp topo-
graphies can be used to localize the active cortical sources since ICA-derived scalp topographies are well fit 
by a single equivalent dipole model with low residual variance as shown in [16]. Therefore, if we address 
the inherent problems of EEG (i.e. noise contamination and spatial resolution), we would identify and ex-
tract signals representing visual processing information that can be combined with commonly used de-
coding methods based on motor-related areas [17] to build more robust BMI. However, this approach has 
not been fully investigated as yet. 

In this study, we further investigated the effectiveness of ICs associated with the planning and execu-
tion of index finger movement in classifying an increased number of movement directions with no initial 
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limitation of the involved brain regions. By using an experimental paradigm and a labeling method in the 
decoding analysis to dissociate intrinsic and extrinsic coordinate frame information, we extracted EEG 
signals containing extrinsic information and selected ICs that represent brain activity only. We performed 
an eight-direction classification analysis using the selected ICs and identified the contributing brain areas 
to the classification and the timing of the contribution through a clustering analysis using ICs from all the 
participants. 

2. MATERIALS AND METHODS 
2.1. Participants 

Six healthy participants performed the experiment (two females and four males). The mean age was 
M = 40.67 with a standard deviation of SD = 7.23. The study protocol was approved by the ethics commit-
tee of the University of California, San Diego (Approval No. 14353) and carried out under the Declaration 
of Helsinki. Written informed consent was obtained from each participant before the experiment. 

2.2. Experiment 

The participants sat on a chair with their forearm and wrist supported. They were asked to move their 
index finger to one of eight directions shown on a screen in front of them without moving their arm. The 
eight possible positions of the target belonged to a circle with a 10 cm radius where consecutive positions 
were 45˚ apart as shown in Figure 1. The index finger was positioned at the center of a touchpad for 2 
seconds, the target was shown for the next 2 seconds. Using the touchpad, the participants were asked to 
move a red cursor to the target in one motion and wait, even if the cursor did not reach the target. When 
the target disappeared, the participants returned their index finger to the center of the touchpad. The cur-
sor positions were saved at a sampling rate of 30 Hz. Each participant performed 40 sessions, and each ses-
sion comprised 32 trials. Every 10 sessions the elbow angle was changed (either extended or bent at 90˚). 
Each target would then result in two different finger movements. For example, to reach target 4 with the 
elbow extended, the index finger should be flexed, while the index finger should be adducted to reach the 
same target when the elbow is bent at 90˚. The experimental design realizes the separation of intrinsic and 
extrinsic coordinate system information [10, 11]. When we move our body to interact with objects, the  
 

 
Figure 1. Experimental design. Each trial consisted of 4 seconds: 2 seconds of rest after which the cue 
is shown for 2 seconds. The participant moves the cursor in one motion and waits for the cue to 
disappear, and then returns to the start position in the middle. For half the trials, the elbow was ex-
tended and for the other half, the elbow was at 90 degrees. 
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brain calculates and transforms the positions of external objects and internal body parts using different 
coordinate frames. The intrinsic frame’s reference is within the body or muscle. It describes the action of 
the body/body part/ muscle (extension, abduction, and so on). The extrinsic frame’s reference is a point 
outside the body. It describes the movement related to the external environment. A study on primates [18] 
showed that neurons in the motor cortices may play a role in transforming between the two coordinate 
frames. Taking that into account, an experiment was designed to separate the effect of the two coordinate 
frames and study them individually [18]. The experimental design was applied to a human study where a 
decoding method was used to dissociate the information of the two coordinate frames [19]. 

2.3. EEG & EMG Acquisition 

EEG and EMG were acquired using a Biosemi active two amplifier system (Biosemi, Amsterdam, 
Netherlands). EEG was recorded with 128 channels according to Biosemi’s equiradial layout. To identify 
the muscle activity onset, EMG sensors were placed over the right extensor indicis and flexor digitorum. 
The signals were acquired at 2048 Hz. The positions of the EEG channels along with the nasion, left 
pre-auricular point and right pre-auricular point were measured using a posture functional capacity eval-
uation system. Electrooculography (EOG) signals were recorded using four electrodes to confirm that the 
ICs associated with eye movements sufficiently extracted eye-movement components from EEG by com-
paring the signals between EOG and the ICs. Two electrodes placed on the sides of the eyes recorded ho-
rizontal EOG while an electrode on the right side of the forehead and another placed under the right eye 
recorded vertical EOG. 

2.4. MRI Image Acquisition and Preprocessing 

We acquired an anatomical MRI image for each participant using a General Electric (GE) Discov-
ery MR750 3.0 T equipped with a 32-channel receiver coil. A sagittal image was acquired using a 
T1-weighted spoiled gradient recalled sequence (TR = 8.132 s; TE = 3.192 ms; FA = 8˚; FOV = 256 × 256 
mm; matrix size = 256 × 256; 172 slices; slice thickness = 1.2 mm). The MRI images were used for 
DIPFIT as a custom MRI image. Each image was normalized to the standard MNI brain template using 
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). 

2.5. EEG Preprocessing 

EEGLAB toolbox (2019.1, MATLAB R2017b) was used for the preprocessing. To remove the baseline 
drift, the data was filtered with a basic FIR high-pass filter (cutoff frequency 0.5 Hz, passband edge 1 Hz, 
transition bandwidth 1 Hz). To get rid of the line noise at 60 Hz, the data was filtered using a basic FIR 
low-pass filter (cutoff frequency 45 Hz, passband edge 40 Hz, transition bandwidth 10 Hz). The filtered 
data was re-referenced to average and down-sampled to 512 Hz. EEG signals from the 128 channels were 
then manually checked and were removed if any exceeded the threshold of [−500 µv 500 µv] for more than 
20% of the recording time. One channel from Participant Three was removed. The data was then divided 
into epochs of three seconds with one second before the visual cue onset when the target appeared and two 
seconds after onset. To decompose the EEG signal to its original sources, independent component analysis 
was performed using adaptive mixture ICA (AMICA) [20]. The obtained ICs are temporally maximally 
independent, which makes ICA particularly useful for unmixing eye movement artifacts from brain EEG 
[21]. EMG and cursor onsets were computed using EMG and cursor movement data. 

2.6. Selection of Independent Components 

To separate the ICs representing brain activity from non-brain ICs, i.e. channel noise, muscle, and eye 
movement artifacts, etc., we used two EEGLAB plugins for artifact detection: ICLabel [22], MARA [23], 
and EEGLAB plugin DIPFIT for source localization. ICLabel is an automated EEG independent compo-
nents classifier. It classifies ICs into seven classes (brain, muscle, eye artifact, channel noise, line noise, 
heart, others) using a set of standard measures (scalp topography, median power spectral density, auto-
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correlation function, dipole location… etc.). Artificial neural network (ANN) was trained using more than 
200,000 ICs originating from over 6000 EEG recordings from different experiments. The ICs were labeled 
by experts and by crowd labeling. MARA (Multiple Artifact Rejection Algorithm) is a binary classifier for 
rejecting ICs representing artifacts. The classifier was trained using 1290 ICs labeled by experts. It relies on 
six features from the spatial, spectral, and temporal domains, which makes it suitable to handle eye arti-
facts, muscular artifacts, and channel noise. DIPFIT is a source localization tool that approximates an ac-
tive cortical patch to a dipole that would generate the same scalp map. This is valid since IC sources are 
proven to be dipolar [16]. For better localization, it was important to build an accurate forward electrical 
head model for each participant. This was achieved by using individual MRI images. We visualized and 
evaluated each IC individually. First, we collected a set of measures for each IC: the generated probabilities 
using ICLabel (brain, muscle, eye artifact, channel noise, line noise, heart, others), artifact probability us-
ing MARA, event-related potential (ERP) of the epoched time series of each IC, the power spectrum of 
each IC, the location of the equivalent dipole obtained using DIPFIT, and the residual variance (RV) from 
fitting a scalp topography of a theoretical projection from the estimated dipole to the actual scalp topo-
graphy obtained by ICA. We then used those measures to choose ICs that represent brain activity. In par-
ticular, an IC is likely to represent brain activity if it was classified as “brain” with a probability higher than 
70% using ICLabel and an artifact probability less than 50% using MARA. Other indicators that we used 
are peaks in the IC power spectrum between 5 Hz and 30 Hz and mostly at 10 Hz, the equivalent dipoles 
are located within the brain, and the residual variance is less than 30% as shown in [24]. 

2.7. Eight Finger-Motion Direction Classification Using Independent Components 

To decode finger-movement directions, we applied sparse logistic regression with Laplace approxima-
tion (SLR) using Sparse Logistic Regression toolbox ver 1.51 (https://bicr.atr.jp//~oyamashi/SLR_WEB.html) 
[25]. A part of the computations was performed in Neuroscience Gateway (NSG) High-Performance 
Computing resources [26]. The merit of this algorithm is that it automatically chooses the important fea-
tures. SLR was applied in [19, 25, 27] for classifying both EEG and fMRI data. Here we applied SLR to the 
time series of the selected ICs to classify the eight finger-movement directions and to extract the temporal 
transition of classification contribution of the different brain regions. To extract relevant information spe-
cific to the extrinsic coordinate frame, we assigned the same label to the trials with the same target, re-
gardless of the elbow position. For example, trials in which the finger moved to target 4 were labeled the 
same regardless of elbow angle. To extract information specific to the intrinsic coordinate frame, we as-
signed the same label to the trials where the participant performed the same finger motion. For example, 
trials where the finger moved to target 4 with the elbow extended and trials where the finger moved to 
target 6 with the elbow bent both correspond to finger extension and were thus given the same label in 
classification. 

The time series of the selected ICs for each participant were down-sampled to 64 Hz considering the 
computational cost of SLR. Only one second after the onset was kept, making every IC a set of 64 features. 
The total number of features for each participant was then (64 × number of selected ICs). The total num-
ber of trials was 1280 trials, except for Participant One (1278 trials). Each finger direction had 160 trials 
(80 trials with the elbow extended and 80 trials with the elbow at 90˚). 

We applied SLR one-vs-rest with Laplace approximation algorithm and performed leave-one-out 
cross-validation on a trial level. For each participant, eight classifiers were trained and tested. The dataset 
of each participant was divided into 160 bins. Each bin contains eight trails where each trial represents one 
direction without repeats. Each bin was then used one time as a test set and 159 times in the training set. 
The most important features in the classification were automatically selected. All the weight matrices from 
the cross-validation were used to evaluate the importance of each feature. 

2.8. Evaluation of ICs Contribution to the Classification 

To evaluate the contribution of each IC to the classification, we defined a metric to calculate the im-
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portance of each data point in each IC’s time series. Datapoint importance is the number of times the said 
data point was chosen by all the 8-direction classifiers, averaged over all the cross-validation runs .i.e. let 

( )nIC t  be the time series of nIC  and the importance of each time point ( )0nIC t  be ( )0nImp t  where: 

( )0 1
1 m

n iImp t k
m == ∑                                      (1) 

where “m” is the number of cross-validation runs, “k” is the number of classifiers that chose ( )0nIC t  for 
the classification in a single cross-validation run). The importance of an IC is then the mean of the impor-
tance of its data points. The contribution of an IC is the ratio between its importance and the total impor-
tance of all ICs. 

2.9. Clustering Analysis 

Brains and scalps come in all shapes and sizes, and for EEG studies this translates to not knowing 
whether the same EEG channel is recording the same information from two different participants. Loca-
lizing the ICs in the brain allows us to identify ICs that belong to the same brain region in different partic-
ipants. However, this alone may not be enough to say that those ICs have the same information. For this 
reason, we performed a clustering analysis of the ICs using multiple features. These features were ERP (0 s 
to 1 s and low-pass 40 Hz), scalp topography, dipole location, and dipole moment. Due to the computa-
tional cost of clustering, principal component analysis (PCA) was used to reduce the dimensionality of the 
features. The number of features after PCA reduction for each measure was (10 for ERP, 10 for scalp to-
pography, 3 for dipole location, and 1 for dipole moment). Dipole locations were assigned a weight of 3 
since there are only 3 features. Three distance-based machine learning algorithms in EEGLAB (k-means, 
neural network, and affinity propagation) were used to cluster the ICs. The number of clusters is an open 
parameter and needs to be empirically determined. The number of clusters using affinity propagation was 
automatically set to 4. Due to the low spatial resolution of the results, this algorithm was not investigated 
further. First, we wanted the clusters to have ICs from at least two participants. This criterion limited the 
maximum number of clusters to 16. Using k-means and neural networks, we varied the number of clusters 
from 4 to 16 to evaluate the stability of the results and confirmed that the results were stable from 12 to 16. 
Finally, to balance the spatial resolution and the number of unique participants within each cluster, we 
determined that the number of clusters was 14 using the neural networks method. The centroid of each 
cluster was approximated to the closest brain region in the AAL atlas [28]. 

To visualize the temporal transition of the contribution of different brain regions to the classification, 
we computed the importance of each data point of each cluster by averaging the importance of the same 
data point of all the ICs constituting the cluster. i.e. for kcluster  that contains “n” ICs, the importance at 
time point “t” is: 

( ) ( )1
1 n

k iicluster t Imp t
n == ∑                              (2) 

The importance of each cluster is then the mean of the importance of all its data points. The contri-
bution of a cluster is the ratio between its importance and the total importance of all the clusters. The sta-
tistical significance of data points of the clusters was evaluated using a paired t-test. Multiple comparison 
correction for false discovery rate was performed using the Benjamini-Hochberg procedure. 

3. RESULTS 
3.1. Independent Components Decomposition 

We obtained 128 ICs for all participants except for Participant Three, who had 127 ICs because we 
removed a noisy channel. From 767 ICs only 84 were kept after the rejection of non-brain ICs and ICs 
where the noise was dominant. Figure 2(a), Figure 2(b), Figure 2(f), and Figure 2(g) show an IC that 
represents brain activity and the properties used for the selection. We selected ICs with equivalent dipoles  
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Figure 2. Example of an accepted IC and its properties. (a) The scalp map and the probability com-
puted by ICLabel, (b) Epoched trials with ERP, (f) Power spectrum, (g) Dipole location using 
DIPFIT, and the residual variance. (c) Number of ICs per residual variance. (d) Number of ICs per 
artifact probability range computed using MARA. (e) Number of ICs per brain probability range 
computed using ICLabel. 
 
located within the brain and showed a visible ERP and power spectrum with frequency peaks in reasonable 
EEG frequency bands (from 5 Hz to 30 Hz and mostly around 10 Hz). Specifically, EEGLAB plugin ICLa-
bel predicts how likely the IC represents brain activity as shown in Figure 2(a). Figure 2(b) shows the av-
erage of the time series of the IC across all the trials and we can observe a visible ERP response. The activ-
ity power spectrum in Figure 2(f) shows a peak at 11 Hz and DIPFIT results in Figure 2(g) show that the 
equivalent dipole is within the brain and has a low residual variance (1.4%) which means that the pro-
jected topography of the model equivalent dipole accounts for 98.6% of the variance in the scalp topogra-
phy. Figure 2(c) shows the number of ICs within each residual variance range for all participants. Figure 
2(e) shows the number of selected ICs per probability range that was assigned by ICLabel. In addition, the 
artifact probability of the selected ICs computed using MARA is shown in Figure 2(d). For every IC, we 
checked the six mentioned measures and decided whether the IC would be included in the classification 
phase. 

3.2. Eight-Class Motion-Direction Classification Results Using Individually Selected ICs 

The classification results in the extrinsic and intrinsic frames are shown in Table 1. To evaluate the 
statistical significance of the classification results, a non-parametric permutation test was applied. For each 
participant, the classification accuracy of a model trained with the same data with randomly permuted la-
bels was calculated in a leave-one-out trial cross-validation manner. This was repeated 5000 times. Sup-
plementary Figure S1 shows the histograms of the average classification accuracies of the 5000 repeats. 
The p-values of the real classification accuracies were computed and shown in Table 1. All participants 
showed significantly higher classification accuracy than chance level. 

Figure 3 shows the ten most important data points of each IC of Participant One, who had the highest 
classification accuracy. The light-gray shaded area is the time period between the cue onset (t = 0 ms,  
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Figure 3. Ten most important time points for each IC for Participant One. The most important time 
point is circled in red and the next two in black. The size and color of each time point represent the 
number of times the said time point was chosen by the classifiers averaged over the cross-validation 
runs. The number next to each IC is the percentage contribution of the IC. The light-gray shaded 
area is the time period before EMG onset from 0 ms to 220 ms. The dark-gray shaded area is the 
time period between EMG onset and cursor onset from 220 ms to 450 ms. 
 
Table 1. Classification accuracy in the extrinsic and intrinsic frames. Real labels extrinsic (intrinsic), 
represents classification accuracy using the real labels and the standard deviation (SD) from 
leave-one-out-trial cross-validation in the extrinsic (intrinsic) frame. Random labels extrinsic (in-
trinsic), represents the average classification accuracy over 5000 repeats of the permutation test us-
ing randomly generated labels in the extrinsic (intrinsic) frame, and the standard deviation (SD) 
from leave-one-out-trial cross-validation. p-values were obtained from the non-parametric permu-
tation test. 

 Participant 1 2 3 4 5 6 

Real labels 
extrinsic 

Accuracy % 63.54 42.50 48.35 55.00 47.97 30.47 

SD 16.40 17.52 18.23 17.12 16.34 16.45 

Random 
labels extrinsic 

Accuracy % 12.51 12.52 12.49 12.48 12.51 12.49 

SD 11.73 11.70 11.70 11.71 11.70 11.68 

p-value extrinsic p < 2.0e−04 p < 2.0e−04 p < 2.0e−04 p < 2.0e−04 p < 2.0e−04 p < 2.0e−04 

Real labels 
intrinsic 

Accuracy % 35.75 19.69 15.31 33.75 26.88 15.78 

SD 17.70 15.07 10.67 17.22 15.87 13.19 

Random 
labels intrinsic 

Accuracy % 12.48 12.50 12.49 12.48 12.51 12.48 

SD 11.71 11.70 11.71 11.70 11.72 11.68 

p-value intrinsic p < 2.0e−04 p < 2.0e−04 p = 8.0e−04 p < 2.0e−04 p < 2.0e−04 p = 1.4e−03 
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target appearance) and the EMG onset (around t = 220 ms). The dark-gray shaded area is the time period 
between the EMG onset (around t = 220 ms) and the cursor onset i.e. when the cursor started moving at 
around (t = 450 ms). In Participant One, ICs in the left middle occipital gyrus (12.21%), the right lingual 
(10.37%, 8.92%), the left lingual (9.27%), and the left posterior cingulate gyrus (6.94%) showed a higher 
contribution to the classification than the other ICs. Results from the other participants are included in 
Supplementary Figures S3-S7. Contribution and location in the AAL atlas of selected ICs are summarized 
in Supplementary Table S1. 

3.3. Contribution Analysis Using IC Clustering 

We obtained 14 clusters (Clst 1 to Clst 14) where the number of ICs per cluster ranged from four to 
nine ICs per cluster. The centroid of each cluster was located in the AAL atlas: Clst 1: right lingual, Clst 2: 
right lingual, Clst 3: left anterior cingulate and para-cingulate gyri, Clst 4: left precentral gyrus, Clst 5: left 
supplementary motor area (SMA), Clst 6: left inferior temporal gyrus, Clst 7: right precuneus, Clst 8: left 
inferior parietal gyrus, Clst 9: right postcentral gyrus, Clst 10: right insula, Clst 11: left superior occipital 
gyrus, Clst 12: left posterior cingulate gyrus, Clst 13: left paracentral lobule, and Clst 14: right superior 
frontal gyrus. Supplementary Table S2 shows the MNI coordinates of the clusters’ centroids and their 
corresponding location in the AAL atlas, along with the ICs constituting the cluster and the participants 
they were derived from. Four clusters had ICs from five participants (Clsts 1, 2, 11, and 13), seven clusters 
from four participants (Clsts 3, 5, 6, 9, 10, 12, and 14), two from three participants (Clsts 7 and 8), and on-
ly one from two participants (Clst 4). Supplementary Figures S8-S11 show the constituting ICs of each 
cluster in blue, and the centroid of the cluster is indicated in green. The brain regions corresponding to the 
centroids of the clusters are indicated. For 12 clusters, the centroid was in the same brain region as most 
ICs of the cluster. For Clst 10: right insula and Clst 13: left paracentral lobule, most ICs were located in 
different brain areas than the cluster’s centroid (6 out of 6 for Clst 10 and 4 out of 5 for Clst 13). 

Figure 4(a) and Figure 4(c) show the ten most important time points of each cluster in the extrinsic 
and intrinsic frames. All the data points in Figure 4 are statistically significant. The average contribution 
of each cluster to the classification is indicated next to its name in percentages. Figure 4(a) and Figure 
4(c) show that the importance of clusters temporally changes following the movement phase. Here we fo-
cus on two time periods, before the EMG onset (from 0 ms to 220 ms, the light-gray shaded area) and be-
tween the EMG onset and cursor onset (from 220 ms to 450 ms, the dark-gray shaded area). To better 
identify the critical time periods in the classification, each four consecutive data points were averaged in 
Figure 4(b) and Figure 4(d). For the extrinsic frame, ten clusters had the highest contribution at t3 from 
125 ms to 187 ms before EMG onset. The most contributive cluster was: Clst 2: right lingual, and then Clst 
12: left posterior cingulate gyrus, Clst 6: left inferior temporal gyrus, Clst 11: left superior occipital gyrus, 
Clst 7: right precuneus, Clst 5: left SMA, Clst 14: right superior frontal gyrus, Clst 13: left paracentral lo-
bule, Clst 9: right postcentral gyrus, and Clst 8: right inferior parietal gyrus in descending order. Clst 3: left 
anterior cingulate gyrus was most contributive around the EMG onset at t4 from 187.5 ms to 250 ms. Clst 
1: right lingual and Clst 4: left precentral gyrus were more contributive after EMG onset and before cursor 
onset at t5 from 250 ms to 312 ms, and Clst 10: right insula was most contributive around the cursor onset 
at t7 from 375 ms to 437 ms. For the intrinsic frame, six clusters had the highest contribution before EMG 
onset: Clst 2: right lingual at t2, Clst 6: left inferior temporal gyrus, Clst 11: left superior occipital gyrus, 
Clst 12: left posterior cingulate, and Clst 7: right precuneus at t3, and left inferior parietal gyrus at t1 in 
descending order of contribution. The notable differences between the contributing clusters of the two 
coordinate frames are Clst 5: left SMA, Clst 4: left precentral and Clst 14: left frontal superior that are more 
contributing in the intrinsic frame while Clst 12: left posterior cingulate became less contributing in the 
intrinsic frame. The timing of the contribution in the intrinsic frame was more scattered from t1 = [0 ms 
to 62.5 ms] to t11 = [875 ms to 937 ms].  

4. DISCUSSION 
This study suggests that we could predict eight finger-movement directions from EEG-derived ICs.  
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Figure 4. (a) and (c) Ten most important time data points of each cluster in the extrinsic (a) and 
intrinsic (c) frames. The size and color of each data point reflect the number of times the time data 
point was selected by the classifiers, averaged over the cross-validation runs. The clusters are ar-
ranged based on the contribution of each cluster to the classification. The contribution of each 
cluster is indicated in percentages next to the name of the cluster. (b) and (d) Contribution of each 
cluster in the extrinsic (b) and intrinsic (d) frames according to the average of each four consecutive 
time data points. Each dot represents a time period of 62.5 ms where. Dots circled in red represent 
the peak values. t1 = [0 ms to 62.5 ms], t2 = [62.5 ms to 125 ms], t3 = [125 ms to 187.5 ms], t4 = 
[187.5 ms to 250 ms], t5 = [250 ms to 312.5 ms], t6 = [312.5 ms to 375 ms], t7 = [375 ms to 437.5 
ms], t8 = [562.5 ms to 625 ms], t9 = [687.5 ms to 750 ms], t10 = [812.5 ms to 875 ms], t11 = [875 ms 
to 937 ms]. The unit of the color bars is the number of classifiers that selected the data point aver-
aged over the cross-validation runs. 
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The ICs are located in the lingual gyrus, posterior cingulate gyrus, inferior temporal gyrus, superior 
occipital gyrus, precuneus, supplementary motor area (SMA), and precentral gyrus. The classification ac-
curacy was higher when the trials were labeled according to the extrinsic frame compared to when the tri-
als were labeled according to the intrinsic frame, suggesting that the selected ICs carry information about 
motor control and visuospatial processing more than information on finger muscles and joints activation. 

First, we used ICA to unmix the EEG signals into temporally maximally independent signals (ICs). 
This technique is physiologically reasonable [16, 21] because artifacts and brain signals are temporally in-
dependent. This is especially important in removing eye movement artifacts as proven in [29] and further 
confirmed by comparing the ERP of EOG signals recorded using separate electrodes and the ERP of the 
ICs classified as eye artifacts as shown in Supplementary Figure S12. We then studied the properties of 
each IC separately aided with two automated methods to identify ICs that reflect brain activity only. The 
time series of the selected ICs were then used to classify eight finger-movement directions using a sparse 
algorithm (SLR) that automatically selected the important time points for the classification. In this study, 
we were particularly interested in studying how the brain controls the finger to navigate the environment 
which is related to the extrinsic frame, as opposed to studying the action executed by the finger (flexion, 
extension…etc.) which is related to the intrinsic frame. To account for the relatively small number of par-
ticipants, individual MRI images were obtained and a non-parametric permutation test with 5000 repeats 
was applied to check the significance of the classification results. For all the participants, the selected ICs 
achieved a classification accuracy higher than the accuracy achieved with classifiers trained with the same 
data using random labels with p-value < 1.4e−03. This suggests that the ICs may be biased towards finger 
movement direction. Moreover, the average classification accuracy in the extrinsic coordinate frame 
(47.97%) was higher than the average classification accuracy in the intrinsic frame (24.53%), suggesting 
that the selected ICs are biased towards the extrinsic frame. The selected ICs may carry information re-
lated to visuospatial processing as opposed to finger muscles and joints information during the movement. 

To investigate the common patterns in the ICs between participants, we performed a clustering anal-
ysis where ICs from different participants that had similar properties were grouped into clusters. We then 
studied the spatial and temporal aspects of each cluster. The spatial aspect was defined by the position of 
the cluster’s centroid in the AAL atlas. For the temporal aspect, we defined a measure to quantify the im-
portance of each time data point in the cluster. 

Temporally, the time period between 125 to 187 ms right before EMG onset at 220 ms contributed 
most to the classification in the extrinsic frame, which is physiologically reasonable. Time points of ten 
clusters during that period were used the most for classification, as shown in Figure 4(b) (Clst 2: Lingual 
R, Clst 3: Cingulum Post L, Clst 6: Temporal Inf L, Clst 11: Occipital Sup L, Clst 7: Precuneus R, Clst 5: 
SMA L, Clst 14: Frontal Sup R, Clst 13: Paracentral L, Clst 9: Postcentral R, Clst 8: Parietal Inf L in des-
cending order). 

For the motor planning phase, the two clusters that contributed the most were located in the right 
lingual (Clst 1: right lingual and Clst 2: right lingual) accounting for 20.87% of the contribution to the 
classification belonging to the right Brodmann areas BA18 and BA19. Both areas are involved in visuospa-
tial information processing [30-32]. An fMRI study also showed that the lingual gyrus produces stronger 
signals during goal-oriented limb movements than stimulus detection without motor movement [12]. We 
can also observe the contribution of the dorsal and ventral visual pathways [33] starting from Clst 1: lin-
gual and Clst2: lingual following the ventral stream to Clst 6: left inferior temporal that is involved in re-
cognizing patterns [33] and following the dorsal stream to Clst 11: left superior occipital gyrus and Clst 8: 
left inferior parietal gyrus that is involved in visually guided motion such as grasping [34]. In addition, 
Clst 7: right precuneus activation may be due to its role in motor coordination that requires shifting atten-
tion when making movements [35]. 

For the motor execution phase, the high contribution of Clst 12: left posterior cingulate can be attri-
buted to its involvement in the task-negative network and the control of self-determined finger move-
ments [36]. Clst 3: left anterior cingulate was also involved due to its role in maintaining stimulus timing 
in motor control [37], modulating unimanual motor behavior, shifting attention between different loca-
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tions in space [38], and projecting to SMA and the primary motor area (M1) which is in accordance with 
our findings since both Clst 5: left SMA and Clst 4: left precentral gyrus were active. Clst 5: left SMA acti-
vation was before Clst 4: left precentral gyrus which is consistent with [39] where SMA has been shown to 
activate before M1 in externally cued tasks. Clst 5: SMA also interacts with the cingulate cortex in the 
preparation of self-generated actions [40]. Clst 4: left precentral gyrus was most contributive at t5 = 250 
ms to 312 ms after EMG onset and before the cursor onset, which is reasonable. The contribution of Clst 
14: right frontal superior gyrus can be attributed to its involvement in a variety of functions that are con-
nected to our task. For instance, it is involved in finger proprioception, visuospatial and visuomotor atten-
tion, and motor sequencing and planning [10]. Clst 9: right post central gyrus is involved in the sense of 
touch (index finger on the touchpad). It is also involved in finger proprioception and voluntary hand 
movement [41]. 

The notable difference between the two coordinate frames is that Clst 5: left SMA and Clst 4: left pre-
central gyrus became more contributive in the intrinsic frame while the Clst 12: left posterior cingulate 
gyrus became less contributive. This suggests that the left SMA and left precentral gyrus are more biased 
towards the intrinsic frame while the left posterior cingulate gyrus is more biased toward the extrinsic 
frame. There is evidence that M1 is more biased towards the intrinsic frame [27, 42-44] which agrees with 
our findings, however to the best of our knowledge, the SMA being biased towards the intrinsic frame is 
new. The bias of the posterior cingulate gyrus to the extrinsic frame can be attributed to its role in visuos-
patial processing [45]. 

Concerning Clst 10: right insula and Clst 13: left paracentral lobule, since the constituting ICs and the 
centroids did not fall into the same brain regions, we could not use the results to draw any conclusions. 
This is another limitation of this study. The left paracentral lobule particularly is concerned with motor 
and sensory innervation of the lower limbs and regulation of physiological functions, which is irrelevant to 
our experimental paradigm. To investigate the representations further, it might be acceptable to manually 
adjust the clustering results based on their brain function. This might be necessary when developing a 
practical BMI in the future. 

The individual differences in classification accuracy may be due to the differences in ICA decomposi-
tion between participants. The number of selected ICs does not seem to affect the classification accuracy. 
Participant One with 16 ICs performed better than Participant Four with 9 ICs. However, Participant Four 
performed better than Participant Five with 19 ICs and Participant Six with 13 ICs. A noticeable difference 
between Participant One and Participant Six is the location of the selected ICs and their contributions. For 
Participant One, the dipole locations of three ICs were located in the lingual accounting for 28.56% of the 
classification contribution while only the dipole of one IC from Participant Six was located in the lingual 
accounting for 9.06% of the contribution. Another noticeable difference is that Participant One had one IC 
with a dipole located in the precentral gyrus, which is directly involved in finger motion while none of 
Participant Six ICs had a dipole in that location. A future study could give a better understanding of indi-
vidual differences. 

To evaluate the possibility of using the classifier for BCI control, confusion matrices of all participants 
(Supplementary Figure S13) were analyzed to detect patterns in false positives. Supplementary Figure S2 
summarizes the false positive cases for each direction across participants. The percentage of false positives 
adjacent to the desired direction was 27.83% of all the classifications. The average classification accuracy 
across all participants of 8 finger movement directions within (−45˚, 45˚) of the desired direction would be 
75.8% which is a reasonable rate for many real-world applications. 

Ideally, it might be better to add a condition where the participants only observe the visual cue with-
out moving their finger to confirm the results of ICs in visuospatial and occipital regions. However, we did 
not ask the participants to perform this task to make it easier for them to sustain concentration and avoid 
fatigue that would affect task performance. Instead, we used the established ICA-based approach to ad-
dress the issue of eye movement artifacts. This means that the current study cannot completely dissociate 
the effect of presenting the visual cue from the visuospatial processing. However, it is natural that visuos-
patial processes involve occipito-parietal regions, which itself does not necessarily mean that the observed 
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brain activity is due to the visual cue presentation. ICA decomposition tends to find more ICs in the occi-
pital regions than anywhere else. The reason behind this is that ICA has a bias to large synchronous cor-
tical patches which is the case of the occipital lobe. Human beings have a large visual cortex, with large 
functional subregions, that occupies a big ratio of the surface area of the human brain [46]. We did find 
clusters that were situated in motor-related areas such as the left precentral (Clst 4), SMA (Clst 5). Al-
though we cannot dissociate the visual, visuospatial processing, and motor control components from scalp 
EEG as it has been discussed in [14], we eliminated the external effect of the eye movements. 

5. CONCLUSION 
This study aimed to investigate the neural representation of finger movement directions through 

classification analysis using EEG independent components. We found that during finger movements, dis-
tant brain regions are active. The selected independent components were more biased towards the extrin-
sic coordinate frame. Independent components from occipital areas involved in visuospatial processing 
contributed the most to classifying finger movements before EMG onset. This finding could be used to 
classify movement directions in conjunction with information from motor-related areas. Furthermore, our 
study confirmed that the contribution of the supplementary motor area (SMA) is biased towards the in-
trinsic coordinate frame rather than the extrinsic coordinate frame, which is supported by previous stu-
dies. Our approach using classification analysis suggests that EEG from occipital regions can possess vi-
suospatial information and may be used to classify movement directions. 
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Figure S1. Results of the Non-parametric permutation test for accuracies in the extrinsic and intrin-
sic coordinate frames. Histograms of the null hypothesis H0: classification accuracy is due to ran-
dom chance. Accuracies were calculated in a leave-one-trial-out cross-validation. The process was 
repeated 5000 times. Each classifier was trained with the specific participant’s data using randomly 
permuted labels. 
 

 
Figure S2. False positives for each direction across participants. The red arrow represents the true 
direction. The length of the red arrow represents the number of true positives. The actual number is 
indicated near the arrow. Blue arrows represent false positives and their directions. Their length re-
flects the number of false-positive trials. Notice the false positives are concentrated in the adjacent 
directions (−45˚, 45˚). 
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Figure S3. The ten most important time points for each IC for participants two. The most important 
time point is circled in red and the next two in black. The size and color of each time point 
represent the number of times the said time point was chosen by the classifiers averaged over the 
cross-validation runs. The number next to each IC is the percentage contribution of the IC. The 
light-gray shaded area is the time period before EMG onset from 0 ms to 220 ms, the dark-gray 
shaded area is the time period between EMG onset and cursor onset from 220 ms to 450 ms. 
 

 
Figure S4. The ten most important time points for each IC for participants three. The most impor-
tant time point is circled in red and the next two in black. The size and color of each time point 
represent the number of times the said time point was chosen by the classifiers averaged over the 
cross-validation runs. The number next to each IC is the percentage contribution of the IC. The 
light-gray shaded area is the time period before EMG onset from 0 ms to 220 ms, the dark-gray 
shaded area is the time period between EMG onset and cursor onset from 220 ms to 450 ms. 
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Figure S5. The ten most important time points for each IC for participants four. The most impor-
tant time point is circled in red and the next two in black. The size and color of each time point 
represent the number of times the said time point was chosen by the classifiers averaged over the 
cross-validation runs. The number next to each IC is the percentage contribution of the IC. The 
light-gray shaded area is the time period before EMG onset from 0 ms to 220 ms, the dark-gray 
shaded area is the time period between EMG onset and cursor onset from 220 ms to 450 ms. 
 

 
Figure S6. The ten most important time points for each IC for participants five. The most important 
time point is circled in red and the next two in black. The size and color of each time point 
represent the number of times the said time point was chosen by the classifiers averaged over the 
cross-validation runs. The number next to each IC is the percentage contribution of the IC. The 
light-gray shaded area is the time period before EMG onset from 0 ms to 220 ms, the dark-gray 
shaded area is the time period between EMG onset and cursor onset from 220 ms to 450 ms. 

https://doi.org/10.4236/jbise.2021.146021


 

 

https://doi.org/10.4236/jbise.2021.146021 259 J. Biomedical Science and Engineering 
 

 
Figure S7. The ten most important time points for each IC for participants six. The most important 
time point is circled in red and the next two in black. The size and color of each time point 
represent the number of times the said time point was chosen by the classifiers averaged over the 
cross-validation runs. The number next to each IC is the percentage contribution of the IC. The 
light-gray shaded area is the time period before EMG onset from 0 ms to 220 ms, the dark-gray 
shaded area is the time period between EMG onset and cursor onset from 220 ms to 450 ms. 
 

 
Figure S8. Position of clusters centroids (in green) and their constituent ICs (in blue), left lobe, 
medial side. Medial cortex diagram case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, 
rID: 47208. 
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Figure S9. Position of clusters centroids (in green) and their constituent ICs (in blue), right lobe, 
medial side. Medial cortex diagram case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, 
rID: 47208. 
 

 
Figure S10. Position of clusters centroids (in green) and their constituent ICs (in blue), left lobe lat-
eral view. Lateral surface diagram case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 
46670. 
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Figure S11. Position of clusters centroids (in green) and their constituent ICs (in blue), right lobe 
lateral view. Lateral surface diagram case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, 
rID: 46670. Insula diagram case courtesy of Assoc Prof Frank Gaillard, Radiopaedia.org, rID: 46846. 
 

 
Figure S12. (a) ERP of vertical EOG of participant 5; (b) ERP of independent component 1 of par-
ticipant 5 extracted with ICA. 
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Table S1. 1Approximate brain location in AAL atlas of selected ICs and their average contribution to 
the classification (%). 

part IC % part IC % 

1 

Occipital Mid L 12.21 

4 

Fusiform R 16.17 

Lingual R 10.37 Fusiform L 14.22 

Lingual L 9.27 Lingual R 12.65 

Lingual R 8.92 Postcentral L 11.15 

Cingulum Post L 6.94 Supp Motor Area R 10.64 

Parietal Inf L 6.06 Rolandic Oper R 10.30 

Cerebelum Crus1 L 5.74 Caudate L 8.74 

Frontal Sup Medial L 5.73 Frontal Sup L 8.57 

Precentral L 5.56 Frontal Sup R 7.56 

Cingulum Mid L 5.46 

5 

Cerebelum6 L 10.91 

Temporal Sup R 5.40 Calcarine R 7.79 

Precentral R 5.20 Vermis 4 5 7.00 

Insula L 4.27 Occipital Inf L 6.83 

Calcarine L 3.42 Parietal Inf R 5.74 

Thalamus L 3.41 Occipital Inf L 5.24 

Cingulum Mid L 2.04 Occipital Sup R 5.22 

2 

Temporal Inf R 13.64 Cuneus L 5.15 

Cingulum Post L 13.30  Paracentral Lobule L 5.12 

Occipital Inf R 13.10 Angular R 4.92 

Temporal Mid L 12.13 Frontal Mid R 4.49 

Occipital Inf L 11.05 Temporal Mid L 4.41 

Supp Motor Area L 10.64 Postcentral L 4.32 

Frontal Sup R 9.15 Precuneus L 4.31 

Paracentral Lobule L 8.85 Parietal Inf L 4.28 

Cuneus R 8.15 Precuneus L 4.27 

3 

Calcarine R 10.74 Cingulum Mid L 4.12 

Cuneus R 10.58 Cingulum Mid R 3.25 

Cuneus L 9.44  Postcentral R 2.63 

Cerebelum Crus1 L 6.40 Cerebelum6 L 10.91 
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Occipital Inf R 6.19 

6 

Cingulum Mid L 9.68 

Precuneus R 5.96 Cuneus L 9.66 

Heschl R 5.62 Lingual R 9.06 

Frontal Mid L 5.35 Precuneus R 8.53 

Parietal Inf L 4.69 Occipital Mid L 8.18 

Parietal Inf R 4.43 Supp Motor Area L 7.82 

Precuneus R 4.36 Precuneus L 7.82 

Supp Motor Area L 4.34 Cingulum Ant R 7.18 

Cingulum Mid L 4.12 Cingulum Mid R 7.10 

Cingulum Mid R 4.01 Postcentral R 7.03 

Supp Motor Area R 3.89 Precuneus L 6.74 

Precentral L 3.88 Supp Motor Area L 5.87 

Supp Motor Area R 3.25 Supp Motor Area R 5.34 

Supp Motor Area R 2.74    
1Brain locations are derived from the AAL atlas. Abbreviations: R: right, L: left, Inf: inferior, Mid: middle, 
Sup: superior, Ant: anterior, Post: posterior, Supp: supplementary, Cingulum Ant: anterior cingulate and 
para-cingulate gyri. 

 
Table S2. 2The clusters with the constituting ICs and the participant they were derived from. 

Clst Part Components Clst Part Components 

1 
Lingual R 

MNI 
[26, −58, −3] 

1 Lingual R 
8 

Parietal Inf L 
MNI 

[−37, −43, 32] 

1 Parietal Inf L 

2 Temporal Inf R 3 Parietal Inf L 

3 Calcarine R 5 
Parietal Inf L, 
Postcentral L, 
Precuneus L 

4 
Lingual R, 
Fusiform R 

9 
Postcentral R 

MNI 
[32, −37, 58] 

1 Precentral R 

5 
Vermis 4 5, 
Calcarine R 

3 
Parietal Inf R, 

Cingulum Mid R 

2 
Lingual R 

MNI 
[22, −87, −14] 

1 Lingua lR 5 
Angular R, 

Postcentral R 

2 Occipital Inf R 6 Postcentral R 
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3 Occipital Inf R 

10 
Insula R 

MNI 
[35, −33, 21] 

1 Temporal Sup R 

5 Cerebelum6 L 3 
Heschl R, 

Precuneus R 

6 Lingual R 4 Rolandic Oper R 

3 
Cingulum 

Ant L 
MNI 

[−5, 0, 21] 

1 

Thalamus L, 
Superior frontal 

medial L, 
insula L, 

Cingulum Mid L, 
Cingulum Mid L 

5 
Parietal Inf R, 

Cingulum Mid R 

11 
Occipital Sup L 

MNI 
[−14, −96, 4] 

1 Occipital Mid L 

2 Supp Motor Area L 

4 Caudate L 3 Cerebelum Crus1 L 

5 Cingulum Mid L 5 
Occipital Inf L, 

Cuneus L 

6 
Cingulum Ant R, 
Cingulum Mid R 

6 Occipital Mid L 

4 
precentral L 

MNI 
[−26, −8, 39] 

3 
Precentral L, 

Frontal Mid L, 
Cingulum Mid L 12 

Cingulum Post L 
MNI 

[−14, −47, 18] 

1 
Lingual L, 

Calcarine L, 
Cingulum Post L 

4 Postcentral L 2 Cingulum Post L 

5 
Supp Motor 

Area L 
MNI 

[−2, 8, 58] 

2 Paracentral Lobule L 3 Cuneus L 

3 
Supp Motor Area R, 
Supp Motor Area R 

6 
Cingulum Mid L, 

Heschl R 

4 
Frontal Sup L, 

Supp Motor Area R 

13 
Paracentral 

Lobule L 
MNI 

[−14, −24, 64] 

1 Precentral L 

6 
Supp Motor Area L, 
Supp Motor Area L, 
Supp Motor Area R 

2 Cuneus R 

6 
Temporal Inf L 

MNI 
[−46, −57, −12] 

1 Cerebelum Crus1 L 3 Supp Motor Area L 

2 
Temporal Mid L, 

Occipital Inf L 
5 Paracentral Lobule L 

4 Fusiform L 6 Precuneus L 

5 
Temporal Mid L, 

Occipital Inf L 

14 
Frontal Sup R 

MNI 
[26, 10, 60] 

2 Frontal Sup R 
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7 
Precuneus R 

MNI 
[8, −63, 40] 

3 
Cuneus R, 

Precuneus R 

 

3 Supp Motor Area R 

5 
Occipital Sup R, 

Precuneus L 
4 Frontal Sup R 

6 
Precuneus R, 
Precuneus L 

5 Frontal Mid R 

2Brain locations are derived from the AAL atlas. Below each cluster’s name is the MNI coordinates of the 
cluster’s centroid. Abbreviations: R: right, L: left, Inf: inferior, Mid: middle, Sup: superior, Ant: anterior, 
Post: posterior, Supp: supplementary, Cingulum Ant: anterior cingulate and para-cingulate gyri. 

 

 
Figure S13. Confusion matrices of all participants.  
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