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ABSTRACT 
Accurate brain tumour segmentation is critical for diagnosis and treatment planning, yet chal-
lenging due to tumour complexity. Manual segmentation is time-consuming and variable, ne-
cessitating automated methods. Deep learning, particularly 3D U-Net architectures, has revo-
lutionised medical image analysis by leveraging volumetric data to capture spatial context, en-
hancing segmentation accuracy. This paper reviews brain tumour segmentation methods, em-
phasising 3D U-Net advancements. We analyse contributions from the Brain Tumour Segmen-
tation (BraTS) challenges (2014-2023), highlighting key improvements and persistent chal-
lenges, including tumour heterogeneity, limited annotated data, varied imaging protocols, 
computational constraints, and model generalisation. Unlike previous reviews, we synthesise 
these challenges, proposing targeted research directions: enhancing model robustness through 
domain adaptation and multi-institutional data sharing, developing lightweight architectures 
for clinical deployment, integrating multi-modal and clinical data, and incorporating explain-
ability techniques to build clinician trust. By addressing these challenges, we aim to guide fu-
ture research toward developing more robust, generalisable, and clinically applicable segmen-
tation models, ultimately improving patient outcomes in neuro-oncology. 

 

1. INTRODUCTION 
Brain tumours are among the most dangerous diseases globally, significantly contributing to cancer-

related morbidity and mortality. The brain’s complex structure and vital nervous system functions make 
tumours in any part of the brain or skull particularly challenging to diagnose and treat [1]. Gliomas are the 
most common type of brain tumour, accounting for approximately 78% of malignant brain tumours. They 
are classified into two categories: Low-Grade Gliomas (LGG), which are less malignant and grow slowly, 
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and High-Grade Gliomas (HGG), which are highly malignant and proliferate rapidly [2]. 
Brain tumours can be primary or metastatic (secondary). Primary brain tumours originate in the brain 

tissue or surrounding areas, consisting of glial and non-glial cells that grow in blood vessels, nerves, and 
glands. These tumours can be benign or malignant and typically do not spread to other body parts [3]. 
Benign tumours lack malignant cells but can still impact critical brain functions due to their size and loca-
tion. Malignant tumours, often referred to as brain cancer, are more dangerous because they can invade 
nearby brain tissue [4, 5].  

The World Health Organization (WHO) classifies brain tumours into four grades based on their his-
tological characteristics and growth rate: Grade I tumours are regular in shape and grow slowly; Grade II 
tumours appear abnormal and also grow slowly; Grade III tumours grow more rapidly than Grade I and II 
tumours; and Grade IV tumours proliferate quickly and are highly malignant. Additionally, brain tumours 
progress through five stages, from stage zero to stage four, with stage four representing the most advanced 
and aggressive form [6]. 

Early and accurate diagnosis of brain tumours is crucial for effective treatment planning and improving 
patient survival rates. Magnetic Resonance Imaging (MRI) is a superior and widely used diagnostic tool for 
brain imaging, playing a vital role in the identification and localisation of brain tumours due to its high soft 
tissue contrast and ability to provide detailed anatomical information without ionising radiation [7] MRI 
typically utilises four input modalities: T1-weighted images without contrast, T1-weighted images with con-
trast enhancement (T1ce), T2-weighted images, and Fluid-Attenuated Inversion Recovery (FLAIR) images 
[8, 9]. Each modality provides unique insights into tumour characteristics, aiding in comprehensive assess-
ment and diagnosis [2]. 
 

 
Figure 1. MRI modalities and corresponding tumour regions: (a) Flair image, (b) T1-weighted image 
without contrast, (c) T1c image with contrast enhancement, (d) T2 image, and (e) Final labels of com-
bined tumor segmentations. Colour overlays denote tumour regions—yellow represents the whole tu-
mour (Edema), brown indicates the enhancing tumour, and blue shows the tumour core (necrosis). 

https://doi.org/10.4236/jbise.2025.181001


 

 

https://doi.org/10.4236/jbise.2025.181001 3 J. Biomedical Science and Engineering 
 

Figure 1 illustrates different MRI modalities used in brain tumour imaging, highlighting tumour re-
gions identified in each modality. The colour overlays denote various tumour components: yellow represents 
the whole tumour, brown indicates enhancing tumour regions, blue shows tumour core areas. Each MRI 
modality contributes unique insights into the tumour’s structure, essential for comprehensive segmentation 
and diagnosis. The segmented image shows different tumour regions, such as peritumoral edema (typically 
bright on FLAIR), enhancing Tumour (Bright on T1c), and necrotic and non-enhancing tumour core (dark 
on T1c, bright on T2). 

Manual segmentation of brain tumours from MRI images poses significant challenges due to the ex-
tensive volumetric data, intensity variations, low contrast, and the presence of noise. This process is not only 
time-consuming but also prone to errors and inter-observer variability [10]. Traditional image segmentation 
techniques, such as thresholding, edge detection, and region-based methods, often fall short in handling the 
heterogeneity and complex structures of brain tumour [11, 12]. 

The advent of artificial intelligence, particularly deep learning techniques, has transformed medical 
image analysis and processing. Convolutional Neural Networks (CNNs) have shown remarkable success by 
efficiently extracting relevant features from imaging data and automating the segmentation process [13, 14]. 
Various popular deep learning (DL) architectures have been applied in medical imaging, including AlexNet 
[14], VGGNet [15], InceptionNet [16], XceptionNet [17], U-Net [18], ResNet [19], and DenseNet [20]. U-
Net Deep learning architectures have demonstrated exceptional performance in biomedical image segmen-
tation tasks due to their ability to capture both local and global context through their encoder-decoder struc-
ture with skip connections [18]. The 3D U-Net, an extension of the original 2D U-Net architecture, is spe-
cifically designed to process volumetric data, capturing spatial context across multiple slices and improving 
segmentation accuracy for 3D medical images [21]. 

Despite significant advancements, several challenges persist in accurately segmenting brain tumours 
using deep learning techniques. Issues such as tumour heterogeneity, class imbalance in datasets, limited 
sample sizes, and variations in imaging protocols across different institutions hinder the generalisation of 
models [22]. Additionally, the computational complexity and memory requirements of training deep learn-
ing models on large 3D datasets pose practical constraints, limiting their applicability in resource-con-
strained environments [23]. 

Accurate tumour segmentation is not only essential for diagnosis but also forms the foundation for 
downstream tasks, such as survival prediction. Survival prediction in brain tumour segmentation involves 
using machine learning techniques, such as Random Forest, to estimate patient survival time based on fea-
tures extracted from brain tumour regions. These features typically include tumour volumes (e.g., whole 
tumour, enhancing tumour, and tumour core), shape descriptors (e.g., surface area, sphericity, and com-
pactness), and intensity-based metrics derived from multimodal MRI sequences like T1, T2, and FLAIR. 
Random Forest operates as a regression model for survival analysis, where it combines decision trees to 
handle non-linear relationships and interactions between features effectively. Its ensemble approach makes 
it robust to overfitting, and its ability to rank feature importance provides insights into the most critical 
predictors of survival. While Random Forest models are relatively easy to train and interpret, their perfor-
mance heavily relies on the quality of tumour segmentation and the richness of the extracted features, mak-
ing preprocessing a crucial step in the pipeline. 

This review aims to provide a comprehensive overview of current deep learning techniques for brain 
tumour segmentation, focusing on the advancements and challenges associated with 3D U-Net architec-
tures. We critically analyse the contributions and limitations of state-of-the-art methods, particularly those 
from the Brain Tumour Segmentation (BraTS) challenges from 2014 to 2023. By synthesising existing 
knowledge and identifying unresolved issues, we seek to guide future research toward developing more ro-
bust, generalizable, and clinically applicable segmentation models. Our unique contribution lies in high-
lighting the gaps in current methodologies and proposing potential pathways for improvement, including 
enhancing model robustness, improving cross-domain generalisation, and integrating multi-modal data for 
comprehensive tumour analysis. 
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2. MATERIALS AND METHODS 
2.1. Review Methodology 

This review aims to comprehensively analyse the current state of brain tumour segmentation using 
deep learning techniques, with a particular focus on 3D U-Net architectures. To ensure a systematic and 
thorough examination of the literature, a structured search was conducted using electronic databases, in-
cluding PubMed, IEEE Xplore, Science Direct, and Google Scholar. 

Search Strategy: The search terms used included “brain tumour segmentation,” “deep learning,” “3D 
U-Net,” “MRI,” “BraTS challenge,” “glioma segmentation,” “convolutional neural networks,” and “medical 
image analysis.” Studies published between 2014 and October 2023 were considered to capture the most 
recent advancements, especially those related to the BraTS challenges [24]. Only articles published in English 
were included. 

Inclusion Criteria: The review included peer-reviewed journal articles and conference papers that fo-
cused on brain tumour segmentation using deep learning techniques. Research involving 3D U-Net archi-
tectures or their variants was prioritised. Papers discussing the BraTS challenges and their contributions and 
limitations from 2014 to 2023 were also included. 

Exclusion Criteria: Studies not related to brain tumour segmentation or those not utilising deep learn-
ing methods were excluded. Non-English publications were also excluded. 

Data Extraction and Synthesis: Relevant information from the selected studies was extracted, includ-
ing the proposed methods, datasets used, performance metrics, and key findings. Emphasis was placed on 
studies that provided critical insights into the advancements, challenges, and future directions of 3D U-Net 
architectures in brain tumour segmentation. 

2.2. Image Segmentation Technique 

Image segmentation is a crucial step in medical image analysis, involving the partitioning of an image 
into meaningful regions to facilitate interpretation and diagnosis. In the context of brain tumour segmenta-
tion, the goal is to accurately delineate tumour tissue from healthy brain tissue in MRI scans. 

Traditional Segmentation Methods 
While traditional segmentation methods like edge detection [11, 12], region-based segmentation [25], 

thresholding [26], and clustering [27] have been applied to brain tumour segmentation, they often fall short 
when confronted with the inherent complexity and heterogeneity of these tumours. These methods rely on 
identifying specific image features to delineate tumour boundaries, but they face several challenges in the 
context of brain tumour analysis. 

Edge-based methods [11, 12] attempt to delineate tumour boundaries by detecting discontinuities in 
image intensity using operators such as Gradient, Sobel, Prewitt, and Canny. However, the boundaries of 
brain tumours are often ill-defined and diffuse, making it difficult for these methods to accurately capture 
the tumour’s true extent. Furthermore, noise and artefacts in magnetic resonance imaging (MRI) scans can 
lead to the detection of spurious edges, reducing the reliability of these techniques [12]. 

Region-based segmentation groups pixels with similar characteristics like intensity, shape, and texture. 
The underlying assumption of pixel homogeneity within regions can be violated in brain tumours, which 
often exhibit heterogeneous internal structures. This heterogeneity leads to under-segmentation or over-
segmentation, as the algorithm may fail to separate distinct tumour subregions or may erroneously merge 
tumour regions with surrounding healthy tissue. 

Thresholding-based methods [25], such as Otsu’s method [28], classify pixels as tumour or non-tumour 
based on predefined intensity thresholds. However, the intensity distributions of tumour and healthy tissues 
often overlap significantly, making it challenging to determine a single optimal threshold [25]. This overlap 
can result in inaccurate segmentation, especially in cases of low-contrast tumours or those with intensity 
profiles similar to surrounding structures. 

Clustering-based segmentation [29] employs algorithms like K-means to group pixels into clusters 
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based on feature similarity. While effective in some contexts, K-means clustering assumes spherical and 
equally sized clusters, which is often not the case for irregularly shaped brain tumours [27]. Moreover, the 
presence of noise and the variability in tumour appearance across different patients can compromise the 
accuracy of clustering-based approaches [29]. 

In summary, traditional segmentation methods often struggle to accurately delineate brain tumours 
due to the latter’s irregular shapes, heterogeneous intensity profiles, and indistinct boundaries. These limi-
tations highlight the need for more sophisticated techniques, such as deep learning, which can learn complex 
patterns and adapt to the variability inherent in brain tumour imaging data. 

2.3. Deep Learning for Brain Tumour Segmentation 

Deep learning, a subfield of machine learning based on artificial neural networks with representation 
learning, has emerged as a powerful tool in medical image analysis [30-32]. Convolutional Neural Networks 
(CNNs), a specialised deep learning architecture, have been particularly successful in image-related tasks 
due to their ability to automatically learn hierarchical features directly from raw data [33-35]. This section 
will focus on CNNs and their application in the context of brain tumour segmentation, highlighting key 
architectural components, challenges, and evaluation metrics.  

2.3.1. Convolutional Neural Networks (CNNs) 
CNNs are designed to process data with a grid-like topology, making them particularly well-suited for 

image analysis. They learn spatial hierarchies of features automatically and adaptively, starting from low-
level features like edges and textures to higher-level features representing complex patterns. Figure 2 illus-
trates a typical CNN architecture used for brain tumour segmentation (see Figure 2). The input MRI image 
undergoes a series of operations, starting with convolutional layers that extract spatial features using learned 
filters. These features are then downsampled using pooling layers, reducing dimensionality while retaining 
essential information. Activation functions introduce non-linearity, enabling the network to learn complex 
patterns. This process is repeated through multiple layers, progressively extracting higher-level features. Fi-
nally, fully connected layers integrate these features to produce a segmentation map, delineating tumour 
regions from healthy tissue. 
 

 
Figure 2. A CNN-based model for brain tumour segmentation. The input MRI image is 
processed through convolutional layers, pooling layers, and activation functions, resulting 
in a segmented output that highlights the tumour region separated from healthy tissues. 
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1) Convolution Operations 
Convolutional layers are the core building blocks of CNNs. They apply learned filters to the input im-

age, extracting features such as edges, textures, and patterns (see Figure 3). Each filter slides across each 
channel of the input (e.g., red, green, and blue channels in an RGB image), performing element-wise multi-
plication and summation to produce a single value in the output feature map. The collection of feature maps 
generated by different filters represents the learned features at that layer.  
 

 
Figure 3. Processing of an RGB colour channel image by a convolution kernel. The convolution opera-
tion applies a filter across each colour channel to detect specific features, which are then combined to 
form a feature map. 
 

2) Challenges in Training Deep Networks 
Training deep neural networks presents several challenges, including the vanishing gradient problem, 

overfitting, high computational cost, and the requirement for large, labelled datasets [36]. The vanishing 
gradient problem is particularly relevant in deep architectures (see Figure 4). During backpropagation, gra-
dients are calculated using the chain rule, and in deep networks, these gradients can become progressively 
smaller as they are multiplied through multiple layers. This issue is especially pronounced when using acti-
vation functions like sigmoid, whose derivatives are always less than or equal to 0.25. As a result, the gradi-
ents in the earlier layers become extremely small, hindering effective weight updates and slowing down or 
even halting the learning process in those layers [37]. This challenge can lead to slow convergence, requiring 
additional techniques such as batch normalization, residual connections, and careful weight initialization to 
maintain stable learning. 

Figure 4 illustrates the training process of a deep neural network using backpropagation. The process 
begins with a feedforward calculation, where input neurons pass weighted sums through hidden layers to 
compute outputs. Each neuron applies an activation function to introduce non-linearity, enhancing learning 
capability. The output layer produces model predictions, which are compared to observed values to compute 
the error function. If the error is above a predefined tolerance, backpropagation updates the weights using 
gradient descent. Gradients are calculated using the chain rule to adjust weights and minimize the loss func-
tion iteratively. The weight update process continues for multiple epochs until convergence is achieved. The 
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training stops when the error falls below the specified threshold, ensuring optimal model performance. 
However, factors like learning rate selection, regularization, and the choice of optimizer play a crucial role 
in stabilizing training and preventing divergence. 
 

 
Figure 4. Illustration of the vanishing gradient problem during backpropagation. The diminishing gra-
dients hinder the updating of weights in the earlier layers of deep neural networks, slowing down or 
halting learning. 
 

3) Activations Functions 
Activation functions are crucial components of deep learning models, introducing non-linearity that 

allows networks to approximate complex, non-linear functions and learn intricate patterns from input data 
[38-40]. In the context of medical image segmentation, the choice of activation function can significantly 
influence model performance, convergence speed, and the ability to mitigate issues like the vanishing gra-
dient problem [41-43]. 
• Rectified Linear Unit (ReLU): ReLU is a widely adopted activation function that outputs the input 

directly if it is positive; otherwise, it outputs zero (Formula: ReLU(z) = max(0, z)). Its simplicity makes 
it computationally efficient and helps alleviate the vanishing gradient problem for positive inputs. How-
ever, ReLU can suffer from the “dying ReLU” problem, where neurons become inactive and output 
zero for all inputs if their weights are updated in a way that makes them always produce negative out-
puts [38].  

• Leaky ReLU: Leaky ReLU addresses the “dying ReLU” problem by allowing a small, non-zero gradient 
when the input is negative (Formula: Leaky ReLU(z) = z if z > 0, else ϵz, where ϵ is a small constant, 
typically 0.01). This small slope for negative inputs ensures that neurons remain active and contribute 
to learning, even when their inputs are negative [39]. 

• Swish: Swish is a more recent activation function that exhibits a smooth, non-monotonic curve (For-
mula: Swish(z) = z*sigmoid(z)). Its non-monotonicity, meaning it doesn’t strictly increase or decrease, 
may allow it to better capture complex patterns in the data. The smooth nature of Swish can lead to 
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better gradient flow compared to ReLU, potentially improving training performance in deep networks 
[41]. 

• HardELiSH: HardELiSH is a computationally efficient variant of the ELiSH activation function, using 
piece-wise linear approximations instead of exponential operations. Formula: 

( )
( )

1max 0,min 1, if 1
2

HardELiSH
1e 1 max 0,min 1, if 0

2
z

zz z
z

z z

   +  ≥    
    = 

 +  − <     

                  (1) 

The piece-wise linear approximation aims to reduce computational costs without significant perfor-
mance degradation. 
 

 
Figure 5. Common activation functions used in neural networks: Sigmoid, Tanh, ReLU (Rectified Lin-
ear Unit), Leaky ReLU, swish, and HardEliSH. These functions influence the network’s learning dy-
namics and performance. 
 

Figure 5 illustrates several commonly used activation functions. Sigmoid maps inputs to a range be-
tween 0 and 1. ReLU outputs the input directly if positive, otherwise zero. Leaky ReLU introduces a small 
slope for negative inputs. Sigmoid maps inputs to a range between 0 and 1. Swish exhibits a smooth, non-
monotonic curve. HardELiSH offers a computationally efficient approximation of ELiSH using piece-wise 
linear functions. These functions play a critical role in shaping the learning dynamics and overall perfor-
mance of neural networks. The HardELiSH is a computationally efficient approximation of the ELiSH (Ex-
ponential Linear Squashing) function, employing piece-wise linear functions to retain much of the perfor-
mance benefits while reducing computational overhead. HardEliSH activation function has shown superior 
performance in brain tumour segmentation [44]. Its ability to balance computational efficiency with strong 
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gradient propagation makes it especially well-suited for segmentation tasks involving high-dimensional 
medical imaging data, such as those in 3D volumetric datasets like BraTS2020. This superior performance 
can be attributed to HardELiSH robust handling of non-linearities and its capacity to adapt to the complex 
patterns present in medical images, enabling better delineation of tumour boundaries and improved seg-
mentation accuracy.  

These functions are critical for shaping the learning dynamics and overall performance of neural net-
works, influencing the convergence speed, gradient flow, and ultimately the model’s accuracy. 

These advanced activation functions enable deep learning models to overcome the limitations of tradi-
tional functions, such as Sigmoid or Tanh, which suffer from the vanishing gradient problem in deeper 
networks. In the context of brain tumour segmentation, they provide essential benefits: 
• Improved Gradient Flow: By mitigating the vanishing gradient problem, advanced functions ensure 

that deeper layers in models like 3D U-Net continue learning effectively, resulting in better segmenta-
tion performance. 

• Enhanced Feature Extraction: These functions allow for more nuanced feature mapping, critical for 
detecting tumour boundaries and distinguishing different tissue types in MRI data. 

• Computational Efficiency: Functions like ReLU and HardELiSH offer efficiency, enabling models to 
process high-dimensional MRI data faster, which is crucial for clinical applications. 
Incorporating these advanced activation functions in brain tumour segmentation models can lead to 

more accurate, robust, and clinically viable results, making them a vital component in modern medical im-
aging techniques. Continued research into novel activation functions remains crucial for further improving 
the performance and efficiency of deep learning models in medical image analysis. 

4) Fully Connected Layers 
Following the convolutional and pooling layers, fully connected layers integrate the extracted features 

to perform classification or regression tasks (see Figure 6). In fully connected layers, each neuron is con-
nected to every neuron in the previous layer, allowing the network to learn global patterns and relationships 
between features [45]. In the context of segmentation, these layers combine the learned features to produce 
the final segmentation map, assigning each pixel to a specific class (e.g., tumour or healthy tissue) [46]. 
 

 
Figure 6. Block diagram of a CNN with fully connected layers. After convolutional and pooling layers 
extract features, the fully connected layers interpret these features to produce the final output, such as 
segmentation maps. 

2.3.2. 3D U-Net Architecture  
The U-Net architecture, originally proposed by Ronneberger et al. [18], has become a cornerstone of 

medical image segmentation. It features an encoder-decoder structure with skip connections. The encoder 
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path captures contextual information through successive convolutional and pooling layers, while the de-
coder path recovers spatial information through upsampling and concatenation with corresponding feature 
maps from the encoder path. 

The 3D U-Net architecture extends the original U-Net to process volumetric data, making it particu-
larly suitable for 3D medical imaging modalities like MRI (see Figure 7). The network consists of an encoder 
path that captures context through a series of 3D convolutional and pooling layers and a decoder path that 
enables precise localisation using 3D up-convolutional layers. Critically, skip connections between the en-
coder and decoder paths concatenate feature maps of the same resolution, allowing the network to combine 
high-level semantic information from the decoder path with fine-grained spatial details from the encoder 
path. This architecture allows for accurate segmentation by effectively capturing 3D spatial context and pre-
serving detailed spatial information across all three dimensions. 

The 3D U-Net architecture also benefits from its ability to process entire volumetric patches, reducing 
the need for slice-by-slice analysis and ensuring more consistent segmentations across contiguous slices. Its 
use of 3D convolutions enables the extraction of spatial features from the entire volume, capturing intricate 
patterns and relationships in medical imaging data. Additionally, the 3D U-Net is highly flexible and can be 
adapted to different scales and resolutions, making it suitable for tasks involving multi-resolution input data. 

The ability of 3D U-Net to effectively capture and integrate hierarchical features makes it highly robust 
in scenarios involving irregularly shaped anatomical structures or small lesions. Moreover, the symmetrical 
design of the encoder and decoder paths facilitates efficient learning and optimization, while the skip con-
nections help mitigate the risk of information loss during feature downsampling. As a result, 3D U-Net has 
become a preferred choice for a wide range of 3D segmentation tasks in medical imaging. 
 

 
Figure 7. The 3D U-Net architecture for volumetric data segmentation. The network uses 3D convolu-
tions, pooling, and upsampling layers, effectively capturing spatial relationships in all dimensions to 
improve segmentation accuracy. 
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2.3.3. Comparison between 2D and 3D U-Net 
While 2D U-Net architectures process volumetric data slice-by-slice, 3D U-Net architectures operate 

directly on the entire volume [47-50]. This difference has significant implications for segmentation accuracy, 
computational cost, and the ability to capture spatial context. Table 1 summarises the key differences be-
tween 2D and 3D U-Net architectures. 
 
Table 1. Differences between 2D U-Net and 3D U-Net architectures. 

Features 
Comparison between 2D U-Net and 3D U-Net 

2D U-Net 3D U-Net 
Input Data 2D images (slices of volumetric data) 3D volumetric data 
Dimensions Height and Width Height, width, and depth 
Convolution 2D convolution layers 3D convolution layers 
Pooling 2D max pooling layers 3D max pooling layers 
Up-Convolution 2D up-convolution layers 3D up-convolution layers 
Spatial Context Limited to individual slices Maintains spatial continuity across slices 
Feature Representation Extracts features based on 2D context Extracts features based on 3D context 

Computational Complexity 
Lower computational power and 
memory 

Higher computational power and 
memory 

Training and Accuracy Faster and efficient Higher accuracy and precision 
Output 2D segmentation maps 3D segmentation maps 
 

Table 1 summarizes the key differences between 2D U-Net and 3D U-Net architectures, highlighting 
aspects such as input data, dimensions, layer types (convolution, pooling, up-convolution), spatial context, 
feature representation, computational complexity, training efficiency, and the format of output segmenta-
tion maps. 

2.3.4. Evaluation Metrics 
To thoroughly evaluate the performance of segmentation models, it is crucial to employ a variety of 

metrics that assess different aspects of accuracy and overlap with the ground truth [51]. Each metric provides 
unique insights into the model’s ability to accurately delineate tumour regions from healthy tissue.  
• True Positive (TP): Instances where the model correctly identifies a pixel as belonging to the tumour. 
• True Negative (TN): Instances where the model correctly identifies a pixel as belonging to healthy 

tissue (not part of the tumour). 
• False Positive (FP): Instances where the model incorrectly identifies a healthy pixel as belonging to the 

tumour. 
• False Negative (FN): Instances where the model incorrectly identifies a tumour pixel as belonging to 

healthy tissue. 
1) Equations for Evaluations Metrics 

• Accuracy  

Accuracy P N

P P N N

T T
T F F T

+
=

+ + +
                             (2)  

Accuracy measures the overall correctness of the model’s predictions, representing the proportion of 
correctly classified pixels (both tumour and non-tumour) out of the total number of pixels However, accu-
racy can be misleading in cases of class imbalance, where the number of non-tumour pixels significantly 
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exceeds the number of tumour pixels [52]. In medical imaging, where tumour regions are often small com-
pared to the background, accuracy alone may not adequately reflect the model’s ability to detect pathological 
regions. 
• Precision  

Precision P

P P

T
T F

=
+

                                 (3) 

Precision quantifies the proportion of true positive predictions among all positive predictions made by 
the model. It reflects the model’s ability to avoid false positives and is particularly important in medical 
applications where false positives can lead to unnecessary treatments [53]. However, high precision alone 
does not guarantee that the model is effective at identifying all tumour regions, as it does not account for 
false negatives. 
• Recall (Sensitivity) 

Recall p

P N

T
T F

=
+

                                 (4)  

Recall, also known as sensitivity or the true positive rate, measures the proportion of actual tumour 
pixels that are correctly identified by the model. It reflects the model’s ability to detect all positive instances 
and is crucial in medical diagnosis to minimise missed cases [53]. However, high recall may come at the cost 
of increased false positives, which can reduce precision. 
• Specificity  

Specificity
 

N

P N

T
F T

=
+

                              (5)  

 

 
Figure 8. Graphical representation of sensitivity and specificity. Sensitivity (true positive rate) 
measures the proportion of actual positives correctly identified, while specificity (true negative 
rate) measures the proportion of actual negatives correctly identified. These metrics are essential 
for assessing the accuracy of segmentation models in detecting tumour presence [52]. 
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Specificity, also known as the true negative rate, measures the proportion of actual non-tumour pixels 
that are correctly identified by the model. It reflects the model’s ability to correctly identify negative in-
stances [52]. Which is important for ensuring that healthy regions are not misclassified as pathological. 
However, specificity alone does not provide information about the model’s ability to detect tumour regions. 

Figure 8 provides a graphical representation of sensitivity and specificity. Sensitivity, also known as the 
true positive rate, measures the proportion of actual positives (tumour pixels) that are correctly identified 
by the model. Specificity, also known as the true negative rate, measures the proportion of actual negatives 
(non-tumour pixels) that are correctly identified. These metrics are essential for evaluating the accuracy of 
segmentation models in detecting the presence and absence of tumours [54]. 
• F1-score (Dice Similarity Coefficient) 

2 Precision RecallF-score
Precision Recall
× ×

=
+

                             (6) 

The F1-score, also known as the Dice Similarity Coefficient (DSC) in the context of image segmenta-
tion, is the harmonic mean of precision and recall. It provides a balanced measure of the model’s perfor-
mance, which is particularly useful when both false positives and false negatives are of concern [55]. 

The Dice score is widely used in medical image segmentation due to its ability to handle class imbalance 
and provide a single metric that reflects both precision and recall. However, it may not fully capture the 
spatial accuracy of segmentation boundaries, which can be critical in clinical applications. 
• Jaccard Index 

Jaccard Index P

P P N

T
T F F

=
+ +

                               (7) 

The Jaccard Index, also known as the Intersection over Union (IoU), measures the overlap between the 
predicted segmentation and the ground truth segmentation. It is similar to the Dice score but is more sen-
sitive to false positives [55]. It is particularly useful for evaluating segmentation performance in scenarios 
where precise boundary delineation is critical, such as surgical planning or radiation therapy. However, like 
the Dice score, it may not fully account for the clinical significance of segmentation errors. 
• Hausdorff Distance (HD) 

The Hausdorff Distance (HD) measures the maximum distance between the boundaries of the pre-
dicted segmentation and the ground truth. It is particularly useful for evaluating the spatial accuracy of 
segmentation boundaries, which is critical in applications such as radiotherapy planning, where precise tu-
mour localization is essential. However, HD can be sensitive to outliers and may not reflect overall segmen-
tation quality [56]. 

( ) ( ), max max min ,max min
b B a Aa A b B

H A B a b a b
∈ ∈∈ ∈

= − −                       (8)  

• Intersection over Union (IOU) 
Intersection over Union is a key metric in deep learning for evaluating segmentation and object detec-

tion models. It measures the overlap between the predicted and ground truth regions. IoU is calculated as: 

IntersectionIoU
Union

pred gt

pred gt

A A
A A

= =




                             (9) 

where predA  is the predicted region and gtA  is the ground truth. IoU values range from 0 to 1, where 1 
indicates perfect overlap. Higher IoU means better model performance. In semantic segmentation, IoU is 
computed for each class and averaged (Mean IoU). A common threshold (e.g., 0.5) is used in object detection 
to determine true positives. IoU helps in model optimization by assessing prediction accuracy effectively. 
• Clinical Relevance and Limitations 

Each of these metrics provides unique insights into the performance of segmentation models, but they 
also have limitations that must be considered in the context of medical imaging: 
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• Accuracy is less informative in imbalanced datasets, where tumour regions are small compared to the 
background. 

• Precision is critical for minimizing false positives, which can lead to unnecessary clinical interventions. 
• Recall is essential for ensuring that all tumour regions are detected, reducing the risk of missed diag-

noses. 
• Specificity is important for correctly identifying healthy regions, but it does not directly reflect tumour 

detection performance. 
• Dice Score and Jaccard Index provide balanced measures of segmentation performance but may not 

fully capture boundary accuracy or clinical significance. 
• Hausdorff Distance is useful for evaluating boundary precision but can be sensitive to outliers. 
• IoU measures the overlap between predicted and ground truth regions but is less sensitive to small 

structural differences and imbalanced datasets.  
In clinical practice, a combination of these metrics is often used to comprehensively evaluate segmen-

tation performance. For example, the Dice score and Hausdorff Distance are commonly used together to 
assess both overlap and boundary accuracy. Additionally, visual inspection by clinicians remains a critical 
step in validating segmentation results, as it provides context-specific insights that quantitative metrics may 
not capture. 
 
Table 2. Summary of evaluation metrics. 

Metrics 
Evaluation Metrics 

Formula Description 

Accuracy P N

P P N N

T T
T F F T

+
+ + +

 Measures overall correctness of 
predictions. 

Precision P

P P

T
T F+

 Proportion of true positives 
among all positive predictions. 

Recall (Sensitivity) p

P N

T
T F+

 Proportion of actual positives 
correctly identified. 

Specificity  
N

P N

T
F T+

 Proportion of actual negatives 
correctly identified. 

F1-score (Dice  
Similarity Coefficient) 

2 Precision Recall
Precision Recall
× ×

+
 Harmonic mean of precision 

and recall. 

Jaccard Index P

P P N

T
T F F+ +

 
Measures overlap between  
predicted and ground truth  
segmentation. 

Hausdorff Distance ( ) ( ), max max min ,max min
b B a Aa A b B

H A B a b a b
∈ ∈∈ ∈

= − −  
Measures maximum boundary 
deviation between prediction 
and ground truth. 

 
Table 2 shows the evaluation metrics commonly used in segmentation tasks, including their formulas 

and descriptions. These metrics assess various aspects of model performance, such as overall accuracy, pre-
cision, recall (sensitivity), specificity, and overlap measures like F1-score (Dice Similarity Coefficient) and 
Jaccard Index. Additionally, the Hausdorff Distance evaluates the maximum boundary deviation between 
predictions and ground truth, providing insights into segmentation quality. 
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2.4. Overview of Brain Tumour Segmentation Using Deep Learning 

Deep learning techniques have revolutionised the field of brain tumour segmentation by enabling mod-
els to learn intricate features directly from data, leading to significant improvements in accuracy and effi-
ciency. This section provides an overview of key contributions in this area, highlighting both general studies 
and notable advancements from the annual Brain Tumour Segmentation (BraTS) challenges. Figure 1 illus-
trates different MRI modalities and their corresponding segmented brain tumours, showcasing the ability 
of deep learning models to delineate complex tumour regions. 

2.4.1. Contributions and Limitations from General Studies 
Several studies have explored diverse deep-learning approaches for brain tumour segmentation, each 

with its strengths and limitations: 
 
Table 3. Contributions and limitations from general studies. 

Author 
General Studies 

Year Contributions Limitations 

Fernando and 
Tsokos [57] 

2023 

The study Integrated statistical methods with 
deep learning for 3D MRI brain tumour 
segmentation. Their approach showed enhanced 
accuracy compared to traditional methods 

The proposed study suffered 
from slow convergence and 
susceptibility to local optima 
during training. 

Montaha et 
al. [58] 

2023 
This study explored a standard U-Net 
architecture for brain tumour segmentation, 
demonstrating competitive performance. 

Noted the computational 
complexity of the model and the 
potential for dataset-specific 
limitations in its generalizability. 

Ullah et al. 
[59] 

2021 

Introduced a brain MR image enhancement 
method as a pre-processing step to improve 
segmentation using a 3D U-Net. They achieved 
high Dice scores 

They did not outperform 
existing state-of-the-art 
techniques. 

Feng et al. 
[60] 

2020 

Proposed an ensemble of 3D U-Nets combined 
with a multivariate linear regression model. 
While their method improved segmentation 
accuracy 

They raised concerns about 
overfitting due to the limited 
size of the datasets used. 

Henry et al. 
[61] 

2020 

Presented a 3D U-Net-based solution that 
incorporated self-ensembling and deep 
supervision. Their method achieved robust 
segmentation results. 

This study was limited by the 
diversity of the datasets and high 
computational demands. 

Ballester and 
Vilaplana 
[62] 

2020 

Investigated 3D U-Net architectures with  
patch-based techniques for MRI brain tumour 
segmentation. They proposed using model 
ensembles to improve performance. 

The presented study 
Acknowledged the potential for 
increased false positive 
detections, particularly in the 
enhancing tumor region. 
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Continued 

Wang et al. 
[63] 

2020 
Developed a 3D U-Net-based method for both 
segmentation and survival prediction. Their 
approach enhanced segmentation accuracy 

Exhibited modest performance 
in survival prediction and faced 
computational challenges. 

Sun et al. [64] 2019 

Developed an automated framework that 
combined deep CNNs with Radiomic features 
extracted from MRI data. Their approach 
improved segmentation performance 

Showed limitations in accurately 
predicting patient survival. 

 
Table 3 summarizes the contributions and limitations of various general studies on brain tumor seg-

mentation using 3D medical imaging. The studies span a range of methodologies, including statistical inte-
gration with deep learning, U-Net architectures, preprocessing enhancements, and ensemble models. Con-
tributions include improved segmentation accuracy, robust frameworks, and innovative preprocessing tech-
niques. However, limitations such as computational complexity, dataset-specific challenges, overfitting, slow 
convergence, and modest survival prediction performance highlight the need for further advancements in 
these approaches. 

2.4.2. BraTS Challenges Contributions and Limitations and Research Gaps (2014-2023) 
The Multimodal Brain Tumour Segmentation (BraTS) challenge has played a crucial role in advancing 

the field by providing standardised datasets, evaluation metrics, and a common platform for comparing 
different methodologies [24]. Each year, the challenge has spurred the development of novel techniques and 
pushed the boundaries of segmentation accuracy. The following is a summary of notable contributions and 
achievements from each year of the BraTS challenge, showcasing the evolution of segmentation techniques. 
• 2014—Establishment of the BraTS Benchmark: 
 Contribution:  

Menze et al. [24] established the initial BraTS dataset and benchmark, providing a crucial resource for 
evaluating and comparing brain tumour segmentation models. The dataset included multi-contrast MRI 
scans (T1, T1ce, T2, FLAIR) with expert annotations of tumour regions (whole tumour, tumour core, en-
hancing tumour). 

The study’s contributions include organizing the BRATS 2012 and 2013 challenges, which created a 
unique public dataset of MR scans for brain tumour segmentation with multiple expert annotations. The 
authors established the annotation protocol, acquired and annotated clinical images, generated synthetic 
datasets, and developed pre-processing methods and evaluation scripts. They also maintained online vali-
dation tools for community use. Notably, the study highlights that fusing different segmentation algorithms 
can significantly improve performance, suggesting that future advancements may stem from exploring var-
ious fusion strategies, thereby providing a valuable resource for researchers in medical imaging and brain 
tumour segmentation. 
 Limitations:  

The study on the BRATS benchmark identifies several limitations, including the high variability in 
brain tumours, which complicates algorithm rankings and comparisons. Challenges arise from differing test 
settings across workshop years, making direct comparisons difficult. Additionally, reliance on a single set of 
annotations for test data may not adequately capture expert variability, potentially skewing results. The 
complexity of algorithms further obscures the understanding of performance discrepancies, while the choice 
of evaluation metrics can significantly influence rankings. Furthermore, the lack of longitudinal analysis for 
automated routines highlights a critical gap in assessing their long-term reliability and effectiveness. These 
findings underscore the need for future research and benchmarks to address these limitations and advance 
the field of brain tumour segmentation. 
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 Research Gap and Future Directions:  
The study identifies several research gaps in brain tumour segmentation, including the high variability 

of brain tumours, which complicates the evaluation of segmentation algorithms, and the reliance on a single 
set of annotations that may not fully represent expert opinions. To address these challenges, future improve-
ments could involve expanding datasets to better capture tumour variability, incorporating multiple expert 
annotations for more reliable comparisons, and conducting longitudinal studies to assess algorithm perfor-
mance over time. Additionally, enhancing algorithmic transparency through detailed analysis of segmenta-
tion pipelines, exploring diverse evaluation metrics for comprehensive assessments, and investigating fusion 
strategies to combine multiple algorithms for improved performance are recommended. Addressing these 
areas can significantly enhance the effectiveness and reliability of brain tumour segmentation algorithms. 
• 2016—Introduction of 3D Convolutional Neural Networks: 
 Contribution:  

Kamnitsas et al. [65] introduced a 3D CNN architecture called DeepMedic for brain tumour segmen-
tation, demonstrating the advantages of using volumetric data over 2D slice-based methods. 

The study makes several significant contributions to the field of brain tumour segmentation by enhanc-
ing the DeepMedic architecture with residual connections. A key contribution is the demonstration of how 
residual connections improve the performance of a 3D CNN model, resulting in higher sensitivity and ac-
curacy in segmenting brain tumours. The study includes a comprehensive evaluation of the model on the 
BRATS 2016 challenge, where it achieves competitive performance compared to other state-of-the-art meth-
ods. Furthermore, the research underscores the critical role of data augmentation and normalization tech-
niques in enhancing model robustness, particularly when applied to heterogeneous testing scenarios. These 
findings provide valuable insights for advancing brain tumour segmentation methodologies. 
 Limitations: 

The study acknowledges several limitations that warrant consideration. A significant limitation is the 
model’s reliance on high-quality training data, as its performance can degrade when there is a mismatch 
between the training and testing distributions. While the DeepMedic model demonstrates strong overall 
performance, it faces challenges in accurately segmenting fine substructures, such as necrosis and non-en-
hancing tumours. Additionally, the experiments were primarily conducted under conditions where the 
training and testing distributions were similar, leaving a gap in understanding how the model generalizes to 
more diverse and heterogeneous datasets. These limitations highlight areas for future research to improve 
the robustness and applicability of the model in real-world clinical settings.  
 Research Gap and Future Directions:  

The study identifies several research gaps and outlines promising future directions. It suggests explor-
ing the optimal amount of external data required to enhance model generalization to new and diverse dis-
tributions, as well as investigating the relationship between network capacity and the volume of available 
training data. Additionally, the authors propose further research into the impact of different architectural 
choices and training strategies on segmentation performance, particularly for challenging substructures 
such as necrosis and non-enhancing tumours. Addressing these areas could lead to the development of more 
robust, efficient, and adaptable models, ultimately improving clinical outcomes in brain tumour diagnosis 
and treatment.  
• 2017—Ensembles of Multiple Architectures: 
 Contribution:  

Kamnitsas et al. [66] further developed the Ensemble of Multiple Models and Architectures (EMMA), 
combining DeepMedic, FCN, and U-Net to boost performance and reduce overfitting. 

The study makes significant contributions to medical image analysis, particularly in brain tumour seg-
mentation. The authors introduce EMMA, an ensemble method that integrates multiple models and archi-
tectures to improve segmentation accuracy. By combining diverse neural network configurations and train-
ing strategies, the study demonstrates that ensembling effectively reduces biases and variances inherent in 
individual models, resulting in enhanced robustness for segmenting both high-grade and low-grade gliomas 
demonstrating the benefits of ensemble methods in increasing robustness and accuracy. The approach is 
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validated using a comprehensive dataset from the Brain Tumour Segmentation Challenge 2017, underscor-
ing its effectiveness. 
 Limitations: 

The study also acknowledges several limitations. A key challenge is the reliance on the quality and 
diversity of training data, which can affect the generalizability of the models. Additionally, the complexity 
of the ensemble method introduces computational overhead, potentially limiting its feasibility for real-time 
clinical applications. While the approach improves segmentation performance, it does not fully address the 
issue of model interpretability, which remains a critical concern in medical applications where understand-
ing the decision-making process is essential. 
 Research Gap and Future Directions:  

The study identifies several research gaps and future directions. These include exploring unsupervised 
and semi-supervised learning techniques to enhance model training with limited labeled data, as well as 
integrating multi-modal imaging data to further improve segmentation accuracy and robustness. Future 
work could also focus on developing more efficient ensemble methods that reduce computational demands 
without compromising performance. Finally, advancing model interpretability through explainable AI tech-
niques could facilitate the practical adoption of these methods in clinical environments, bridging the gap 
between cutting-edge research and real-world applications. 
• 2018—Encoder-Decoder Architectures with Autoencoder Regularization: 
 Contribution:  

Myronenko [67] proposed a 3D encoder-decoder architecture with an additional branch for variational 
autoencoder (VAE) regularisation. This approach aimed to improve segmentation accuracy by incorporat-
ing a generative model to learn a latent representation of the input data. 

The study presents significant contributions to the field of brain tumour segmentation through the 
development of an innovative autoencoder-based approach. The authors introduce a semantic segmentation 
network that utilizes an encoder-decoder architecture, which effectively addresses the challenges of limited 
training data. By employing test time augmentation and ensembling multiple models, the approach en-
hances segmentation accuracy across three nested tumour subregions: whole tumour, tumour core, and en-
hancing tumour. The results achieved in the BraTS 2018 challenge demonstrate the method’s effectiveness, 
positioning it among the top-performing submissions and showcasing its potential for clinical applications 
in neuro-oncology. 
 Limitations: 

Despite these advancements, the study acknowledges certain limitations. One notable constraint is the 
reliance on the availability of high-quality annotated datasets, which can be scarce in medical imaging. Ad-
ditionally, while the proposed method shows promising results, it may still struggle with variability in tu-
mour presentations and imaging artifacts that can affect segmentation performance. The authors also high-
light the computational demands of training and deploying deep learning models, which may limit accessi-
bility for some research and clinical settings. 
 Research Gap and Future Directions:  

This proposed study identifies several research gaps and future directions. There is a need for further 
exploration of unsupervised and semi-supervised learning techniques to mitigate the dependency on anno-
tated data. Additionally, the authors suggest investigating the integration of multi-modal imaging data to 
improve segmentation robustness and accuracy. Future work could also focus on real-time segmentation 
applications in clinical environments, as well as the development of user-friendly tools that facilitate the 
adoption of these advanced techniques by healthcare professionals. Overall, the study lays a foundation for 
ongoing research in automated brain tumour segmentation, emphasizing the importance of collaboration 
between machine learning and clinical expertise. 
• 2019—Cascaded U-Net Approach: 
 Contribution:  

Jiang et al. [68] introduced a Two-Stage Cascaded U-Net architecture that refined segmentation pre-
dictions in a coarse-to-fine manner. The first stage produced a preliminary segmentation, which was then 

https://doi.org/10.4236/jbise.2025.181001


 

 

https://doi.org/10.4236/jbise.2025.181001 19 J. Biomedical Science and Engineering 
 

used as input to the second stage for refinement. 
The paper makes several significant contributions to the field of brain tumour segmentation. It intro-

duces a novel two-stage cascaded U-Net architecture designed to segment tumour substructures from coarse 
to fine detail. Trained end-to-end on the BraTS 2019 dataset, which includes diverse high-grade and low-
grade gliomas, the model achieved state-of-the-art performance, securing first place in the BraTS 2019 chal-
lenge. The method demonstrated exceptional robustness for different tumour regions. 
 Limitations: 

A key limitation is the reliance on the BraTS 2019 dataset, which may not fully capture the variability 
encountered in real-world clinical scenarios. Additionally, the model’s performance may be influenced by 
the quality and consistency of input images, and its complex architecture raises concerns about potential 
overfitting. The authors also note that variability in segmentation performance across different models sug-
gests a need for further refinement and validation to ensure generalizability. 
 Research Gap and Future Directions:  

The research gaps and future directions in this study include exploring more diverse datasets to en-
hance the model’s robustness and applicability across clinical settings. The authors also propose investigat-
ing the integration of additional modalities and advanced techniques, such as attention mechanisms or un-
supervised learning, to further improve segmentation accuracy. Future work could focus on enabling real-
time segmentation capabilities and developing user-friendly tools for clinicians, ultimately aiming to im-
prove patient outcomes through more efficient and accurate tumour analysis and monitoring. 
• 2020—nnU-Net Architecture and Batch Normalization: 
 Contribution:  

Isensee et al. [69] proposed the nnU-Net, a self-configuring framework that automatically adapted to 
new datasets by adjusting various parameters, including network topology, pre-processing, and training de-
tails. They replaced instance normalisation with batch normalisation. 

The paper highlights significant contributions of the nnU-Net to brain tumour segmentation. The au-
thors demonstrated the generalizability of nnU-Net by achieving high segmentation accuracy without re-
quiring extensive modifications. By implementing specific enhancements tailored for the BraTS 2020 chal-
lenge, the model outperformed the baseline on the validation set. The final ensemble model, selected based 
on the best-performing configurations, achieved impressive Dice scores and HD95 values for whole tumour, 
tumour core, and enhancing tumour segmentation, ultimately securing first place in the BraTS 2020 com-
petition. This work underscores the effectiveness of nnU-Net in medical image segmentation, particularly 
for brain tumours. 
 Limitations: 

The study acknowledges notable limitations. The study covers only a limited number of modifications 
and lacks extensive experimental validation, raising concerns about the robustness and reproducibility of 
the results. The performance improvements observed may not generalize across different datasets or clinical 
scenarios. Additionally, reliance on specific validation metrics, such as Dice scores and HD95, may not fully 
capture the clinical relevance of the segmentation results, potentially limiting the applicability of the findings 
in real-world settings. 
 Research Gap and Future Directions:  

Several research gaps and future directions can be explored from this study. These include investigating 
more extensive modifications and optimizations of the nnU-Net architecture, such as integrating attention 
mechanisms or multi-task learning. Comprehensive validation studies across diverse datasets would further 
enhance understanding of the model’s generalizability and robustness. Additionally, addressing class imbal-
ance in brain tumour segmentation through novel loss functions or data augmentation strategies could im-
prove performance. These efforts have the potential to advance segmentation accuracy and contribute to 
better clinical outcomes for patients with brain tumours. 
• 2021—Enhanced nnU-Net with Group Normalization: 
 Contribution:  

Luu and Park [70] extended the nnU-Net by doubling the filter sizes in the initial layers and implementing 
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group normalisation instead of batch normalisation. 
The proposed study makes significant contributions to brain tumour segmentation by extending the 

nnU-Net framework, a well-established method in medical image analysis. The authors introduced several 
key modifications, including a larger network architecture, the replacement of batch normalization with 
group normalization, and the incorporation of axial attention in the decoder. These enhancements led to 
improved performance in the Brain Tumour Segmentation Challenge (BraTS) 2021, where their models 
secured first place in the final ranking on unseen test data. Additionally, the authors made their codes, pre-
trained weights, and Docker image publicly available, promoting transparency and enabling further research 
in the field. 
 Limitations: 

Despite these advancements, the study acknowledges certain limitations. A notable challenge is the 
model’s dependency on high-quality MR images, as segmentation performance can degrade with poor image 
quality or artifacts. This underscores the importance of data integrity in training robust models. Further-
more, while the modifications to nnU-Net yielded incremental improvements over the baseline, the authors 
suggest that further experimentation is needed to fully explore the potential of these enhancements and their 
impact on segmentation accuracy across diverse datasets. 
 Research Gap and Future Directions:  

The research gap identified in the study highlights the need for more comprehensive datasets that cap-
ture a wider variety of tumour characteristics and imaging conditions. Future directions include exploring 
diverse data acquisition methods and advanced data augmentation techniques to address edge cases where 
segmentation performance may falter. The authors also emphasize the importance of analysing failure cases 
to refine model behaviour and improve overall accuracy. These efforts could lead to the development of 
more resilient algorithms capable of handling the complexities of brain tumour imaging in clinical settings. 
• 2022—Multi-Framework Ensembles with DeepSeg and nnU-Net: 
 Contribution:  

Zeineldin et al. [71] developed an ensemble approach combining multiple frameworks, including 
DeepSeg, nnU-Net [69], and DeepSCAN, for automatic glioma segmentation in pre-operative MRIs. 

The study makes significant contributions to brain tumour segmentation by developing an ensemble 
model that integrates multiple state-of-the-art U-Net variants, including DeepSeg, nnU-Net, and Deep-
SCAN. This ensemble approach achieved exceptional performance in the BraTS-CE 2022 challenge, deliv-
ering high Dice Similarity Coefficients (DSC) and low Hausdorff distances (HD95) for the enhancing tu-
mour (ET), tumour core (TC), and whole tumour (WT). The method secured first place in the competition 
and demonstrated strong generalizability on unseen test datasets, highlighting its potential for clinical ap-
plications in automatic glioma boundary detection using pre-operative MRI scans. 
 Limitations: 

The study acknowledges certain limitations, particularly in the context of pediatric brain tumour seg-
mentation. The inherent variability and complexity of pediatric tumours, which often exhibit heterogeneous 
tissue types, pose significant challenges for accurate segmentation. The model’s performance on the pediat-
ric test dataset was less robust compared to adult datasets, underscoring the need for specialized techniques 
and larger annotated datasets tailored to paediatric cases. This limitation highlights the importance of fur-
ther research to address the unique characteristics of paediatric brain tumours. 
 Research Gap and Future Directions:  

This study identifies several research gaps and future directions. These include developing more so-
phisticated models capable of handling the complexities of paediatric brain tumour segmentation, integrat-
ing multimodal imaging data, and exploring advanced post-processing techniques to enhance accuracy. Ad-
ditionally, expanding dataset diversity and size could improve model generalization and robustness across 
different patient populations. Addressing these gaps could lead to more effective and reliable tools for brain 
tumour diagnosis and treatment planning, ultimately benefiting both adult and pediatric patients. 
• 2023—Enhanced Synthetic Data Augmentation and GANs: 
 Contribution: 
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Ferreira et al. [72] employed synthetic data augmentation through Generative Adversarial Networks 
(GANs) and integrated multiple deep learning models, including nnU-Net and Swin UNETR. 

The study makes significant contributions to brain tumour segmentation, particularly in the context of 
the BraTS 2023 Adult Glioma challenge. The authors introduced an innovative approach combining En-
hanced Synthetic Data Augmentation with Model Ensemble techniques. By leveraging generative adversar-
ial networks (GANs) and advanced registration methods, they increased the volume and quality of training 
data, significantly improving the performance of deep learning models in segmenting gliomas. This work 
not only advances the state-of-the-art in brain tumour segmentation but also provides a framework for fu-
ture research in synthetic data generation and model optimization. 
 Limitations: 

The study acknowledges certain limitations. A key challenge is the reliance on high-quality annotated 
datasets, which are often scarce and time-consuming to obtain. Additionally, while the proposed methods 
show promising results, they may not generalize well across diverse patient populations or different imaging 
modalities. The authors also highlight the computational demands of their approach, which could limit its 
applicability in real-time clinical settings. These limitations suggest that further refinement and validation 
are needed to ensure robustness and practicality. 
 Research Gap and Future Directions:  

The study identifies several research gaps and future directions. These include exploring the generali-
zability of the proposed methods across diverse demographics and imaging techniques, as well as investi-
gating the integration of multimodal data to further enhance segmentation accuracy. Future work could also 
focus on developing more efficient algorithms to reduce computational costs while maintaining high per-
formance. Overall, the findings emphasize the importance of continued innovation in synthetic data gener-
ation and deep learning methodologies to address the evolving challenges in medical imaging and tumour 
segmentation. 

Table 4 summarizes the methods and results from the BraTS Challenges between 2014 and 2023, show-
casing advancements in segmentation techniques for whole tumor (WT), core tumor (CT), and enhanced 
tumor (ET). Early approaches, such as the 2014 benchmark by Menze et al., established foundational metrics 
with Dice scores of >0.80 (WT), 0.70 (CT), and 0.60 (ET). Subsequent methods, including 3D CNNs, en-
sembles, and advanced U-Net architectures, demonstrated significant improvements in segmentation accu-
racy. Notably, Luu and Park’s enhanced nnU-Net achieved the highest Dice scores in 2021, with 0.938 (WT), 
0.923 (CT), and 0.882 (ET). Recent efforts in 2023, incorporating synthetic data augmentation and GANs, 
further refined performance, emphasizing the growing sophistication of deep learning techniques in medical 
imaging. 
 
Table 4. Summary of BraTS challenges methods and results [2014-2023]. 

Author Year 
Dice Score Results (WT, CT, and ET) 

Method 
Whole  

Tumour 
Core  

Tumour 
Enhanced 
Tumour 

Menze et al. [24] 2014 
Established the Multimodal Brain 
Tumor Image Segmentation 
Benchmark (BRATS) 

>0.80 0.70 0.60 

Kamnitsas et al. [65] 2016 
3D Convolutional Neural Network 
(CNN) 

0.896 0.754 0.718 

Kamnitsas et al. [66] 2017 
Ensembles of Multiple Models and 
Architectures (EMMA). 
DeepMedic, FCN, and U-Net. 

0.901 0.797 0.738 
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Continued 

Myronenko [67] 2018 
Encoder-Decoder Architectures with 
Autoencoder Regularization 

0.910 0.867 0.823 

Jiang et al. [68] 2019 
Cascaded U-Net Approach for 
refinement of segmentation 

0.909 0.864 0.802 

Isensee et al. [69] 2020 
nnU-Net Architecture and Batch 
Normalization 

0.912 0.850 0.798 

Luu and Park [70] 2021 
Enhanced nnU-Net with Group 
Normalization 

0.938 0.923 0.882 

Zeineldin et al. [71] 2022 
Multi-Framework Ensembles with 
DeepSeg and nnU-Net, and 
DeepSCAN 

0.927 0.875 0.843 

Ferreira et al. [72] 2023 

Enhanced Synthetic Data 
Augmentation and GANs and 
integration of multiple deep learning 
models (nnU-Net, Swin UNETR) 

0.905 0.867 0.850 

3. DISSCUSIONS 
Advancements in artificial intelligence (AI), machine learning (ML) and particularly deep learning 

(DL) have ushered in a new era for medical imaging diagnostics, with brain tumour segmentation being a 
key area of impact. Deep learning models, notably Convolutional Neural Networks (CNNs) and U-Net ar-
chitectures, have demonstrated remarkable success in automating the segmentation process by efficiently 
extracting relevant features from imaging data. The evolution towards 3D U-Net architectures has further 
leveraged the richness of volumetric data to enhance segmentation accuracy by capturing spatial context 
across all dimensions [21]. This review has highlighted the significant progress made in this field, as evi-
denced by the increasing sophistication and performance of models developed over the past decade. How-
ever, despite these advancements, several challenges continue to hinder the widespread clinical applicability 
of these models. This discussion critically analyses the current state of the field, synthesises key trends, iden-
tifies existing limitations, and explores practical implications and future research directions for both clini-
cians and researchers. 

3.1. Challenges in Deep Learning-Based Brain Tumour Segmentation 

3.1.1. Tumour Heterogeneity 
A major challenge consistently identified in the literature is the significant variability in brain tumours’ 

size, shape, location, and appearance across patients [21, 22, 24]. This heterogeneity complicates model gen-
eralisation, as models trained on datasets with limited tumour characteristics may not perform well on the 
diverse range of tumours encountered in clinical practice. The infiltrative growth patterns and indistinct 
boundaries of gliomas further exacerbate the challenges of accurate segmentation.  

3.1.2. Limited Data and Class Imbalance  
The scarcity of high-quality, annotated medical imaging data remains a significant bottleneck [57, 64]. 

This scarcity stems from privacy concerns, the labour-intensive nature of manual annotation, and the rela-
tively low prevalence of certain tumour types. Moreover, the inherent class imbalance between the vast non-
tumour regions and the relatively small tumour regions can bias models towards the majority class, leading 
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to reduced segmentation performance, particularly for smaller tumours or tumour subregion. This is par-
ticularly concerning in the medical domain, where false negatives can have severe clinical consequences. 

Differences in MRI scanners, acquisition parameters, and imaging protocols across institutions intro-
duce considerable variability that significantly affects model performance and generalisation. Models 
trained on data from one institution may not perform adequately on data acquired from another due to 
differences in image quality, contrast settings, and noise levels. Standardisation of imaging protocols is often 
proposed as a solution, but it faces practical challenges in implementation. 

3.1.3. Computational Complexity  
The literature consistently highlights the substantial computational resources and memory required to 

train deep 3D models, such as the 3D U-Net, due to the high dimensionality of volumetric data [58, 61]. 
This poses a significant challenge for researchers and clinical institutions with limited access to high-per-
formance computing infrastructure, hindering widespread adoption and limiting the development of more 
complex, potentially more accurate models. 

3.1.4. Overfitting and Generalization  
Many studies report challenges related to overfitting, where models trained on limited datasets capture 

noise and artefacts instead of the underlying patterns of tumour morphology [60, 64]. This leads to poor 
generalisation performance on external, unseen datasets, severely limiting the clinical utility of such models. 
Ensuring robust generalisation to new data is, therefore, a critical challenge that needs to be addressed for 
reliable clinical deployment. 

3.2. Comparative Analysis of Methods   

The evolution of brain tumour segmentation techniques, particularly evident in the contributions to 
the BraTS challenges from 2014 to 2023, reflects a clear trend towards increasingly sophisticated models. 
Early CNN-based methods achieved baseline performance but struggled with generalisation due to limited 
data diversity [22]. The subsequent introduction of 3D CNNs capitalised on volumetric data, improving 
spatial feature representation and leading to significant performance gains. For example, the average Dice 
scores for whole tumour segmentation in BraTS improved from around 0.8 in the early years to over 0.90 
with the adoption of 3D CNNs. 

Ensemble methods, which combine multiple architectures to enhance robustness and mitigate individ-
ual model weaknesses, have also gained traction. These methods have been shown to further improve seg-
mentation accuracy, often achieving Dice scores of around 0.88 in BraTS challenges. More recently, the 
nnU-Net framework [69], which dynamically adapts models to dataset characteristics through normaliza-
tion techniques and architectural refinements, has emerged as a state-of-the-art approach, achieving Dice 
scores exceeding 0.9 for certain tumour subregion in recent BraTS challenges. 

The incorporation of synthetic data augmentation using Generative Adversarial Networks (GANs) rep-
resents another notable trend aimed at addressing data scarcity and diversity issues [73]. GANs, such as 
CycleGAN and StyleGAN, have been widely adopted in medical imaging for generating realistic synthetic 
data [74]. For instance, CycleGAN has been used for domain adaptation, enabling the translation of images 
from one modality (e.g., MRI) to another (e.g., CT) while preserving anatomical structures. Similarly, Style-
GAN has shown promise in generating high-resolution, diverse tumour images that enhance the generali-
zability of segmentation models. However, these techniques require careful validation to ensure the gener-
ated data are realistic and do not introduce biases that could negatively impact model training. Challenges 
include mode collapse, where the generator produces limited varieties of images, and the difficulty of ensur-
ing that synthetic images retain clinically relevant features [75]. 

In addition to GANs, domain adaptation methods such as unsupervised domain adaptation (UDA) 
and adversarial domain adaptation have been employed to bridge the gap between source and target do-
mains in medical imaging. For example, UDA techniques like Domain-Adversarial Neural Networks 
(DANN) have been used to align feature distributions across different imaging modalities, improving model 
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performance on unseen datasets. While these methods reduce the need for extensive labeled data in the 
target domain, they often struggle with large domain shifts and may require additional fine-tuning for spe-
cific applications [76]. 

Despite these advancements, the reviewed literature indicates that significant challenges remain in han-
dling the full spectrum of tumour heterogeneity and reducing the computational demands of these models. 
For instance, GAN-based approaches are computationally intensive and may require significant resources 
for training and validation [77]. Furthermore, the lack of standardized evaluation metrics for synthetic data 
quality poses a barrier to widespread adoption in clinical settings. 

3.3. Limitations of BraTS Challenges 

The BraTS dataset, while comprehensive, has several limitations that impact its applicability to real-
world clinical scenarios. Firstly, the dataset primarily focuses on adult gliomas and may not fully capture the 
variability seen in paediatric brain tumours or rare tumour types. This limits the generalizability of models 
trained on BraTS data. Additionally, the reliance on pre-operative MRI scans excludes post-operative or 
follow-up imaging, which are critical for longitudinal studies and treatment monitoring in clinical practice. 
Another limitation is the annotation process, which relies on a limited number of experts. This may not fully 
represent the variability in clinical interpretations, potentially introducing biases in model training and eval-
uation. Furthermore, the lack of multi-institutional annotations or consensus-based ground truth may re-
strict the dataset’s applicability to diverse clinical settings. Finally, while metrics like Dice scores and 
Hausdorff distances are widely used, they may not fully capture the clinical relevance of segmentation re-
sults. For example, small errors in critical regions, such as tumour boundaries near vital structures, may 
have significant clinical implications but are not adequately reflected in these metrics. 

3.4. Suggestions for Improving BraTS Challenges Future Iterations  

To address these limitations and better align the BraTS challenge with real-world clinical needs, we 
propose several improvements for future iterations.  
• Expanding the dataset to include a broader range of tumour types, such as pediatric gliomas, metastatic 

tumours, and rare subtypes, would better reflect real-world clinical diversity. Incorporating post-oper-
ative and follow-up imaging data would also enable the development of models for longitudinal analysis 
and treatment monitoring. 

• Enhancing annotation quality through multi-institutional annotations and consensus-based ground 
truth could improve the robustness and representativeness of the dataset. Including annotations for 
clinically significant subregion, such as peritumoral edema or infiltrative tumour margins, would fur-
ther enhance the dataset’s utility.  

• Refining evaluation metrics to account for the spatial accuracy of critical regions and incorporating 
metrics that evaluate model uncertainty and interpretability would provide a more comprehensive as-
sessment of model performance.  

• Addressing computational and practical challenges by encouraging the development of efficient models 
suitable for real-time applications and providing guidelines for robustness to imaging artifacts would 
better align the challenge with clinical needs. 

3.5. Bridging the Gap between BraTS Performance and Clinical Applications 

Despite the impressive performance of models trained on BraTS data, there remains a gap between 
dataset performance and practical clinical applications. Models may struggle with real-world challenges such 
as poor image quality, imaging artifacts, or heterogeneous tumour presentations. To bridge this gap, we 
propose robustness testing using datasets with intentionally degraded images or artifacts, clinical validation 
studies to assess model performance in real-world settings, and the development of user-friendly tools that 
facilitate the integration of segmentation models into clinical workflows. By addressing these limitations 
and incorporating these suggestions, future iterations of the BraTS challenge can better reflect real-world 

https://doi.org/10.4236/jbise.2025.181001


 

 

https://doi.org/10.4236/jbise.2025.181001 25 J. Biomedical Science and Engineering 
 

clinical needs and contribute to the development of more effective and reliable tools for brain tumour diag-
nosis and treatment. 

3.6. Practical Implications for Clinicians and Researchers  

For clinicians, the integration of reliable and accurate segmentation models holds the potential to rev-
olutionise patient care by enabling precise tumour delineation, which is crucial for treatment planning, sur-
gical guidance, and monitoring treatment response. Studies have shown that automated segmentation can 
reduce the time required for tumour delineation significantly compared to manual segmentation, potentially 
decreasing clinician workload and minimising the risk of human error. This could lead to faster treatment 
planning and, potentially, improved patient outcomes. However, several practical hurdles need to be ad-
dressed for widespread clinical adoption. These include the need for seamless integration with existing hos-
pital information systems, the development of user-friendly interfaces that do not disrupt established clinical 
workflows and obtaining necessary regulatory approvals. Moreover, clinicians require models that are not 
only accurate but also interpretable and trustworthy to confidently integrate them into their decision-mak-
ing processes. 

For researchers, the reviewed literature underscores the need to address the challenges of data scarcity, 
model generalisation, and computational efficiency. Developing models that perform consistently across 
diverse patient populations and imaging protocols is essential for facilitating clinical translation. Collabora-
tive efforts between institutions to create larger, more diverse datasets are frequently proposed as a key 
strategy to improve model robustness and generalizability. 

3.7. Future Research Directions 

Based on the comprehensive review of the current literature, future research should prioritise the fol-
lowing areas to overcome the identified challenges and accelerate the clinical translation of deep learning-
based brain tumour segmentation: 
• Enhancing Model Robustness and Generalization 
 Domain Adaptation Techniques: The development and implementation of unsupervised or semi-

supervised learning techniques to improve model robustness against variations in imaging protocols 
are crucial. These techniques can help models adapt to new, unseen data distributions without re-
quiring extensive re-training. 

 Multi-Institutional Datasets: A concerted effort towards creating and utilising large, diverse, multi-
institutional datasets is essential to train models that generalise well across different imaging settings 
and patient populations. 

• Leveraging Synthetic Data and Advanced Data Augmentation 
 Synthetic Data Generation: Further research on employing GANs to create realistic synthetic images 

is needed to address data scarcity and diversity [78]. Rigorous validation and quality control of syn-
thetic data are crucial to ensure its fidelity and avoid introducing biases. 

 Advanced Augmentation: Applying more sophisticated transformations such as non-linear defor-
mations intensity variations and incorporating prior knowledge about tumour growth patterns can 
enhance data diversity and improve model robustness. 

• Developing Efficient and Lightweight Architectures 
 Model Optimization: Exploring and implementing techniques like model pruning, quantisation, and 

knowledge distillation to reduce computational demands are essential for the practical deployment. 
 Adaptation of Efficient Models: Adapting lightweight architectures like MobileNet [79] or SqueezeNet 

[80] for 3D data can enable deployment in resource-constrained environments and on-edge devices. 
• Integrating Multi-Modal Data and Clinical Information 
 Data Fusion Techniques: Combining different MRI modalities (e.g., T1, T2, FLAIR, T1ce) with other 

imaging data (e.g., PET, CT) and clinical information (e.g., age, genetic markers) can potentially 
improve segmentation accuracy and provide a more comprehensive understanding of the tumour. 
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 Personalised Medicine: Incorporating genetic markers and patient demographics to tailor models to 
individual patients represents a promising avenue for developing personalised medicine approaches 
and potentially improving treatment outcomes. 

• Addressing Class Imbalance 
 Advanced Loss Functions: Implementing and evaluating advanced loss functions, such as focal loss 

or Dice loss, to focus training on minority classes (e.g., small tumours, tumour subregion) is crucial 
for improving segmentation performance in these challenging cases. 

 Data Sampling Techniques: Utilizing oversampling or Synthetic Minority Oversampling Technique 
(SMOTE) can help balance datasets and improve model performance on underrepresented classes. 

• Enhancing Model Explainability and Trustworthiness 
 Explainable AI Frameworks: Developing methods to visualise and understand model predictions is 

essential for aiding clinician validation, building trust in the model’s outputs, and facilitating clinical 
adoption. 

 Interpretability Techniques: Incorporating attention mechanisms and saliency maps can make the 
decision-making processes of deep learning models more transparent and understandable to clini-
cians  

• Promoting Interdisciplinary Collaboration and Compliance 
 Collaborative Research: Fostering stronger partnerships between clinicians, researchers, and indus-

try is crucial to align model development with clinical needs, ensure the practical utility of developed 
solutions, and accelerate the translation of research findings into clinical practice. 

 Ethical and Regulatory Considerations: Addressing patient privacy, data security, and compliance 
with healthcare regulations is paramount for facilitating clinical integration and ensuring the re-
sponsible use of AI in the healthcare. 

4. CONCLUSIONS 
This review has highlighted the transformative impact of deep learning, particularly 3D U-Net archi-

tectures, on brain tumour segmentation. The ability of 3D U-Nets to leverage volumetric data has driven 
significant advancements, with Dice scores improving from approximately 0.7 in early BraTS challenges to 
over 0.9 in state-of-the-art methods like nnU-Net. These advancements underscore the critical role of col-
laborative initiatives, such as the BraTS challenges, in fostering innovation and pushing the boundaries of 
segmentation accuracy. 

Despite these advancements, several critical challenges persist, including tumour heterogeneity, limited 
access to large, diverse, annotated datasets, variability in imaging protocols, high computational demands, 
and the risks of overfitting and poor generalization. Addressing these challenges is essential to bridge the 
gap between technological advancements and their widespread clinical adoption. 

The clinical impact of overcoming these obstacles is profound. Accurate segmentation models can en-
able earlier, more precise diagnoses, facilitate personalized treatment planning, and improve disease moni-
toring. These advancements hold the potential to enhance survival rates and significantly improve the qual-
ity of life for patients battling brain tumours. 

In conclusion, while deep learning, particularly through architectures like the 3D U-Net, has revolu-
tionised brain tumour segmentation, the field stands at a critical juncture. To fully realise the transformative 
potential of AI in neuro-oncology, to accelerate progress, we recommend the following actionable directions 
for researchers and clinicians: 
• Develop robust, generalisable models: Focus on domain adaptation techniques and foster the creation 

of large, multi-institutional datasets to improve generalisation across diverse populations and imaging 
protocols. 

• Design computationally efficient models: Explore model compression techniques and lightweight ar-
chitectures to enable deployment in resource-constrained clinical settings. 

• Enhance model interpretability and trustworthiness: Integrate attention mechanisms and explainable 
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AI frameworks to build clinician confidence and encourage adoption in practice. 
By addressing these priorities, the research community can foster interdisciplinary collaboration and 

drive the integration of AI solutions into routine neuro-oncological care. The ultimate goal is to translate 
these advancements into transformative solutions that redefine brain tumour diagnosis and treatment, im-
proving both survival outcomes and patient quality of life.  
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