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Abstract 
In this research, we study the relationship between mental workload and fa-
cial temperature of aircraft participants during a simulated takeoff flight. We 
conducted experiments to comprehend the correlation between work and fa-
cial temperature within the flight simulator. The experiment involved a group 
of 10 participants who played the role of pilots in a simulated A-320 flight. Six 
different flying scenarios were designed to simulate normal and emergency 
situations on airplane takeoff that would occur in different levels of mental 
workload for the participants. The measurements were workload assessment, 
face temperatures, and heart rate monitoring. Throughout the experiments, 
we collected a total of 120 instances of takeoffs, together with over 10 hours of 
time-series data including heart rate, workload, and face thermal images and 
temperatures. Comparative analysis of EEG data and thermal image types, 
revealed intriguing findings. The results indicate a notable inverse relation-
ship between workload and facial muscle temperatures, as well as facial 
landmark points. The results of this study contribute to a deeper under-
standing of the physiological effects of workload, as well as practical implica-
tions for aviation safety and performance. 
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1. Introduction 

Mental workload is a crucial concept in cognitive psychology and human factors 
research, as it indicates the amount of cognitive effort and attention required to 
carry out a task [1]. It is a multifaceted concept that involves cognitive, percep-
tual, and motor processes. The Mental workload is crucial for human perfor-
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mance in different fields and includes a significant impact on the safety and 
health of workers [2]. Comprehending and controlling mental workload is es-
sential for enhancing job efficiency, improving task performance, user expe-
rience, and minimizing the mistake rate [3]. Mental effort may be affected by 
many elements, such as user-friendliness, mistake avoidance, and consistency of 
the job or system being used [4]. Additionally, it is worth noting that profession-
als working in intensive care units may face negative consequences if their moral 
sensitivity is compromised due to an excessive mental workload [5]. The corre-
lation between facial temperature and workload has attracted considerable in-
terest as a result of the capability of thermal imaging to capture physiological 
and emotional reactions. The reliability of facial thermal imaging as a technique 
for obtaining facial temperature has been established through its independence 
from illumination conditions and skin color [6]. The study conducted by Ganesh 
et al. [6], observed that emotional states and emotions might affect face thermal 
imaging, suggesting a possible connection between workload and facial thermal 
patterns. The aviation industry emphasizes understanding the cognitive work-
load of pilots to ensure the highest safety and optimal pilot performance. The 
relationship between workload and face temperature has attracted considerable 
attention within the air transportation domain. A potential tool for assessing 
cognitive workload and emotional states is facial thermal imaging, offering a 
real-time and non-invasive method for monitoring physiological responses [7]. 
Research has shown that changes in face temperature may be used as indicators 
of emotional arousal. Emotional states are associated with higher thermal com-
pared to neutral states [8]. Thermal image analysis can accurately differentiate 
between individuals who are being deceptive and those who are not during cog-
nitive tasks [9]. This suggests that thermal image analysis has the potential to be 
used in assessing the workload of pilots and non-pilots in aviation. Although the 
potential of using face thermal imaging to evaluate cognitive stress is clear, there 
are difficulties in extracting relevant features from facial thermal images, as 
pointed out by Wang et al. [10]. Liu et al. [11] emphasized the relevance of me-
thodological concerns when using face thermal imaging to assess workload. 
They highlighted the necessity to segment facial areas of interest to enhance ac-
curacy and pointed out the dependability of thermal image analysis. In addition, 
researchers have investigated the practicality of utilizing face skin temperature to 
categorize cognitive workload. This research suggests that thermal imaging 
might be included into aircraft systems to estimate degrees of cognitive stress 
[7]. To summarize, the compilation of existing research indicates that face ther-
mal imaging has potential as a non-intrusive technique for evaluating cognitive 
workload and emotional states in flight. However, challenges such as standardi-
zation and representation of temperature distribution need to be addressed to 
fully leverage the potential of facial thermal imaging in workload assessment. 
However, challenges such as standardization and representation of temperature 
distribution, measuring the exact variation of facial temperature, and finding 
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precise similarity between workload and facial temperature regions in detail 
need to be addressed to fully leverage the potential of facial thermal imaging in 
workload assessment. In order to completely use face thermal imaging as a valid 
technique for workload evaluation in aviation settings, it is crucial to conduct 
more research and make methodological breakthroughs. In previous research 
[12] we have established a correlation between workload and Electroencephalo-
gram (EEG) measures. The objective of this paper is to correlate EEG measures 
and thermal imaging technology. 

This is a novel approach to studying mental workload, which includes using 
thermal imaging technologies. Thermal images acquire the infrared radiation 
released by humans’ body, offering a distinct viewpoint on physiological reac-
tions that might serve as indicators of mental activity. The relation between 
mental workload and face thermal imaging has the potential to deepen our 
comprehension of cognitive processes and improve the development of systems 
and settings that facilitate human performance. 

2. Related Work 

Research has shown that EEG analysis, together with other physiological indica-
tors, may accurately categorize various degrees of exertion [13]. Moreover, the 
integration of EEG with other physiological signals has been used to evaluate 
workload, making it a viable device for measuring workload in authentic settings 
[14]. Furthermore, Rebsamen et al. [15] have suggested using EEG measures of 
spectral powers at various cortical sites to evaluate cognitive effort, highlighting 
the potential of EEG in workload assessment. In addition, EEG has been used to 
quantify brainwave activity in several situations, including the assessment of 
cognitive effort during mental arithmetic tasks [16]. The results emphasize the 
importance of EEG in measuring workload and its ability to provide useful in-
sights into cognitive processes.  

Studies assessing and monitoring mental workload are essential in transporta-
tion, such as subway train operations, to comprehend the influence of mental 
workload on operational performance [17]. Furthermore, the examination of 
mental workload has been conducted within the framework, revealing evidence 
that the combination of activities might result in cognitive overload and dimi-
nished performance [18]. Moreover, researchers have investigated the use of 
electroencephalography (EEG) to identify mental effort associated with multi-
tasking, emphasizing the need of using objective metrics to comprehend cogni-
tive workload [19]. The concept of cognitive workload theory has been put out 
as a theoretical framework to comprehend the cognitive strain, with a specific 
focus on the psychological capacity to process information [20]. Furthermore, re-
searchers have investigated the connection between facial expression and mental 
stress in arithmetic tasks, revealing that increased mental workload might result in 
a higher frequency of lapses and mistakes [21]. The study of user interfaces has 
explored the optimization of web interface design by considering the cognitive 
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load of users. This research highlights the significance of incorporating cognitive 
load in human-computer interaction [22]. 

Hernández-Sabaté et al. developed a convolutional neural network for EEG 
features classification in different level of pilot mental workloads in the Cockpit 
during a continuous performance task test that assessed working memory and 
working memory capacity to some extent [23]. 

Wang et al. [24] investigated the potential of using infrared facial thermogra-
phy to assess mental workload in indoor thermal environments including 
slightly cool, neutral, and slightly warm. They segmented the facial region, in-
cluding the forehead, nose, cheeks, ears, mouth, and neck. Their findings dem-
onstrate that the relationship between face temperature and mental workload 
varies under various thermal environments. Significant connections are seen in 
the neutral environment and specifically in the areas of the ears, mouth, and 
neck. 

The study by Hassoumi et al. [25] discusses the use of thermal imaging of the 
face as a method for detecting mental workload during flight simulation. Their 
research modulated cognitive workload by varying the difficulty of two landing 
scenarios and rest time. The results showed that changes in mental workload 
were reflected in the thermal patterns of the participants’ faces. Specifically, in-
creased mental workload was associated with increased temperatures in the nose 
tip and nose area, and no significant change in forehead temperature was ob-
served. In this experiment, they also did not measure workload precisely in 
real-time using EEG and, they only measured the variation of face temperature 
in three facial regions including nose tip, nose area, and forehead. 

3. Physiological Measures 

Physiological metrics are essential for comprehending physical activities and 
mental states. The use of these metrics is crucial for the examination of physio-
logical reactions and cognitive functions [26]. The connection between physical 
and emotional experiences is shown by the correlation between empathy and the 
expression of emotional emotions via physiological reactions [27]. Moreover, the 
ability to perceive internal physiological signals, known as interoception, is 
linked to effective regulation of emotions, underscoring the importance of phys-
ical awareness in controlling emotional states [28]. Furthermore, physical ges-
tures play a crucial role in social perception, underscoring the significance of 
comprehending physiological cues when reading emotions and social exchanges 
[29]. 
• Heart Rate 

Heart Rate (HR), measured through pulse or electrocardiogram (ECG), 
represents the count of heart beats per minute. It is a crucial physiological me-
tric, offering insights into an individual’s health, such as current diseases or 
warnings about impending cardiac conditions [30]. Heart rate variability (HRV) 
is a non-invasive approach used to analyze the control of the autonomic nervous 
system on the heart [31]. Significant for assessing cardiac well-being [32], HRV 
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also serves as an indicator of stress levels and reflects autonomic nervous system 
influence [33]. 
• Electroencephalogram (EEG) 

The electroencephalogram (EEG) is a non-invasive technique that utilizes 
electrodes strategically placed on the scalp to quantify the electrical activity pro-
duced by the brain [34]. EEG is among the most precise and reactive measures 
which has been extensively used to evaluate mental effort by measuring brain-
wave activity. EEG has shown efficacy in deciphering degrees of human Work-
load and is regarded as one of the principal physiological indicators for assessing 
mental strain [35] [36] [37]. 
• Facial temperature variation 

Facial temperature variation is a relevant metric of both physiological and 
psycho-physiological measures. Studies have shown that face skin temperature 
serves as a physiological indicator that fluctuates in response to changes in skin 
blood flow, which is regulated by the activity of the autonomic nervous system 
[38]. Research has shown that face skin temperature demonstrates distinctive 
characteristics that are closely related to emotional arousal and concurrent 
measurements of typical physiological indicators of sympathetic activity [39]. 
Further, studies have shown that face skin temperature may be altered by psy-
chological factors such as shame or pain, resulting in consistent fluctuations that 
can be seen using thermal imaging [40]. Furthermore, face skin temperature has 
been used as an indicator of stress and emotional reactions in multiple research 
investigations [41]. Moreover, Research has investigated the correlation between 
stress hormones, and face skin temperature. The findings reveal that stress may 
impact both facial temperature and emotional reactions [42]. 

4. Experiment 

An experiment was conducted aiming to gather in real time participants’ work-
load and facial thermal image during a takeoff procedure in an Airbus A320. It 
consisted of six different scenarios with varying weather, time, and conditions as 
well as the possibility of failure during the takeoff procedure. The first to third 
scenarios relate to standard takeoff sessions, while scenarios four to six relate to 
failure sessions. A participant monitor and a participant pilot are required to op-
erate the Airbus A320. In this experiment, the participants served as pilots and the 
experimenter as monitor. The experiment was conducted at the University of 
Montreal and with participants who all signed written consent forms following 
an ethics certificate.  

4.1. Participants 

In this study, ten (10) individuals were recruited, ensuring a gender-balanced 
group with ages ranging between 25 and 35 years old. Before participating in the 
experiment, all participants received a briefing that explained the objectives and 
purpose of the study. Additionally, they were required to provide informed con-
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sent by signing consent forms, indicating their willingness to participate volun-
tarily. 

Among the ten participants, five of them had prior experience and knowledge 
in piloting and aviation simulation. The remaining five participants did not have 
any previous exposure to aviation simulation. This division allowed us to have a 
balanced representation of both experienced and inexperienced individuals, 
which can help in drawing more comprehensive conclusions from the study. 

4.2. Flight Scenarios 

To simulate realistic flying circumstances, a variety of flight scenarios were uti-
lized in the airplane simulator during the design and implementation of this ex-
periment [12]. The scenarios varied in time, weather conditions, and whether a 
failure will occur. We will use scenarios one through three for the regular takeoff 
sessions and four through six for the failure sessions. Table 1 shows the details 
of different scenarios. 

4.3. Procedure 

The experiment environment was comprised of a participant as the pilot and the 
experimenter as the pilot monitor. Participants received a detailed description of 
the A320 takeoff procedure two weeks before their experiment to familiarize 
themselves with its handling characteristics. During this experiment, partici-
pants performed a sequence of flight simulations using the X-plane flight simu-
lator. Meanwhile, equipment carefully measured and documented several physi-
ological and cognitive data. The main goal was to investigate the correlation be-
tween mental effort and physiological reactions during flying duties. The expe-
riment involved 10 participants, each exposed to a series of six distinct flying 
situations that are randomly replicated. In order to guarantee sufficient data ga-
thering, every scenario was replicated at least twice during a one-hour testing 
session. This variety was intended to include a wide spectrum of cognitive de-
mands and stresses that are associated with aviation activities and various flying 
circumstances. 

Before starting the experiment, thorough calibration and setup procedures 
were performed on all the equipment. The monitoring platform included an 
X-plane logger to log the airplane simulator parameters, an EEG headset (elec-
troencephalogram) for measuring mental workload, a heart rate monitor for de-
tecting heart rate fluctuations, and an infrared camera that captured facial ther-
mal images and temperatures at a frequency of five images per second. Conse-
quently, a total of 18,000 thermal images and temperature data of each partici-
pant’s face were recorded. All devices continuously and non-stop capture and 
record data throughout the entire flight, including different flight scenarios and 
the participants’ rest time. To generate a more realistic cognitive workload for 
every scenario, participants were not made aware of the scenarios or the possi-
bility of failure. 
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Table 1. An overview of the different scenarios [12]. 

Scenario 
Detail 

Time Weather Engine Failure 

1 1:45 PM No Wind, No Clouds No 

2 6:00 AM Clouds at 2700ft, rain No 

3 9:00 PM No wind, no clouds No 

4 5:30 AM No wind, no clouds Yes, EF at 80 knots 

5 6:00 AM 15 knots crosswind Yes, EF at 140 knots 

6 6:00 AM Low visibility, rain Yes, EF at 80 knots 

4.4. Heart Rate Monitoring 

During the experiment, we used the Polar H10 to record the participants’ heart 
rates. The Polar H10 is a heart rate sensor mounted on a chest strap designed 
and manufactured by Polar. 

4.5. EEG and Workload 

In this experiment, we utilized the EEG headset from BMU, manufactured by 
OpenBCI, to measure the cognitive workload of the participants and accurately 
record real-time brain activity and emotions. The NCO software, also built by 
“BMU Augmented Intelligence”, enabled us to extract real-time cognitive work-
load data. 

5. Infrared Camera and Thermal Image 

Infrared cameras, often known as thermal or thermographic cameras, have the 
capability to detect and record infrared light. Infrared radiation is a kind of elec-
tromagnetic radiation that cannot be seen by the human eye. Infrared cameras 
function by detecting infrared radiation using specialized sensors capable of 
perceiving the thermal energy released by objects. This energy is then trans-
formed into a visual representation that may be shown on a display or stored for 
further examination. The thermograms generated by the process exhibit tem-
perature discrepancies represented by distinct hues or tints, enabling users to 
visually perceive heat distribution and see changes in temperature across items 
or displays within a given period. 

Thermal imaging is capable of measuring and visualizing the temperature of 
an individual’s facial region. Thermal cameras have the ability to absorb the heat 
radiated from the surface of the skin. Consequently, the thermal picture pro-
duced may reveal discrepancies in temperature across various facial areas. The 
experiment used an ICI-7640 infrared camera and IR Flash software to extract 
csv files including facial temperature data. 

5.1. Facial Temperature Extraction Process from Face Thermal  
Image 

Figure 1 illustrates the sequential processing stages involved in converting a raw  
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Figure 1. Procedure of extract Temperature from face thermal image. 
 

thermal image of the face into a temperature change graph for each individual 
point. First, the infrared camera records and saves unprocessed images at a res-
olution of 640 × 480. Afterwards, each of these images is subjected to processing 
in order to extract the CSV file that contains the temperature data for each indi-
vidual pixel. Subsequently, the pictures undergo pre-processing to optimize face 
detection accuracy by converting the original raw data, resulting in four distinct 
types of thermal images. We employed a cascade function of all available ther-
mal image types to detect the participants’ faces. Following the process of face 
recognition, we proceeded to extract the facial landmark points from the thermal 
picture. The precise locations of the eyes, nose, mouth, and other facial features 
are essential for accurately identifying and delineating the separate parts of a 
face. Next, we get the temperature associated with each landmark location and 
present its variations. 

5.2. Thermal Image 

A thermal image is a visual representation that illustrates fluctuations in tem-
perature within a given scene. It uses a color gradient to represent various tem-
peratures. Thermal images often represent warmer parts with warmer colors, 
such as red, orange, and yellow, whereas colder parts are shown with cooler col-
ors, such as blue and purple. The raw image captured by the infrared camera is 
shown in Figure 2(a). 

Figure 2(b) illustrates the color spectrum associated with the thermal image. In 
this scale, white represents the warmest (highest temperature), while black indi-
cates the lowest temperature within the image (It’s important to note that this col-
or spectrum is specific to the corresponding thermal photo and colors don’t nec-
essarily represent the overall highest and lowest temperatures found in nature. 

5.3. Thermal Image Color Palettes 

Investigating specific areas of the face and accurately extracting signals from IRI 
data is difficult because of the presence of head motion artifacts. Harnessing its 
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potential, therefore, relies on advancements in analytical techniques. Within this 
section, a comprehensive review has been conducted on different color palettes 
used in thermal imaging cameras to represent temperature of facial thermal im-
ages with the following (Figure 3).  

1) Rainbow: 
This palette uses a spectrum of colors, typically ranging from cool to warm 

colors like violet, blue, green, yellow, orange, and red, plus white(hottest) and 
black (coldest). 

2) Gray 
Represents temperatures using various shades of gray, with black for colder 

areas and white for warmer areas. 
3) Inverse Gray 
Like the gray palette but with reversed colors, where black represents warmer 

areas and white represents colder areas. 
 

 

Figure 2. (a) Raw face thermal image (b) Color Temperature Chart for Infrared. 
 

 

Figure 3. Thermal image color palettes. 
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4) Iron  
Utilizes a color palette mostly consisting of tones of black and white, comple-

mented with nuanced hues of red and yellow, creating a visual likeness to hot 
iron. 

5) Research 
Customized color schemes designed for particular scientific, or research aims. 
6) IR11 
The thermal imaging color palette is a distinct set of 11 colors, with each hue 

corresponding to a certain temperature range. 
7) IR16 
Another specific color palette, consisting of 16 colors for more detailed tem-

perature representation. 
8) IR256 
A high-resolution color palette with 256 colors, providing a finer level of de-

tail in temperature representation. 
9) Medical 
Specifically designed for medical use, with a focus on detecting temperature 

variations for diagnostic reasons. 
10) Medical16 
A medical-specific color palette with 16 colors which is designed to enhance 

temperature differences for medical imaging purposes. 
We utilized all 10 color palettes of thermal images to assess the capability of 

detecting faces. Each participant had a total of 18,000 images for each color pa-
lette, resulting in 180,000 thermal images for each participant (18,000 × 10 = 
180,000). In total, for 10 participants, 1,800,000 thermal images were analyzed 
for facial detection. Following the analysis, we have selected the top four-color 
palettes—rainbow, iron, gray, and research—based on the obtained results for 
further investigation. Following that, a thorough evaluation and comparison 
study of these four kinds has been carried out to accurately locate face landmark 
points. 

5.4. Face Landmark Points 

Face landmark points are a set of specific, anatomically significant points detected 
on a human face. These points serve as crucial reference locations for various 
computer vision and facial analysis applications [4]. By pinpointing these land-
marks, it becomes easier to analyze and understand facial expressions, emotions, 
and facial structures. Here’s a description of some commonly detected face 
landmark points [4] [5]: 
• Left Eye (LE) and Right Eye (RE):  

The LE and RE landmarks represent the corners of the left and right eyes, re-
spectively. They are crucial for tracking eye movement and determining gaze di-
rection. 
• Left Eyebrow (LB) and Right Eyebrow (RB):  
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These landmarks denote the highest points of the left and right eyebrows. 
They help in identifying the eyebrow shape and its orientation. 
• Nose Tip (N):  

The Nose Tip landmark marks the tip of the nose. It assists in analyzing the 
nose’s angle and position on the face. 
• Nose Base (NB):  

The Nose Base landmark represents the bottom center of the nose. It helps in 
assessing the nose’s length and tilt. 
• Left Mouth Corner (LMC) and Right Mouth Corner (RMC):  

These landmarks identify the corners of the mouth. They are crucial for mea-
suring the width of the mouth and analyzing expressions like smiles or frowns. 
• Upper Lip Top (ULT) and Lower Lip Bottom (LLB):  

These landmarks indicate the highest point of the upper lip and the lowest 
point of the lower lip, respectively. They are used to measure lip curvature and 
analyze expressions. 
• Chin (C):  

The Chin landmark represents the center of the chin and aids in understand-
ing facial symmetry and structure. 
• Left Cheek (LC) and Right Cheek (RC):  

These landmarks denote the cheek’s highest points on the left and right sides 
of the face, assisting in analyzing facial contours. 
• Left Ear (L_Ear) and Right Ear (R_Ear):  

These landmarks indicate the top corners of the left and right ears. They can 
be useful in estimating the face’s orientation and pose. 
• Forehead Top (FT):  

The Forehead Top landmark marks the highest point on the forehead and can 
provide insights into the forehead’s size and shape. 

5.5. Facial Muscles 

The human face is a complex structure comprising several different muscles that 
play a crucial role in various functions, including appearance, movement, and fa-
cial expressions. In Figure 4, facial muscles are organized based on facial land-
marks and indexes, accompanied by labels denoting the names of each muscle. 
The following are the facial muscles: 

1) Frontalis: The frontalis muscle is located in the forehead region and its 
primary function is to raise the eyebrows and horizontal wrinkles on the fore-
head [43]. 

2) Corrugator: The corrugator muscle is located between the eyebrows and is 
responsible for pulling the eyebrows down and toward the medial, resulting in a 
frowning expression [43]. 

3) Procerus: The procerus muscle is a tiny muscle located between the eye-
brows and its function is to help with the formation of wrinkles on the bridge of 
the nose [44]. 
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Figure 4. Facial muscles grouped from facial landmarks and indexes and muscle 
names[55] [56]. 

 
4) Orbicularis Oculi: The Orbicularis Oculi muscle surrounds the eye and is 

primarily responsible for the closure of the eyelids, narrowing the eyes (squin-
ting), and other eyes movements [45]. 

5) Levator Labii Superioris: The Levator Labii Superioris muscle is responsi-
ble for raising the upper lip, thereby playing a role in facial expressions such as 
snarling or sneering [46]. 

6) Nasalis: The Nasalis muscle consists of two components, namely the 
Transverse and Alar. Its primary function is to control the movement of the no-
strils and dilating or compressing the nasal openings [47]. 

7) Nose Tip: This term includes the several muscles located around the nose 
that they involve in expression and movement [48]. 

8) Orbicularis Oris: The Orbicularis Oris muscle encircles the mouth and is 
responsible for the protruding of the lips and actions of closing, puckering, and 
kissing [49]. 

9) Mentalis: The Mentalis muscle creates the formation of a wrinkled chin by 
raising and protruding the lower lip [50]. 
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10) Depressor Anguli Oris: The Depressor Anguli Oris muscle plays a role 
for the downward movement of the corners of the mouth, which contributes to a 
facial expression associated with frowning [51]. 

11) Zygomaticus Minor and Major: Both muscles have a role in the facial 
expression of smiling. The zygomaticus major muscle raises the corners of the 
mouth, whereas the zygomaticus minor muscle assists in this movement [43]. 

12) Buccinator: The buccinator muscle helps in blowing air, compressing the 
cheek, and performing actions such as whistling and sucking [52]. 

13) Risorius: The risorius muscle is for laterally stretching the lips, which 
helps create a grinning smile [51]. 

14) Platysma: The platysma muscle is in the neck, pulling down the corners 
of the mouth and tensing the neck’s skin [53]. 

15) Masseter: The masseter is located in the jaw and is a muscle involved in 
the process of mastication, or chewing [54]. 

16) Temporalis: The Temporalis muscle is another masticatory muscle lo-
cated on the side of the head, contributing to the movement of the jaw [54]. 

The comprehensive Table 2 presents a detailed subset list of facial landmarks 
that have been precisely identified within the defined facial muscle group. 

5.6. Face Landmark Point in Face Thermal Image 

Detecting face landmark points in thermal images can be challenging due to the 
absence of color information. In the context of face thermal images, face land-
mark point detection involves the precise localization of key facial features, such 
as the eyes, nose, and mouth, despite the absence of color information. Utilizing 
advanced computer vision techniques, including deep learning-based methods 
and pre-trained models fine-tuned on thermal face datasets, it becomes possible 
to identify and map the crucial landmarks on a person’s face in thermal images. 
 
Table 2. A subset of facial landmarks in the defined facial muscle group [7]. 

Face Muscles # of 
Landmarks 

Face Muscles # of 
Landmarks Index Name Index Name 

1 Frontalis 6 10 Depressor Anguli Oris 7 

2 Corrugator 1 11 Zygomaticus Minor 6 

3 Procerus 1 12 Zygomaticus Major 3 

4 Orbicularis Oculi 63 13 Buccinator 4 

5 Levator Labii Superioris 10 14 Risorius 3 

6 Nasalis 7 15 Platysma 5 

7 Nose Tip 32 16 Masseter 9 

8 Orbicularis Oris 45 17 Temporalis 16 

9 Mentalis 7 Mid middle line of the face 28 
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In the experiment, the utilization of 478 face landmark points proved to be a 
comprehensive and powerful approach for facial feature detection and analysis. 
By employing advanced computer vision techniques and state-of-the-art deep 
learning models, these abundant landmark points allowed for a highly accurate 
and detailed representation of facial structures and expressions in the dataset. 
The use of such a large number of landmark points provided valuable insights 
into the subtle variations and nuances of facial features, enabling precise mea-
surements and comparisons. Figure 5 shows an example of the 478 face land-
mark points detected in a thermal image of a participant during the flight. 

5.7. Mental Workload and Face Temperature 

The relation between face thermal image temperature and workload is a subject 
that has been explored in some research studies, especially in the context of oc-
cupational health and safety. The idea behind this relationship is that an indi-
vidual’s workload can impact their body’s thermoregulation, which may be re-
flected in the thermal patterns of their face. Increased mental workload can lead 
to heightened stress and cognitive load, which may trigger physiological res-
ponses in the body, including changes in facial temperature. 

6. Results and Discussion 

In this section, the Results and Discussion are presented, delving into the ob-
tained findings, and providing a thorough analysis of their implications and sig-
nificance. 

6.1. Comparison of Thermal Image Types for Face Detection 

The subsequent crucial stage involves facial detection. For this purpose, the four 
types of processed images are utilized to improve the accuracy of detecting and 
identifying facial features and key facial points. Table 3 and Figure 6, present 
the statistics of detected faces for each type of thermal camera face image. The 
results indicate that the “Gray type exhibited the highest number of face detec-
tions, while the Rainbow type showed the lowest number. 

The illustrative example of Figure 7 reveals that in cases where only a segment 
of the face is visibly clear, the “Gray” type excels in face recognition quality, 
while other types fail to detect the face. 

Figure 8 outlines a facial temperature detection subsystem that has been de-
signed to ensure accurate temperature measurements with various types of 
thermal images. The subsystem involves three crucial steps: Face Detection, Ex-
tracting Face Landmark Points, and Extracting Temperature from these Points. 
The goal is to provide a comprehensive solution for accurately detecting faces 
and measuring face temperature using thermal imaging. 

Step 1: Face Detection 
The first step in the flowchart is Face Detection, a pivotal stage that initiates 

the entire process. To enhance accuracy, four different types of thermal images 
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are utilized: Rainbow, Iron, Research, and Gray. Each image type serves as a 
unique perspective for detecting facial features. The process is as follows: 

 
Table 3. Comparison of participants average face detection for each type of face thermal 
image. 

Face Detection Status 
Thermal Image Types 

Rainbow Gray Research Iron 

Detected (%) 0.03 0.99 0.73 0.70 

Undetected (%) 0.97 0.01 0.27 0.30 

 

 

Figure 5. Thermal Imaging Reveals Facial Landmark Points: An example of 478 
face landmark points detected on a participant’s thermal image during a flight. 

 

 

Figure 6. Comparison of average face detection for each type of face thermal image. 
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Figure 7. Comparison of face detection for each type of face thermal 
image on Head Movement. 

 

 

Figure 8. Face detection cascade flowchart for face thermal image types. 
 

1) Rainbow Thermal Image: 
• If the Rainbow thermal image successfully detects a face, the system proceeds 

to the next step. 
• If no face is detected, the system moves to the next thermal image type. 

2) Iron Thermal Image: 
• If the Iron thermal image detects a face, the system advances to the next step. 
• If no face is detected, the system proceeds to the next thermal image type. 

3) Research Thermal Image: 
• Like the previous steps, if the Research thermal image detects a face, the sys-

tem proceeds to the next step. 
• If no face is found, the system moves on to the final thermal image type. 

4) Gray Thermal Image: 
• If the Gray thermal image detects a face, the system progresses to the next 

step. 
• If no face is found, the system ignores that image.  

Step 2: Extract Face Landmark Points 
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Upon successful face detection in Step 1, the system advances to the second 
step, which involves extracting facial landmark points. These points provide a 
detailed map of facial features necessary for accurate temperature measurement. 

Step 3: Extract Temperature of the Points 
The third and final step is to extract the temperature of the facial landmark 

points. Leveraging the information obtained in the previous steps, the system 
precisely measures the temperature at specific points on the face, ensuring a re-
liable and accurate assessment. Figure 8 depicts the cascade flowchart for 
achieving more accurate face detection, illustrating the process of measuring fa-
cial landmark points temperatures. 

We performed this analysis on a subset of participants’ thermal face photo-
graphs, which were picked randomly. A landmark point was deemed accurately 
recognized if the discrepancy between the anticipated and actual position was 
within a range of five pixels. According to the conducted investigations on vari-
ous thermal camera image types, the facial landmark point detection accuracy 
can be ranked in the following order: Rainbow, Iron, Research, and Gray. 
Among these, Rainbow and Iron demonstrate the highest accuracy, while Gray 
shows the lowest accuracy (Figure 9). When the participant’s face is directly 
facing the camera, the Rainbow and Iron types of thermal image achieved an 
accuracy 98.2% and 98.1%, respectively, in detecting facial landmarks points 
within a 5-pixel margin. On average, across all head and face orientations, the 
accuracy is 95%. The framework achieved a mean accuracy of 95%, meaning that 
95% of all face points were accurately recognized within a 5-pixel margin of er-
ror compared to the ground truth in the test photos. 

 

 

Figure 9. Comparison of face detection for each type of face thermal image on extracted 
Face Landmark points. 
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6.2. Data Preparation 

Normalization is a data preprocessing technique that scales features to a stan-
dardized range, ensuring they are on a similar scale and improving the effec-
tiveness of various data analysis and machine learning tasks [9]. In this study, 
the following list of normalizations is used for temperature of face landmark 
points (T), workload (W) and heart rate (HR): 
• Robust Scaler 
• Quantile Transformer  
o Uniform output 
o Gaussian output 
• Power Transformer 
o Yeo-Johnson  
o Box-Cox  

The results depicted in Figure 10 clearly demonstrate that Quantile Trans-
former with Gaussian output and Power Transformer with Yeo-Johnson trans-
former excel in normalizing the data and significantly improve the probability of 
accurate outcomes. 

6.3. Time Series Correlations 

Quantifying synchrony between time series data involves assessing the degree of 
similarity or correlation in their temporal patterns. There are several methods to 
measure synchrony, and the choice of the appropriate method depends on the 
specific characteristics of the data and the research question.  

Dynamic Time Warping: 
Dynamic Time Warping (DTW) is a technique used to calculate the optimal 

alignment path between two signals, minimizing the distance between them. Its 
primary advantage lies in its ability to handle signals of different lengths. Initial-
ly developed for speech analysis DTW calculates the Euclidean distance between 
each frame and every other frame to determine the minimum path that aligns 
the two signals [10]. However, a limitation is that it cannot handle missing val-
ues, necessitating interpolation beforehand if there are any gaps in the data 
points. By aligning and comparing the temporal patterns of facial temperature 
changes with corresponding workload variations (Figure 11), DTW accommo-
dates differences in data lengths and captures temporal synchronizations, which 
are crucial for analyzing non-linear and time-delayed relationships. 

In the present experiments, the intricate relationship between temperature 
changes in face landmark points and workload is investigated, leading to the 
unveiling of intriguing results. Through meticulous data collection and cut-
ting-edge analysis techniques, particularly utilizing DTW, we have revealed a 
fascinating inverse correlation between facial temperature fluctuations and vari-
ations in workload levels. The experiments have revealed the presence of a milli-
second delay between changes in workload and subsequent temperature res-
ponses in specific facial landmarks. These findings suggest that the physiological  
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Figure 10. Comparison of Normalization method results. 
 

 

Figure 11. DTW Analysis of Workload and Temperature Variations of some Facial Landmark Points. 
 

responses reflected in facial temperature changes may not be immediate but ra-
ther exhibit a slight time delay in response to shifts in workload demands. 

Figure 12 is a heatmap illustrating the similarity between workload and facial 
muscles’ temperature across 10 participants and 17 facial muscles. The purpose 
of this analysis is to visually convey the relationship between the intensity of 
workload and the temperature of various facial muscles, quantified using the 
Pearson correlation coefficient. The color-coded heatmap highlights this rela-
tionship, ranging from blue to red. The metric employed to quantify this simi-
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larity is the Pearson correlation coefficient. The heatmap is color-coded to high-
light the nature of the relationship between workload and facial muscles’ tem-
perature. The color spectrum ranges from blue to red, with specific color associ-
ations. Blue hues signify an inverse relation, indicating that as workload increas-
es, the temperature of the corresponding facial muscles decreases. On the other 
hand, red hues indicate a straight relation, suggesting that as workload intensi-
fies, the temperature of the associated facial muscles also increases. The 10 par-
ticipants underwent varying levels of workload, and the 17 facial muscles were 
monitored to observe how their temperatures responded to the workload. The 
intensity of the colors in the heatmap allows for a quick and intuitive interpreta-
tion of the overall patterns and trends in the relationship between workload and 
facial muscles’ temperature. The numbers within the heatmap indicate that, in 
each participant, changes in the temperature of 17 facial muscles corresponded 
to the workload. For instance, in participant 1, muscle number 7 exhibited the 
most inverse relationship with the workload. A larger value implies that the cor-
responding facial muscle showed no significant relationship with the workload. 
For example, in participant 1, the temperature changes in facial muscle No. 10 
had the least correlation with workload.  In summary, the numbers in the rank 
heatmap represent the degree of the relationship between temperature changes 
in each facial muscle and workload, with 1 indicating the strongest relationship 
and 17 indicating the weakest. 

The heatmap (Figure 12) specifically highlights those facial muscles 7, 3, and 
5 exhibit the highest inverse relation in their temperature changes concerning 
cognitive workload. This indicates that these specific facial muscles consistently 
exhibit dissimilarity in their responses to variations in cognitive demands across 
the 10 participants. In contrast, facial muscles 17, 16, 15, 10, and 8 are hig-
hlighted for their lowest similarity in temperature changes concerning cognitive 
workload. This implies that these facial muscles demonstrate less consistent or 
weaker correlations with cognitive demands. In addition, facial muscles 1 and 
2, associated with the frontal areas of the face, exhibit a direct and minimal rela-
tionship with workload. 

Figure 13 presents a Heatmap visualizing the Similarity of Workload and 
Nose Area Facial Muscles Temperature. The analysis includes 10 participants 
and considers facial landmark points temperatures in the Nose Area of specific 
facial muscles: facial muscle 7 (Nose tip), facial muscle 6 (Nasalis), and facial 
muscle 3 (Procerus). The color-coded heatmap is designed to depict the nature 
of the relationship between the temperature of these facial landmarks and mus-
cles and the workload of the participants. In this visual representation, blue col-
ors are indicative of an inverse relationship between the temperature of the facial 
landmark points and muscles and the workload, while red colors signify a 
straight (positive) relationship. The entire color spectrum employed in the 
heatmap ranges from light blue to dark blue, reflecting the strength and direc-
tion of the inverse correlation. 

https://doi.org/10.4236/jbbs.2024.142006


A. Bonyad et al. 
 

 

DOI: 10.4236/jbbs.2024.142006 84 Journal of Behavioral and Brain Science 
 

 

Figure 12. Heatmap Similarity of Workload and Facial Muscles 
Temperature-Ranked Muscles. 

 

 

Figure 13. Heatmap similarity of workload and nose area tem-
perature. 

 
The metric used to quantify this similarity is the Pearson correlation coeffi-

cient, a statistical measure that assesses the linear relationship between two va-
riables. In this context, the coefficient provides a numerical representation of the 
degree of correlation between the workload and the temperature of both the 
Nose Area facial landmark points and the specified facial muscles (7, 6, and 3). 
Given that the relationship between the nose area temperature and workload is 
identified as reverse, all colors in the heatmap fall within the blue range, span-
ning from light blue to dark blue. This consistent blue coloration emphasizes the 
prevailing pattern of inverse correlation between the temperature of both the 
Nose Area facial landmark points and the participants’ workload. Additionally, 
the figure provides valuable insights by pinpointing specific facial landmark 
points with the highest and lowest similarity. The highest similarity, as indicated 
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by the Pearson correlation coefficient, is observed for facial landmark points 6, 
122, and 196, implying a strong and positive correlation between the tempera-
ture of these specific facial landmark points in the Nose Area and the workload. 
On the other hand, the lowest similarity is found for facial landmark points 274, 
275, and 4, suggesting a weaker correlation or a possible inverse correlation 
between the temperature of these facial muscles and the workload. In summary, 
the figure effectively communicates the intricate relationships between both the 
Nose Area facial landmark points temperatures (specified facial muscles), and 
the workload of participants. The color-coded heatmap and the quantitative 
measure of the Pearson correlation coefficient enhance the clarity of these com-
plex associations. 

Figure 14 provides a comprehensive overview of the changes in workload and 
the temperature of the face under scenario 5 (with Engine Failure after V1 
speed). The red line represents the average temperature of the face, while the 
blue line represents the workload. Green and yellow dash vertical lines indicate 
the time of start and end of the scenario, pink dash lines mean engine failure 
time. Additionally, a dash blue line indicates the maximum workload. The figure 
illustrates how the workload increases upon starting the scenario and decreases 
after its end, leading to fluctuations in average face temperature. The plot depicts 
a weak inverse correlation between the average face temperature and workload, 
with a delay time. After one second following the engine failure (as indicated by 
the pink dash line), the workload reaches its highest value (Blue Point, indicating 
the moment of the highest workload). However, there is a noticeable delay be-
fore the average face temperature responds, subsequently reaching its lowest 
value (Red Point, representing the lowest average face temperature) during this 
period. This delayed response highlights the physiological dynamics of the face 
and its sensitivity to workload changes. Moreover, during the flight in scenario 
5, the heart rate fluctuated, but overall, it increased gradually, reaching its peak 
after the engine failure. The average heart rate after the engine failure was higher 
than before the failure.  

The heart rate increased multiple times before the plane’s engine failed be-
cause, in the participant’s previous experience with scenario 4, an engine failure 
occurred at a speed of 80 knots. The participant anticipated a similar failure in 
subsequent instances after surpassing the 80-knot threshold. Due to this, there 
has been increased stress, resulting in a higher heart rate. Additionally, the men-
tal workload has been on the rise, accompanied by a decrease in facial tempera-
ture. On the other hand, in scenario 5, the engine failure occurs at a higher speed 
(V1 = 140 knots). At the time of the engine failure, the airplane is at high speed. 
Since the remaining distance to the end of the runway is not sufficient for brak-
ing, participants must skillfully control the plane and execute a takeoff, making 
this scenario difficult. As can be seen, following the engine failure, the heart rate 
suddenly increased. 

Figure 15 illustrates the variations in workload and temperature of the nose 
area. The red line represents the temperature of the nose area, while the blue 
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Figure 14. Relation between workload and temperature. 
 

 

Figure 15. Relation between Workload and Temperature of Nose Area, Nose tip, and Forehead. 
 

line represents the workload. The vertical green dashed line indicates the start of 
the scenario, the pink dashed line denotes the occurrence of an engine failure, 
and the yellow dashed line indicates the end of the scenario. Additionally, the 
dash blue line signifies the maximum workload experienced during the scenario. 
The purple line represents the temperature changes of the face Frontalis muscle 
(Face Muscle number 1), which corresponds to the forehead, showing that the 
forehead temperature remains relatively stable and does not show any significant 
correlation with workload. In contrast, the green line, representing the tempera-
ture changes of face muscle 7 (Nose tip), exhibits an inverse relationship with 
workload. As the workload increases, the temperature of the nose tip decreases, 
suggesting a noteworthy response in this specific area during high workload 
conditions. Additionally, the red line depicts temperature changes associated 
with the average temperature of facial muscles, including Procerus, Nasalis, and 
Nose Tip (corresponding to numbers 3, 6, and 7, respectively), highlighting the 
most inverse relationship with workload. 

6.4. Limitations 

The study’s limitations encompass various facets, including potential experi-
mental constraints and technology (hardware and software)-related errors that 
could impact the accuracy of results. Individual factors, such as differing skill 
levels among participants, pose challenges to the generalizability of findings, es-
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pecially concerning their applicability to licensed pilots. Environmental factors, 
notably the absence of authentic physical sensations in the simulation, may in-
troduce variations in participant responses compared to real-flight scenarios. 
Time constraints and ethical considerations, particularly safety restrictions, fur-
ther influence the research’s scope, guiding the extent to which certain scenarios 
can be realistically replicated and studied. These limitations collectively unders-
core the need for a cautious interpretation of the study’s outcomes and suggest 
areas for potential improvement in future research endeavors. 

7. Conclusions 

With the increase of traffic piloting operations are an important subject of se-
curing. The augmentation of flow of information leads to an increase of pilot’s 
workload with dangerous consequences of possible confusion and mistakes. In a 
previous study we have highlighted the links between the workload and the 
brainwaves measured by EEG activity. In the same context of aviation, our 
present study aimed to explore the relationship between face temperature and 
workload. The idea behind this relationship is that an individual’s workload can 
impact their body’s thermoregulation, which may be reflected in the thermal 
patterns of their face. Increased mental workload can lead to heightened stress 
and cognitive load, which may trigger physiological responses in the body, in-
cluding changes in facial temperature.  

We conducted the experiment with 10 participants, in six different aviation 
takeoff scenarios including normal and emergency situations, at least two flights 
for each scenario, totally taken 120 hours takeoff, and one hour per participant 
collect (9 hours totally) time series data without stop continuously including 
workload, heart rate, and facial thermal images and temperatures to examine the 
robustness of our results and to ensure the applicability of our findings in 
real-world aviation contexts. Our experiment conducted the relation between 
workload and face muscles and landmark points temperature during takeoff.  

We found that face temperature fluctuations correlated with the increasing 
workload experienced by participants during extended flight durations. Moni-
toring pilots’ face temperature in takeoff, landing and long-haul flights could 
help identify fatigue and stress, prompting timely interventions to pilot training, 
ensure aviation safety and well-being. By understanding the factors influencing 
workload, aviation authorities and training institutions can develop more effec-
tive strategies to support pilots and enhance aviation operations in diverse sce-
narios.  

As future work, the ongoing project aims to integrate the implemented and 
developed machine learning model to focus on calculating workload based on 
non-invasive physiological data. This model, designed to leverage the collected 
EEG, heart rate, eye-tracking, and facial thermal imaging data, holds the poten-
tial to provide a nuanced and real-time assessment of cognitive workload in avi-
ation scenarios. By incorporating machine learning, we anticipate enhancing the 
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accuracy and reliability of workload predictions, ultimately contributing to a 
more robust understanding of pilots’ cognitive states. The experimentation 
process is currently underway, involving continuous refinement of the machine 
learning model. This phase includes gathering additional data to expand the 
model’s training dataset and evaluating its performance across a spectrum of 
scenarios and individual differences. As the number of participants in the expe-
riment increases, an improvement in discerning the correlation between mental 
workload and face temperature is anticipated. This iterative process is crucial for 
fine-tuning the model’s predictive capabilities and ensuring its generalizability to 
diverse operational conditions in aviation. 
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