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Abstract 
Mental fatigue is a complex state that results from prolonged cognitive activity. 
Symptoms of mental fatigue can include change in mood, motivation, and tem-
porary deterioration of various cognitive functions involved in goal-directed 
behavior. Extensive research has been done to develop methods for recogniz-
ing physiological and psychophysiological signs of mental fatigue. This has 
allowed the development of many AI-based models to classify different levels 
of fatigue, using data extracted from eye-tracking device, EEG, or ECG. In 
this paper, we present an experimental protocol which aims to both gener-
ate/measure mental fatigue and provide effective strategies for recuperation 
via VR sessions paired with EEG and eye tracking devices. This paper first 
provides a comprehensive state-of-the-art of mental fatigue predictive factors, 
measurement methods, and recuperation strategies. Then the paper presents 
an experimental protocol resulting from the state-of-the-art to 1) generate 
and measure mental fatigue and 2) evaluate the effectiveness of virtual thera-
py for fatigue recuperation, using a virtual reality (VR) simulated environ-
ment. In our work, we successfully generated mental fatigue through comple-
tion of cognitive tasks in a virtual simulated environment. Participants showed 
significant decline in pupil diameter and theta/alpha score during the various 
cognitive tasks. We trained an RBF SVM classifier from Electroencephalo-
gram (EEG) data classifying mental fatigue with 95% accuracy on the test set. 
Finally, our results show that the time allocated for virtual therapy did not 
improve pupil diameter in post-relaxation period. Further research on the 
impact of relaxation therapy on relaxation therapy should allocate time closer 
to the standard recovery time of 60 min.  
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1. Introduction 

Mental fatigue is a complex state mainly resulting in mood variation, change in 
motivation, and a temporary decline of cognitive functions [1] [2]. The conse-
quences of such a state can negatively impact workplace performance and, 
sometimes, be a potential danger for oneself or/and others. Thus, it is not sur-
prising that mental fatigue is the most frequent cause of accident in the 
workplace [3].  

In recent years, many intelligent systems have been developed to detect men-
tal fatigue, using various physiological and psychophysiological features [4]. 
However, most of works published on the subjects are limited to the detection of 
mental fatigue without addressing options to alleviate symptoms. In theory, 
sleep and/or sufficient resting time are essential to recover cognitive functions 
affected by prolonged hours of work [5]. However, daily responsibilities and du-
ties do not always allow enough time to rest and fully recover attentional re-
sources. Thus, more attention should be paid to the development of recupera-
tion strategies after inducing fatigue. Hence, they can be used to temporarily al-
leviate some symptoms of mental fatigue, until proper resting time is possible for 
a more complete recovery. 

Previous work in the field of mental fatigue generation and detection mostly 
uses classic laboratory settings where users are asked to engage in various cogni-
tive exercises or simulations on a computer screen. These settings are rarely rep-
resentative of real-world contexts in which mental fatigue arises and thus chal-
lenges integrity of the data collected. In our work, we not only intend to 1) gen-
erate and measure mental fatigue but also 2) test the effect of virtual relaxation 
therapy on the recuperation of fatigue symptoms. Moreover, we intend to use 
virtual reality for (1) and (2) to best reproduce contexts and emotions in which 
mental fatigue arises and recuperation can occur. Virtual Reality (VR) session 
paired with Electroencephalogram (EEG) recording has been used in several ex-
periments to assess emotional response from a virtual simulated environment 
[6] [7]. Moreover, this framework has also been used for relaxation purposes: 
immersing the participants into a relaxing environment to reduce stress and an-
xiety [8].  

The goal of our experiment is to use VR session paired with EEG and Eye 
tracking to 1) generate and measure mental fatigue and 2) investigate the bene-
fits of relaxation therapy. This paper will first present related work in mental fa-
tigue generation/measurement and recuperation. The following sections present 
predictive factors of mental fatigue, physiological and psycho-physiological 
measures, recuperation strategy and the methods and material for our experi-
ment protocol which have been motivated by the findings and key concepts of 
the state-of-the-art detailed in the next sections. We will present our results in 
terms of the chosen fatigue indicators: pupil diameter, theta/alpha ratio, task 
engagement index. Finally, we will present the machine learning model obtained 
to classify mental fatigue as well as the effect of 10 - 15 min virtual therapy ses-
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sion on pupil diameter. 

2. Related Work 

Kamińska et al. investigated the use of EEG signals to classify a subject’s mental 
stress level using virtual reality environment. Participants were immersed in two 
alternating VR interactive simulations: stress inducing and relaxing. The stress 
inducing environment consisted of the Stroop test, while relaxing environment 
consisted of interactive relaxing scene based on scenarios created for psychothe-
rapy treatment. During the session, brain wave activity was continuously moni-
tored using EEG, and participants were asked to fill a questionnaire to assess 
their mood and level of stress, before and after the session. The experimenters 
used a convolutional neural network (CNN) to classify the level of stress of the 
participants and matched the subjective stress assessment of the participants 
with 96.42% accuracy [9].  

Like many other related studies, Kamińska et al. established their labels based 
on subjective assessment of fatigue via the questionnaire. However, subjective 
feedback questionnaires are time-consuming and unreliable for real-time fatigue 
detection. Ren Ziwu and colleagues [10] developed a Radical Basis Function 
(RBF) Neural Network to detect fatigue in driving simulation using EEG signals. 
Instead of using questionnaire, they used eye closure, a well-known fatigue indi-
cator to label fatigue and alert segments. Ren Ziwu et al. achieved 92.71% mean 
accuracy on their RBF neural network. 

While most of the recent literature on VR-based emotion induction and rec-
ognition is mostly focused on emotions such as stress, anxiety, and fear [11] 
[12], the use of VR for inducing mental fatigue has not been as extensively ex-
plored. However, we believe that VR environment can provide realistic expe-
rience to induce mental fatigue. When it comes to reproducing natural envi-
ronments and real-world circumstances, many studies support that VR allow 
users evoke emotions in a more natural approach [13] [14].  

3. Predictive Factors of Mental Fatigue 

Predictive factors are the set of tasks demands exerted on an individual, that 
might influence whether they become mentally fatigued by the task. For in-
stance, the time spent on a task, the number of cognitive resources required, and 
the level of engagement are important factors able to predict if a task is mentally 
fatiguing or not. Several factors can be at the origin of mental fatigue: 1) time on 
task, 2) workload, and 3) task engagement. Moreover, different levels of predic-
tive factors can lead to different types of fatigue. This section presents the pre-
dictive factors (1) (2) (3) of mental fatigue and the different types of fatigue that 
can result from them. 

Time on Task (TOT): The effect of task duration on mental fatigue and 
performance is known as the time-on-task effect (TOT). In general, mental fa-
tigue increases as the time spent on a task increases. However, it should be 
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noted that the relation between TOT and performance is not linear: during the 
first blocks of a task, an improvement in performance can be observed as a re-
sult of learning or automatization of performance [15]. Nonetheless, this peak 
in performance is generally followed by a decrease in performance caused by 
mental fatigue, which makes task duration an important task-related predic-
tion factor. 

Workload (WL): The mental workload can be defined as the number of 
cognitive resources or/and energy required to execute a cognitive task, requiring 
attention, memory, alertness or decision making [16]. In general, working under 
high levels of mental workload over prolonged periods results in an individual’s 
depletion of cognitive resources and energy and, eventually, mental fatigue [17]. 
Thus, mental workload is also an important task-related factor in predicting 
mental fatigue. 

Task Engagement (TE): The level of attention, involvement, and interest 
one dedicates to a particular task is one of the many factors affected by mental 
fatigue. Hence, mental fatigue can result in an unwillingness for further ef-
forts, abandoning behavior, where one becomes disengaged with the current 
task [2]. Consequently, task engagement decreases with TOT effects (mental 
fatigue). 

Passive vs. Active Fatigue: An important theory proposed by Desmond and 
Hancock’s (2001) suggested there are two types of fatigue: active and passive. 
In driving studies, active fatigue is characterized by elevated stress and results 
from a continuous and prolonged demanding interaction vehicle control re-
quiring constant perceptual and motor adjustments. On the other hand, pas-
sive fatigue is characterized by task disengagement and is the result of pro-
longed hours of little to no perceptual-motor response or interaction with ve-
hicle control [18] [19]. Thus, active fatigue appears to occur in higher work-
load conditions while passive fatigue occurs in lower workload conditions. 
Research by Saxby and Matthews (2008) later confirmed that the passive fati-
gue induced by low workload condition resulted in a significantly greater task 
disengagement over time compared to the active fatigue and control group. 
Moreover, performance impairment was greater in the passive fatigue condi-
tion [19]. 

4. Physiological and Psycho-Physiological Measures 

4.1. Pupil Diameter in Mental Fatigue and Workload 

Pupil diameter (PD) is another eye measurement which can be used to detect 
workload and mental fatigue. As mental fatigue increases the pupil diameter de-
creases with respect to baseline measurements [20]. While pupil diameter is also 
sensitive to changes in arousal and fatigue, it is also sensitive to changes in men-
tal workload. Gonca Gokce Menekse Dalveren and colleagues conducted a study 
to measure changes in mental workload in surgical residents during surgery 
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where participants were subjected to a computer-based simulation of surgical 
task. This study found that pupil diameter grows in direct proportion with men-
tal workload [21]. Bastian Pfleging and colleagues also used pupil diameter to 
develop a model able to predict mental workload under different task load de-
mands. They were able to accurately predict workload under varying mental 
demands and lightning condition with 75% accuracy [22]. Thus, during the 
transition state between high mental workload and mental fatigue, pupil di-
ameter is expected to decrease.  

4.2. Electroencephalogram (EEG) Power Spectral Density 

The electroencephalogram is a non-invasive way to measure the electrical activ-
ity originating from the brain from a set of electrodes spaced on the scalp. EEG 
is a common way to assess and monitor mental workload and fatigue because 
of the fluctuation in EEG waveforms, delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha 
(8 - 12 Hz), beta (12 - 18 Hz), in various cortical areas [23]. Figure 1 shows a 
scalp topography of electroencephalogram activity before (beginning) and af-
ter (end) driving simulation. Blue indicates a decrease in power spectra and red 
an increase in power spectra for the specified waveband, from Zhao et al. 2012 
[24].  
 

 
Figure 1. Brain activity before and after driving simulation (from Zhao et al. 2012 [24]). 

 
Transition state between increasing workload and mental fatigue generally 

results in an overall increase in delta, theta and alpha frequency band, and a 
decrease in beta frequency band as we can see on the figure.  

4.2.1. Task Engagement Index 
Pope and colleagues (1995) at the NASA developed an engagement task index 
based on EEG frequency bands applied in a closed-loop system to modulate task 
allocation. This index is defined by the ratio of frequency bands Beta/(Alpha + 
Theta) [25]. This ratio reflects allocation of attention, information-gathering, 
and visual processing [26]. 
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4.2.2. Workload with EEG 
The ratio of theta power in frontal areas over alpha power in parietal area is a 
well-known ratio index to measure changes in workload. Thus, this index is 
based on the principle that during increases in task demands, theta power in-
creases in frontal regions while alpha power decreases in parietal regions [27]. 
Thus, increases in the theta frontal to alpha parietal ratio indicate an increase 
in task load perception. However, from transition states from high mental 
workload to increasing mental fatigue levels, this ratio decreases as alpha power 
starts increasing [28]. Thus, this ratio can be used to monitor changes in work-
load and mental fatigue perception. 

5. Recuperation of Mental Fatigue 
5.1. Recovery 

Justine R. Magnuson and colleagues (2021) investigated the development and 
recovery of task-induced mental fatigue. They collected EEG signals and subjec-
tive assessment of participants while performing a 60 min N-back test followed 
by a 60 min post-task resting time. The authors observed that mental fatigue was 
induced after 30 - 45 min of the N-back test, from both objective and subjective 
measures. They also observed a 60 min recovery for some alpha and theta bands 
to baseline levels during resting time. However, complete recovery was not 
achieved after 60 min resting time [29]. 

5.2. Virtual Travel Relaxation 

VR-based relaxation therapy has received a lot of attention over the last few 
years. Among them, the virtual train therapy [30] is a VR relaxation therapy in 
which participants are immersed in a moving train and travel virtually looking 
through the windows to the landscape (Figure 3). The virtual train immersive 
therapy has shown to be effective in promoting relaxation, apathy, sleep, and 
reducing negative emotion such as stress and anxiety [30]. Hence, the cognitive 
benefits of a short virtual train therapy motivate the interest of exploring its ef-
fects on mental fatigue symptoms. 

6. Methods and Materials 

The protocol we present for this paper has two parts: the first is generation of 
mental fatigue and the second is recuperation of mental fatigue which will be 
detailed in the following Sections 6.1 and 6.2. We aimed to successfully gener-
ate mental fatigue in the first part and test the effectiveness of virtual relaxa-
tion therapy in the second part while collecting EEG and eye tracking data 
from participants. EEG data from the first part of the experiment were trans-
formed and fed to multiple machine learning models to select the one which 
best fits mental fatigue EEG measures, and eye tracking data will be used to 
isolate the pupil diameter to derive the labels (more details in 6.3). In addition, 
we expect to track the fluctuation of workload and task engagement to analyze 
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predictive patterns and possible formulas for mental fatigue. Workload and 
task engagement will be computed with the formulas presented in 4.2.1 and 
4.2.2. 

6.1. Generation of Mental Fatigue 

We generate mental fatigue among participants through a simulated VR envi-
ronment of a work office where participants are prompted to perform various 
set of cognitive tasks. There are two types of cognitive tasks set: one with dis-
tractors and one without distractors. Distractors are fake answers or wrong 
hints that will be displayed in the user’s virtual visual field to distract them and 
provoke fatigue. During these tasks, fatigue is measured through 3 indicators: 
pupil dilation, workload, and task engagement. The exercises chosen to gen-
erate mental fatigue are aligned with the active fatigue framework discussed in 
Section 3: we generate mental fatigue through cognitive tasks which aim to exert 
a high cognitive load on the participants. 

At first, participants will perform in both set of tasks consecutively (25 min). 
Then the relaxation period will begin (10 min). Finally, the participant will an-
swer different questions from the set of cognitive tasks without distractors (10 
min).  

The set of cognitive tasks with distractors consists of mental arithmetic 
tasks, anagram tasks and backward digits span (BDS) tasks. The user must 
perform these tasks within the time allocated for each. For each cognitive 
tasks, fake answers in the form of “hints” are displayed to distract the users. 
The arithmetic tasks (Figure 2) consist of a series of addition and subtraction 
of decimal numbers presented in the virtual environment that must be solved 
by the user. An example of a mental arithmetic task is an equation of the form 
“24.54 − 12.89 + 2.13 + 11.72 − 7.08 − 3.23” in which the user must use the 
virtual keyboard to summit the correct answer to this equation, 15.19 in this 
example. 
 

 

Figure 2. Mental arithmetic task (first task of the cognitive task with distractors) before 
the appearance of distractor answers on the screen. 
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In the anagram task, the user is presented with a set of letters, and must rear-
range these letters to form the appropriate dictionary word. For example, a user 
is presented with the letters “R”, “E”, “D”, “R”, “U”, “M”, and must use his vir-
tual keyboard to type the correct word “MURDER”.  

In the backward digits span, the user is presented with an ordered sequence of 
numbers that appears on the user’s virtual environment for a short period of 
time. The user is asked to memorize the sequence during that period. A few 
moments after the sequence is removed from the user’s screen, the participant is 
asked to recall the sequence in the reverse order of presentation using their vir-
tual keyboard. For instance, if the user is presented with the sequence 
“9-7-4-2-5-9-3”, he must memorize the sequence during the allowed time win-
dow and enter the reverse sequence order, “3-9-5-2-4-7-9”. 

Then another set of cognitive tasks without distractor is presented to the par-
ticipant. The goal here is to show that the eventual fatigue has been previously 
generated and is no more due to the distractors. This set has different types of 
exercises of a 5 min duration to measure cognitive and memory performance. 
These tests continue to generate mental fatigue as they require concentration, 
attention, memory, and other cognitive resources. This set is composed of an 
attention, a naming exercise and three different memory tests to evaluate con-
textual/visual memory, working memory and short-term memory. These exer-
cises will allow cognitive performance comparison between post-fatigue and 
post-recuperation states.  

6.2. Relaxation Therapy “Travelling Therapy” 

After the mental fatigue generation events, participants are exposed to the “Tra-
velling Therapy” VR environment for 10 - 15 minutes to reduce their negative 
emotions, mental fatigue and increase their concentration [30]. This environment 
(Figure 3) projects the users into a virtual train (360-degree environment), where 
they are sitting and can turn their head to look through the windows or ob-
serve events inside the train. The windows reveal a natural or relaxing land-
scape which can consist of forests with animals, mountains, snow mountains, 
simple roads, lakes, etc. In the train, the user can also see persons and/or pets 
interacting with each other. It is known that exposure to natural elements and 
landscape aid in the recovery of attentional fatigue and experiments realized 
with this virtual train has proved a reduction of negative emotion and an in-
crease of memory and cognitive function [30]. We aim to analyze if exposure to 
this virtual natural landscape can produce similar effects on mental fatigue re-
covery.  

6.3. Participants, Data Preprocessing and Labels 

31 participants (15 female and 16 male) aged between 19 and 29 years old were 
invited to a room at Beam Me Up office, partner of the project, 5925 Monkland 
Ave, H4A1G7, Montréal, to complete the different steps of the experiment and a 
few real-time and offline outcome measures. 
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Figure 3. The virtual train (relaxing environment). 
 

During the experiment, some electrodes loss their signal due to displacement 
caused by movement of the head and weak signal caused by hair density on the 
scalp. We selected EEG channels in a way that for the majority of participant, 
selected, at least 1 of 2 electrodes defining a scalp region remained intact. Re-
gions are defined as follows: 

1) (fp1, fp2) prefrontal 
2) (f4, f8) frontal right 
3) (f7, f3) frontal left 
4) (t4, t6) temporal right 
5) (t3, t5) temporal left 
6) (c4, c3) central 
7) (p3, p4) parietal 
8) (o1, o2) occipital 
Selection of participant: Participant missing 1 or more regions from the se-

lected scalp region were discarded from the dataset. Thus, we had to discard the 
central electrodes (c4, c5) from the dataset for all participants. Moreover, we had 
to discard 7 participants (4 female and 3 male) due to a too large number of 
failed electrodes during the experiment. Finally, 3 more participants (1 female, 2 
male) were additionally discarded from the dataset due to failure of the EEG 
headset during the experiment or because they were unable to finish the experi-
ment due to discomfort/headache. The final dataset was thus composed of 12398 
EEG power spectral density segments of prefrontal, frontal right, frontal left, 
temporal right, temporal left, parietal, and occipital electrodes from the 21 par-
ticipants (10 female and 11 male). 

The EEG signal was band-pass filtered with a fourth-order Butterworth filter 
(high-pass filter cut-off frequency: 1 Hz, low-pass filter cut-off frequency: 30 
Hz). The signal was then passed onto a wavelet denoising filter to remove signal 
noise, then the power spectral density was computed from the result using the 
Welch method. Outliers were removed using the interquartile range indepen-

https://doi.org/10.4236/jbbs.2023.132002


A. Hajj Assaf et al. 
 

 

DOI: 10.4236/jbbs.2023.132002 24 Journal of Behavioral and Brain Science 
 

dently for each participant dataset. From the result of the Welch calculation to 
retrieve power spectral density, the absolute power of theta, alpha, beta and delta 
at each electrode was calculated. Relative powers (W/Hz) were used to compute 
workload and task engagement using the formulas presented in 

Relative power of θ = (power of θ)/(power of θ + power of α + power of β + 
power of ∆) 

Relative power of α = (power of α)/(power of θ + power of α + power of β + 
power of ∆) 

Relative power of β = (power of β)/(power of θ + power of α + power of β + 
power of ∆) 

Relative power of ∆ = (power of ∆)/(power of θ + power of α + power of β + 
power of ∆) 

Band power of two electrodes elements of the same region were averaged 
when both electrode data was available. If one of the two electrodes was identi-
fied as “railed”, only the available was taken to describe the target region.  

Labels have been established based on variation of the pupil diameter, which 
is a well-known physiological indicator of mental fatigue and mental workload: 
pupil increases with respect to baseline when subjects are under high mental 
charge and decreases when fatigue rises. Baseline range is calculated at the first 
60 epoch for each participant. 10 epoch moving segments by 1 epoch increments 
are assigned to the label 0 if the mean of the segment falls between the baseline 
range, 1 if the mean falls above baseline range, and 2 if the mean falls below the 
baseline range. 

7. Results and Discussion 

The experimental results are presented in the following subsection. The first sec-
tion will be concerned with analysis of the pupil size with respect to the method 
chosen to classify mental fatigue. The second part will be concerned with the fa-
tigue indicators, workload and task engagement, progression throughout the 
experiment. The third part will address selection of the best machine learning 
model to classify mental fatigue. Finally, the last part will be concerned with the 
analysis of fatigue indicator following the relaxation period. 

7.1. Pupil Size Analysis 

Labels were assigned with respect to pupil size variation with respect to baseline, 
to identify segments of increasing workload and fatigue. Assigning fatigue labels 
according to eye measurements is a methodology that was employed by Ren Zi-
wu and colleagues [10] to classify mental fatigue using an RBF neural network. 
The correlation between pupil diameter and workload/fatigue progression was 
verified against a well-known EEG indicator of workload and fatigue: Theta 
F/Alpha P (theta bands of frontal electrodes over alpha bands of parietal elec-
trodes). Thus, increases in the theta frontal to alpha parietal ratio indicate an 
increase in workload. An increase of this index followed by a decrease indicates 
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transition states from high mental workload to increasing mental fatigue levels 
[28]. Figure 4 shows the measure of such a ratio during cognitive exercise for 
participant #2. We see, in dashed yellow, an increase of both indexes followed by 
a decrease in dashed red which indicates transition states from high mental 
workload to increasing mental fatigue levels. 
 

 

Figure 4. Normalized values of the smoothed ThetaF/AlphaP ratio and pupil diameter. 
 

The correlation value between the smoothed and normalized pupil diameter 
and thetaF/alphaP ratio over all participants is 0.54, which is a strong relation 
for the nature of the data (see Figure 4). The distribution of the labels during 
the first half and the second half of the cognitive tasks part of the experiment 
shows a significant decrease in absence of fatigue segments and slow fatigue 
progression proportion. Moreover, we noted a significant increase of rapid fa-
tigue segment proportion during the second half of cognitive tasks compared 
to the first half. To compare the different fatigue segments, we used the Wil-
coxon non-parametric test. This test was chosen (instead of paired t-test) be-
cause the distribution of fatigue segments did not follow the normality as-
sumption from parametric tests (Table 1). Results show a significant decrease 
in non-fatigue and slow fatigue signs, and significant increase in rapid fatigue 
progression signs. 
 
Table 1. Wilcoxon test of the proportion of mental fatigue signs comparing the first half 
of the experiment and the second half.  

Label 
number 

Median 
first half 

Median 
second half 

Alternate 
hypothesis 

Residual 
statistic 

p value 

0 0.888 0.607 μ0 > μ1 168 0.00002 

1 0.025 0.001 μ0 > μ1 5 0.005 

2 0.041 0.393 μ0 < μ1 0 0.000004 
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7.2. Workload and Task Engagement 

The workload and task engagement EEG score was computed from the formulas 
presented in 4.2.1 and 4.2.2. To provide evidence of their evolution we compare 
the measures of the first half of tasks with the measures of the second half. 
Hence, we observe a significant decrease in workload score during the second 
half of the cognitive tasks compared to the first half (p < 0.05) (Figure 5 and 
Figure 6). However, we did not observe a significant decrease (p < 0.05) in task 
engagement for the majority of participant. This phenomenon can be explained by 
the nature of the fatigue generated by the cognitive tasks: active fatigue. Active fa-
tigue (fatigue induced by high workload condition) results in a slower task dis-
engagement overtime than passive fatigue (fatigue induced by low workload con-
dition) [19]. Thus, a longer period of cognitive tasks would have been needed to 
see a change in task engagement. Figure 5 shows that the mean ThetaF/AlphaP 
index decreases in the second half as a result of fatigue. No significant change in 
task engagement. 
 

 

Figure 5. Mean score indices of thetaF/alphaP (workload) and beta/(alpha + theta) (task 
engagement) during the first half and second half of the fatigue generation tasks. 

 

 

Figure 6. ThetaF/AlphaP score of participant #1 during the mental fatigue generation 
tasks. 
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Another phenomenon that might explain the stability of the task engagement 
observed in this experiment is the diversity of the exercise presented to the par-
ticipants. Thus, it is possible that participants did not disengage in the presented 
task simply because the rapid rotation of different exercises did not allow them 
to get bored by them, but rather intrigued. This motivational influence on 
task-engagement was also observed by Jesper F. Hopstaken and colleagues, who 
observed that change in reward during mentally fatigue task was able to restore 
task-engagement levels and performance score, while participants still reported 
to be highly fatigued [31]. Thus, change in task engagement is likely to be influ-
enced by a complex relation of trade-off/reward system rather than depletion of 
a finite reserve of cognitive resources. 

Figure 6 shows the progression of workload. This index is known to decrease 
as mental fatigue increases. In dashed yellow, an increase of theta/alpha score 
followed by a decrease, shown in dashed red, indicates transition states from 
high mental workload to increasing mental fatigue levels. 

7.3. RBF SVM for Mental Fatigue Classification  

Our aim was to classify states of mental fatigue segment during a period where 
participants were asked to perform in various cognitive tasks. All 8 electrodes 
cerebral regions with their transformation (presented in 6.3), except for central 
electrode region, were used in the feature matrix for classification. The balanced 
accuracy as opposed to standard accuracy was chosen as one of the parameters 
to evaluate model performance, as the proportion of labels across the dataset was 
unbalanced. Various machine learning (ML) algorithm candidates were trained 
and tested in order to select the ML algorithm which best fits our data with re-
spect to evaluation metric “balanced accuracy” and “f1” measures (Table 2). 
Among the 8 different classifiers candidates, RBF SVM showed a better perfor-
mance with respect to balance accuracy and f1 evaluation metrics. 

After parameter tuning achieved through grid search algorithm, the balanced 
accuracy of the RBF SVM on the test data was 95%. 
 
Table 2. Evaluation metric of different machine learning models on the EEG dataset 
before parameter tuning. 

Classifier Mean balanced accuracy Mean f1 accuracy 

Nearest Neighbors 0.785653 0.901256 

RBF SVM 0.869718 0.820500 

Decision Tree 0.721963 0.823052 

Random Forest 0.734867 0.905245 

Neural Net 0.425775 0.691259 

AdaBoost 0.426200 0.667939 

Naïve Bayes 0.511668 0.503480 

QDA 0.734363 0.762419 
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7.4. Relaxation Period 

Our aim was to verify the effect of a short (10 - 15 min) VR relaxation therapy 
on the participant fatigue levels. During the experiment, the set of cognitive 
tasks without distractors were presented before and after the relaxation therapy 
to compare fatigue levels through pupil dilation. 

A Wilcoxon test performed on mean pupil diameter across participants, for 
pre and post relaxation period, favored rejection of the alternative hypothesis: a 
difference in mean pupil diameter across participants eye segments for pre and 
post relaxation period (Figure 7). We used the Wilcoxon test for the same rea-
sons indicated in Section 7.1. 
 

 

Figure 7. Mean pupil diameter across all participants during pre-relaxation period and 
post-relaxation period. 
 

While these results do not invalidate the use of virtual therapy to alleviate 
mental fatigue symptoms, they indicate that time allocated for relaxation in this 
experiment might have not been sufficient to observe benefits in this recupera-
tion technique. Thus, since standard recovery after mentally fatiguing tasks can 
take as long as 60 min post-task [29], further research would be needed to com-
pare the recuperation of fatigue symptoms with the aid of VR relaxation therapy 
and standard no activity recovering. 

8. Conclusion 

Mental fatigue is a complex multi-faceted state resulting from a change of emo-
tions and cognitive capacity. Although it is impossible to fully recreate real-world 
contexts and emotions from which mental fatigue and recuperation can arise, 
VR session enables us to achieve laboratory setting that are closer to the ones 
observed in real world situations. Our experiment combines VR sessions with 
EEG and eye tracking to generate, measure and recuperate mental fatigue in a 
way that best capture the context in which the measured signals occur in the 
real world. Our results showed significant decrease in theta/alpha ratio score 

https://doi.org/10.4236/jbbs.2023.132002


A. Hajj Assaf et al. 
 

 

DOI: 10.4236/jbbs.2023.132002 29 Journal of Behavioral and Brain Science 
 

and pupil size across participants during the completion of cognitive tasks, in-
dicating increasing mental fatigue. While we did not find significant changes 
in task engagement, we believe that this phenomenon is the results of the fast 
rotation of different cognitive tasks, which did not allow enough time for par-
ticipant to get bored by them. Using EEG for feature data and pupil diameter 
to derive labels, we were able to develop an RBF SVM classifier able to detect 
signs of mental fatigue with 95% balanced accuracy. This important finding 
(ratio score and pupil size) provides a way to detect and measure the apparition 
of fatigue. 

Thus, we believe that using virtual reality in the context of mental fatigue 
generation and recuperation will allow us to extract data from an environment 
that is better at mimicking real-life situations. Finally, more investigation needs 
to be done on the benefits of relaxing virtual environments such as the virtual 
train on mental fatigue symptoms, mainly in terms of the relaxing exposure time 
needed to observe significant effects on mental fatigue. Further research on the 
impact of relaxation therapy on mental fatigue should allocate time closer (but 
shorter) to the standard recovery time of 60 min. 
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