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Abstract 

In this research, we study the cognitive workload of aircraft pilots during a 
simulated takeoff procedure. We propose a proof-of-concept setup environ-
ment to gather heart rate, pupil dilation, and brain cognitive workload data 
during an A320 takeoff within a simulator. Experiments were performed dur-
ing which we collected 136 takeoffs across 13 pilots for more than 9 hours of 
time-series data. Moreover, this paper investigates the correlations between 
heart rate, pupil dilation, and cognitive workload during such exercise and 
found that a spike in cognitive load during a critical moment, such as an en-
gine failure, augments a pilot’s heart rate and pupil dilation. Results show that 
a critical moment within a takeoff procedure increases a pilot’s cognitive load. 
Next, we used a stacked-LSTM model to predict cognitive workload 5 seconds 
into the future. The model was able to produce accurate predictions. 
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1. Introduction 

Hart and Staveland from NASA describe cognitive workload (CW) as the user’s 
perceived level of mental effort influenced by task load and task design [1]. Be-
cause of this, CW has been a hot topic in the research community for the last 
decades. While many studies exist around measuring CW, few studies are done 
on how to measure CW in real-time. This method of measuring CW is relevant 
for different industries where measuring the CW of a person could help predict 
future behavior and avoid poor decisions. This method is particularly relevant in 
aviation, where passengers’ security is the top priority. CW within the aviation 
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industry, which englobes the mental capacity of a pilot to perform the maneuv-
ers of an aircraft, varies according to the piloting stage and the number of tasks 
converging at the same time on the pilot. This load can lead to pilot errors with 
serious consequences. While the aviation industry has a variety of procedures to 
minimize human errors, they still happen. 

The National Transportation Safety Board (NTSB), the organism that tracks 
aviation accidents in the United States, reports that 80% of all aviation accidents 
are due to human errors, with sometimes dramatic consequences [2]. Most er-
rors occur during the takeoff or landing procedure. Most errors occur during the 
takeoff or landing procedure. Because of this, measuring their CW could help 
the aviation industry better understand a pilot’s mental state when errors happen 
and help pilots during flights by recommendation. To understand and measure 
the CW of a pilot in real-time, different cognitive and physical measurements 
need to be combined and analyzed to understand a pilot’s mental state at a given 
time and predict it accordingly. For example, physical measurements such as the 
airplane metrics combined with other measurements related to CW, such as the 
heart rate (HR) or the pupil dilation (PD) of a pilot, could be used to predict the 
pilot’s future CW better. 

Considering previous problem and investigations, we formulate the following 
hypotheses:  

Hypothesis 1: Is it possible to measure the CW of pilots in real-time during a 
takeoff experience?  

Hypothesis 2: Is it possible to establish a correlation between the measured 
CW and the measured PD and HR during a critical event? 

Hypothesis 3: Is it possible to predict the CW of a pilot based on his previous 
behavior? 

To answer these hypotheses, this paper will be organized as follows: First, a 
related work section will give an overview of the current work done around the 
subject of cognitive workload in aviation and research linking CW with other 
body parts such as HR and PD. Next, a software solution created to measure, 
monitor, and trigger different events and data from a single interface will be de-
scribed in the Section 3. The experiment setup and progress will be described in 
Section 4. Section 5 will describe the results from the experiments and answer 
the three hypotheses. Finally, Section 6 will describe the future work regarding 
this paper. 

2. Related Work 

Different measurement methods exist to measure CW, subjective, performance, 
physiological, and behavioral measures [3]. This research used a combination of 
physiological and behavioral measures as they offer the ability to measure a per-
son’s behavior in real-time. Moreover, different studies found that somebody re-
gions directly relate to a person’s cognitive load. These regions include the heart 
and pupils of a person. 
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2.1. Heart Rate 

Sosnowski et al. demonstrated that an increase in the task’s difficulty increased 
the HR of the learners [4]. Another study from Jerčić et al. used the HR in addi-
tion to the PD of each learner to measure its CW and attention [5]. Lang et al. 
showed that recall of pleasant and unpleasant memories prompts HR accelera-
tion, showing that arousal determines the HR of a person [6]. 

2.2. Pupil Dilation 

Kahneman et al. used PD as part of his empirical foundation for his attention 
theory. Since then, several studies have been done using pupillary dilation as a 
proxy for evaluating CW. The pupil dilates when cognitive load increases until 
task demands exceed the available cognitive resources [7]. Different studies used 
PD as a proxy for the cognitive load. Zekveld et al. used PD to observe the cor-
relation between hearing loss, age, and cognitive ability. PD was used to measure 
the CW from different learners [7]. Their study showed that the pupil response 
systematically increased with decreasing speech intelligibility. Lastly, Palinko et 
al. used PD to estimate the CW of drivers that were speaking and driving simul-
taneously [8]. 

2.3. Cognitive Workload 

While there is no agreement on its definition, cognitive workload can be seen in 
terms of resources or mental energy expended, including memory effort, deci-
sion making or alertness [9]. It indicates the amount of effort invested as well as 
users’ involvement level. To extract the CW from the EEG headset, this research 
uses a third-party software called Mentor [10]. This software is a module from 
the NCO software, a proprietary software of the BMU lab that represents the con-
vergence of multiple years of research into one extensive program called NCO 
[11]. The program uses machine learning models to extract the EEG signals, in-
terpret them and transform them into a readable cognitive workload score ranging 
from 0 to 100 [10]. This paper uses this score to represent the current CW of a 
pilot at a particular point in time. 

3. Methodology 

One problem with modern simulators is that they often lack a way of triggering 
or monitoring specific events. To solve this, this research created an Event Ge-
nerator software solution to start, capture, and log different aircraft failures to 
measure the variation of a pilot’s CW, HR, and PD in real-time. An overview of 
the Architecture is shown in Figure 1. 

Moreover, the proposed solution is simulator agnostic, meaning it can be 
plugged into different simulators if desired. While many commercial flight si-
mulators exist, this research focused on the X-Plane 11 simulator, offering rea-
listic aircraft with different programmable variables and solutions compared to 
other simulators. The Event generator is a multithreaded Node.js and Python  
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Figure 1. An overview of the event generator architecture. 
 
server running concurrently with a React.js frontend architecture. This research 
made it possible to run multiple server instances on different machines in real- 
time over a local network to avoid CPU overload. It communicates via HTTP 
and WebSockets to transfer real-time information to the server or external pro-
grams if necessary. Here is an overview of the functionalities of the Event Gene-
rator: 
 Monitor measurement tools during the experiments. 
 Monitor, log, and trigger events related to the aviation industry. 
 See real-time data being saved. 
 Create, update, and delete plug-and-play scenarios for an experiment. 

Moreover, the Event Generator communicates with every data gathering de-
vice and safely saves the current extracted data in a specific file in a scalable way. 
Here is an overview of all the modules that are present within the program: 
 Heart rate module: Measures at a frequency of 1 Hz the heart rate of a par-

ticipant (in bpm) using a heart rate monitor. 
 Eye-tracking module: Measures at a frequency of 60 Hz the pupil dilation of a 

participant using an eye tracker. 
 EEG module: Using an EEG headset logically measures and saves the raw, 

modified, and multiple EEG data points.  
 Simulator executor module: Separate module triggering certain events sent to 

the simulator via UDP.  
 Logging module: Other modules can use this module to save data in a partic-

ular format. 
 Screen recording module: Starts and stops the screen recording using OBS 

and WebSockets. 

4. Experiments 

This research did an experiment using the previously mentioned methodology to 
measure the real-time cognitive activity of pilots. The experiment aims to meas-
ure pilots’ CW, HR, and PD during a takeoff procedure in an Airbus A320 
within the X-Plane 11 simulator. The participants had to release the parking 
brake, do a takeoff procedure, and climb until 3000 ft without using autopilot. 
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Six different scenarios were created, as described in Table 1. Moreover, partici-
pants were divided into two groups, one debuting with failure scenarios and the 
other with standard scenarios, to cancel the learning effect of doing multiple ta-
keoffs. CW, HR, and PD were measured using an EEG headset from OpenBCI 
running the proprietary NCO software from BMU [10], a Polar H10 heart rate 
monitor strap, and the Gazepoint GP3 eye tracker. 

4.1. Participants 

In total, 13 participants with seven pilots, including five A320 pilots, completed 
the experiment for a total of 136 takeoffs. The participants in this study were 
required to work from Bombardier or CAE and work in a field closely related to 
the aviation industry. The six participants with no piloting license were engi-
neers working on a specific aircraft at Bombardier and CAE, knowing most air-
craft maneuvers. Participants were all males with an average age of 36 years 
(±8.8 years), 604 flight hours, and 8.5 years of piloting experience. 

4.2. Procedure 

Figure 2 shows the experiment environment with the participant (left) and the 
pilot monitor (middle).  
 

 

Figure 2. The experiment with the participant (left) and the pilot monitor (middle). 
 
Table 1. An overview of the different scenarios. 

Scenario Time Weather Failure 

1 1:45 pm No wind, no clouds No 

2 6:00 am Clouds at 2700 ft, rain No 

3 9:00 pm No wind, no clouds No 

4 5:30 am No wind, no clouds Yes, EF at 80 knots 

5 6:00 am 15 knots crosswind Yes, EF at 140 knots 

6 6:00 am Low visibility, rain Yes, EF at 80 knots 
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The experiment followed a strict procedure that the partners and the ethics 
committee approved. Before the experiment, participants received a detailed 
document of the A320 takeoff procedure to familiarize themselves with the si-
mulator’s handling characteristics. On the day of the experiment, participants 
were given a 30-minute familiarization flight to learn to take off an A320 aircraft 
with the simulator setup. Moreover, participants were familiarized with the dif-
ferent failure procedures they had to follow during the familiarization. A pilot 
monitor (experimenter) helped the participant takeoff conform to an Airbus 
A320 takeoff. After 30 minutes, the measurement tools were installed, and the 
actual experiment started. The participants did not know the scenarios in ad-
vance. This was purposely done to generate more cognitive workload for every 
scenario. The experiment was divided into two 20-minute sessions, one with 
failures and one without failures. During the session with failures, the partici-
pant knew there could be failures during each takeoff but did not know which 
type of failure or when a failure could happen. Moreover, the participant did not 
know the weather conditions in advance of each scenario. 

5. Results and Discussion 

This study’s first hypothesis is to demonstrate if it is possible to measure the CW 
of a pilot in real-time. To investigate this, we started by analyzing if a cognitive 
load-intensive event, such as an engine failure, triggers a significant change in 
CW. To this end, this study analyzed the CW of the participants during a 4 
second time window around an engine failure as shown on Figure 3. The results 
show a mean maximum CW of 0.39 and a mean min CW of 0.21. Using F-tests, 
this study found an F-value of 5.424 and a p-value of 0.029, rejecting the null 
hypothesis. This result shows the matching correlation between the measured 
data and the events from the simulator, proving the hypothesis. 
 

 

Figure 3. Min-max value of CW within a 4-second timeframe. 
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The second hypothesis was: Is it possible to establish a correlation between the 
measured CW and the measured PD and HR during a critical event? Using pre-
vious hypothesis’ results, this study analyzed the consequences of a critical event 
on HR and PD before and after the event. Figure 4 shows each pilot’s average 
HR and PD before and after an engine failure. For HR, over a 20-second time-
frame, the mean HR before the event was 71.75 bpm and 80.41 bpm after the 
event. This research used an F-test resulting in an F-value of 10.75, giving a 
p-value of 0.00317, proving that a CW increase during a cognitive-intensive 
event also increases the HR. Using the same procedure for PD, over a 4-second 
timeframe gave a mean PD before the event of 15.23 pixels in contrast to 17.79 
pixels after the event. This results in an F-value of 6.35, giving a p-value of 
0.0187, rejecting the null hypothesis. 
 

 
 

 

Figure 4. Average HR (Upper) and PD (Bottom) before and after engine failure. 
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The last hypothesis of this study is: Is it possible to predict the CW of a pilot 
based on his previous behavior? To solve this, different machine learning and 
deep learning models were trained and tested using the data from the experi-
ment. Table 2 shows the results of the different models. The data was prepro-
cessed by removing unnecessary columns and rows with empty values. Moreo-
ver, the HR, PD, and CW columns were smoothed using the Butterworth filter 
to remove noise. The data was also standard scaled and one-hot encoded, and 
the top ten features were selected using their correlation with CW using a Pear-
son correlation matrix. 

This study found that a stacked-LSTM model, consisting of two LSTM models 
using the ADAM optimizer and dropout layers at 0.5, gave the best overall re-
sults, as shown in Table 2. Using HR, PD, flight logs, and previous CW, this mod-
el could predict future CW values 5 seconds in the future. Figure 5 shows the 
predictions of the model on unseen data. 
 
Table 2. Models performances. 

Model MSE RMSE MAE 

Ridge Regression 474.70 21.79 19.67 

SVR 626.62 25.03 22.31 

MLP 537.11 23.18 23.18 

CNN 497.73 22.31 18.52 

BI-LSTM 99.6 9.98 7.81 

Stacked-LSTM 44.09 6.64 5.28 

 

 

Figure 5. Stacked LSTM model predictions (red) vs true labels (blue). 
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5.1. Discussion 

Based on the results in the previous section, we conclude it is possible to predict 
future cognitive workload based on a pilot’s past behavior using data from the 
HR monitor, eye tracker, EEG, aircraft events and logs combined with a stacked- 
LSTM model. Different approaches were used to try to predict the CW of a pilot. 
One idea was not to use any previous CW to predict future CW. This method 
was used for the SVR, Ridge regression, MLP, and CNN models. As shown in 
Table 2, this method did not result in reliable predictions. This could be because 
predicting CW only by looking at the current timestamp does not give enough 
information for the models to predict anything confidently. Moreover, LSTM 
models were trained without using previous CW as input and did not yield reli-
able results either. We also tried to add lag in the CW data. This method shifted 
all CW x seconds into the future (shifted x rows), so the model could analyze the 
change in PD or HR to predict the current CW. Nevertheless, even when using 
lag, we could not predict the next CW. Currently, the model is only capable to 
predict CW 5 seconds into the future. We tried shorter and longer timestamps to 
predict the CW of a pilot using different LSTM models. The 5-second future 
time prediction was chosen based on trial and error. It can be noted that the fur-
ther the prediction in time, the worse the model’s performance. The model fails 
to predict CW over 15 seconds accurately. Furthermore, predicting the CW of 
an aircraft pilot more than 10 seconds into the future during a critical event 
would not make sense as every second counts during such event. 

5.2. Limitations 

The model is limited to making CW predictions of a pilot during a takeoff pro-
cedure. Moreover, it can, now, only make predictions during engine failures be-
fore or after V1 and during standard takeoffs. Another limitation is that the rela-
tionship found between HR, PD, and CW is only during an engine-failure criti-
cal event. 

6. Conclusion 

In this research, we investigated the real-time cognitive workload of airline pilots 
during a takeoff procedure. We tried to investigate the possibility of measuring 
CW during takeoff using an EEG headset, a heart rate monitor, and an eye 
tracker. To achieve this, we created a software solution that can trigger failure 
events and measure the CW, HR, PD, and other simulator events in real-time 
during a simulated takeoff. It was used during experiments that gathered 13 par-
ticipants, including seven pilots and six aircraft engineers. Out of those seven 
pilots, five were A320 pilots. In total, the experiment gathered 136 takeoffs com-
bined across six different scenarios, proving that it is possible to measure the CW 
of a pilot in real-time. Using this data, we determined that during a critical event, 
the CW, HR, and PD of a pilot increased, proving the second hypothesis of this 
paper. Lastly, to prove the third hypothesis, we compared and analyzed the ef-
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fectiveness of using machine learning and deep learning models to predict the 
cognitive load of a pilot in real-time using his past behavior. We found that a 
stacked-LSTM resulted in the best predictions with an MSE of 44.09, an RMSE 
of 6.64, and an MAE of 5.28. This model was able to predict the CW of a pilot 5 
seconds into the future. This study is part of the Pilot AI project and acts as a 
starting point for future research. The gathered data and the experimental setup 
will be used for future research and models regarding the Pilot AI project. 
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