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Abstract 
The Schrödinger differential equation is what we usually solve for the micro-
scopic particles in non-relativistic quantum mechanics. Niels Bohr suggested 
the power two of the (usually) complex answer shows the probability of the 
particle’s existence at a point of space. Also, the time dependence of Schro-
dinger wave equation is one whereas for light in electromagnetism is two. In 
this paper, we show a solution for both problems. We derive a Wave Equa-
tion for the energy of every system. This electromagnetic wave equation is 
shown to convert to those classical (i.e. the Schrodinger) and special relativistic 
(i.e. Klein-Gordon) quantum mechanical equations. Also, accordingly there 
definitely is a physical meaning to answer to this wave equation. And there-
fore, switching the probabilistic interpretation of quantum mechanics to a 
deterministic one as (Albert) Einstein demanded. 
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1. Introduction 

The problem of the ultimate nature of matter, or that of the elementary particle 
structure, is much distant from having been resolved [1] [2] [3]. To unify the 
structure model of the elementary particles, one of the early models suggested 
for it has been a protuberance in space made by wave packets i.e. a bell shaped 
function representing a particle, made of waves [4]. However, the main problem 
with this model is spreading (in classical case) and contracting (in relativistic 
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case) as a function of time, meaning it can easily be shown that in this model the 
group (vg) and phase (vp) velocities of each wave (making supposedly the ele-
mentary particle, using the Fourier seris) are never equal [4]. Consequently, the 
duality in the elementary particle structure model is remained. This unsuccessful 
model of the experimental results that could either be interpreted by particle or 
by waves, convinced physicists that there is no single-structural model of the 
elementary particles [4]. Thus, physicists have accepted the wave-particle struc-
ture of the microscopic world, as the ultimate model. So, the dual wave-particle, 
model is now the accepted one for the elementary particles in quantum mechan-
ics.  

Also, the square of particle state function ψ2 (where ψ is the solution of quan-
tum mechanical wave equation) is interpreted as equal to the probability of the 
particle’s existence at any point of space and any time [4]. This probabilistic 
model of the microscopic world is called the (Niels) Bohr model.  

In this paper, we first derive the Angha Wave Equation (AWE) for a particle 
[5] (in a potential field). Next, we show that the AWE is the same as Schrödinger 
and Klein-Gordon equations of quantum mechanics; therefore, it indeed is a 
quantum mechanical wave equation. Finally, we explicitly show that the AWE 
and the E & M wave equations are the same. 

We look at the field of a stationary charged particle and start from infinity. 
Advancing toward the particle center, we know that the E & M energy of that 
particle (i.e. m0c2 – e2/2r) decreases as the distance from the center (r) decreases. 
The core of the present model is as follows. Attribute this decrease in energy to 
an increase in the permittivity [ε = ε(r)] of space around the particle. We take 
the permittivity, ε as [6]: 

0ε =
W
W

.                           (1) 

where, W0 is the particle’s rest energy (m0c2) at infinity, and W is the content of 
its energy at a point r from the center.  

We also can write Equation (1) as:  
2

0 2= ltv
W W

c
.                          (2) 

Here, we have used that 2
0

2= ltW W c v , where vlt is the velocity of light [5] in 
the field of the particle. 

2. The Angha Wave Equation 

Let us now derive the E & M fields equation with a permittivity other than one. 
Starting with the Maxwell’s equations in a space with charge density ρ(r) and no 
current density (in cgs system) [6]: 

( )4 ρ⋅ = πD r∇ ,                      (3-a) 

1 ∂
× = −

∂
BE

c t
∇ ,                      (3-b) 
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0⋅ =B∇ ,                         (3-c) 

1 ∂
× =

∂
DB

c t
∇ .                       (3-d) 

Taking, ( ) –e ω=E E i tr , ( ) –e ω=B B i tr , 0 0ω= W , and ω= W , and per-
forming the partial time derivatives, we get: 

4 ρ⋅ = πD∇ ,                        (4-a) 

× =E B


iW
c

∇                        (4-b) 

0⋅ =B∇                           (4-c) 

ε× = −B E


iW
c

∇                       (4-d) 

where all D , E , W, B , and ε  are functions of r. Since 0ε =W W  then,  

0× = −B E


iW
c

∇                       (4-d') 

And since  

( ) 4 ρ⋅ = ⋅ + ⋅ = πD E E ∇ ∇ ∇ .                 (5) 

But since for any vector A  we can write ( ) 0⋅ × =A∇ ∇  then, from Equa-
tion (4-d'), the divergence of its left side is zero. Thus: 

0 = ⋅E∇ .                         (6) 

In this case, and therefore Equation (5) is: 

( ) 4 ρ⋅ = ⋅ = πD E∇ ∇ .                     (7) 

Or we can write: 

( )1
4

ρ = ⋅  π
E∇ .                       (8) 

So, the existence of an electric charge (at a point of space) is equivalent to a 
variable permittivity ε, at that point. In essence, according to Equation (8), a va-
riable permittivity (ε) indeed is the cause of an electric charge density and vice 
versa.  

For example, let us show that indeed for a particle of charge e, the 

( )1 d
4

⋅  π∫ E V∇  is also the same as e. Using Equation (1) and entering the E 

&M of the particle of rest energy  
W0, (since we are going to find the charge of the particle itself) we can write:  

 

0 0
2 2

0
0

1

1
2 2

ε = = =
− −

w w
w e ew

r w r

.                   (9) 

Defining: 2
0 02≡r e W , Equation (9) changes to 

 
( )

0
2

0 0

ˆε ε= ⇒ = −
− −

r
rr e

r r r r
∇                  (10) 
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where ˆre  is unit vector in the r direction. 
For this particle the Coulomb electric field [at ( )0r r ] is 2ˆ= ⋅E re e r . 

And Equation (7) results in: 

( )
( )

0
2 2

0

14
4

ρ ρ⋅ = π ⇒ = −
π −

E
r e

rr r
∇ .               (11) 

At ( )0r r  we have ( ) 4
0 4ρ = − πr er r . Integrating this ρ  we have: 

0
0 2

d
− =∫

r rer
r

e                           (12) 

So, the total charge of this particle is Q = e, whereas in traditional physics a 
particle is extended from r = 0 (where almost everything goes to infinity), to r0, 
in our model the picture of a particle is from  

Let us go back to deriving the wave equation now: since  

( ) ( ) 2× × = ⋅ −∇V V V∇ ∇ ∇ ∇                   (13) 

(where V  is any twice differentiable vector), we take the curl of the Equation 
(4-d)  

( ) ( )0× × = − ×B E


iW
c

∇ ∇ ∇ . 

( ) ( )2 0⋅ −∇ = − ×B B E


iW
c

∇ ∇ ∇ .                 (14) 

Using Equations (4-c) and (4-b) we can write: 

( )2 2 20 0 0
2 2

 −∇ = − × ⇒∇ = ⇒∇ = − 
 

B E B B B B
   

iW iW WWiW
c c c c

∇ .   (15) 

On the other hand, finding the curl of the Equation (4-b) and using the iden-
tity (13) we have 

( ) ( )× × = ×E B


i W
c

∇ ∇ ∇  

( ) [ ]2⋅ −∇ = × + ×E E B B


i W W
c

∇ ∇ ∇ ∇  

Using, 0⋅ =E∇  and ( )ε× = −B EiW c∇  we have:  

2 0
2 2∇ = − × − −E B E

 

WWi W
c c
∇                 (16) 

Using the identity, ( )2 2 2∇ ⋅ = ⋅∇ + ⋅r A r A A∇ , that 0⋅ =E∇ , and 
0⋅ =B∇  we can convert Equations (15) and (16) respectively to:  

( ) ( )2 0
2 2∇ ⋅ = − ⋅r B r B


WW
c

                  (17) 

( ) ( ) ( )2 0
2 2∇ ⋅ = ⋅ × − ⋅−r E r B r E

 

WW
W

c
i
c

∇             (18) 

But, since W is a function of r, then, its gradient, W∇  is in the direction of 
r  thus, (no matter what the direction of B  is) the term ×BW∇  is perpen-
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dicular to r , resulting in ( ) ( ) 0⋅ × =r Bi Wc ∇ . Therefore, from Equation (18) 
we have: 

( ) ( )2 0
2 2∇ ⋅ = − ⋅r E r E


WW
c

.                  (19) 

Taking, ( ) ξ≡⋅ =r E rrEr  and/or ξ≡⋅ =r B rrB , we have:  

2 0
2 2ξ ξ∇ −=


WW
c

                      (20) 

This is the AWE for the E & M fields of a particle [when ( )= r  ].  

3. The Cohesion of AWE with Schrodinger and with  
Klein-Gordon Equations 

We take the energy of a system in general 2
0=W m v  [5]. Classically (where 

0WE ) 2 2
0 0 0= + ≈W m c m cE , and = +T VE . Also, since the time depen-

dence of the E & M fields of the particle is ( ) ( ) –e, ω= ⋅E E i tr t r ,  
( ) ( ) –e, ω= ⋅B B i tr t r  thus, ( ) –e ωξ ξ= ⋅ i tr . The AWE for the above is  

2 2
2 2 20 0

2 2 2 2
0

2 2
2 2

0 0

2

2

2

2

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= ⇒ = ⇒ − =

∂
⇒ − +

∇ − ∇ − ∇

+∇ ⇒ ∇− =
∂

=



 

 



T

V V

WW Tm c
mc c

i
m m t

E
      (21) 

This is the Schrödinger wave Equation (7). Note that ψ = ξ because the diffe-
rential equations are the same.  

From Equation (2) we have 2 2
0=lt c W Wv . For relativistic cases the energy 

W0 is now equal to the total energy of the system (i.e. 0 =W E  so  
( )1 22 2 2

0 1= − ltm c cE v  reference [7]. We find ( )22 2 2
01= −lt c m cv E . We 

also find ( )22
01 = −  

W m c E E . Inserting these into AWE we arrive at: 

( )2 0
2 2 2 2

22
0

1 1ξ ξ ξ = = − − ⋅∇


−  
 

m
c

c
WW

c
E E E  

( )2
2 2

2 2 4
0

1ξ ξ= − −∇


m c
c

E  

2 2 42
0

2 2 0ξ ξ ξ⇒ + =∇− − m cc E  

2
2 42 2 2 2
02 0ξ ξ ξ∂

− + + =
∂

∇  m c
t

c                 (22) 

which is the Klein-Gordon equation [8]. 
Finally, considering that ( ) ( ) –e ωξ τ ξ= ⋅ i tr  we can convert the AWE to the 

following: 
2

2
2 0

2ξ ξ∇
∂

=
∂

W
Wc t

.                      (23) 

But, 
2

0
2

2
2

2 2

1ξ ξ∂
⇒ =

∂
= ∇

lt lt

c
W v t
W

v
.                  (24) 
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This is the E & M wave equation. Therefore, the Schrödinger, Klein-Gordon 
and the E & M, wave equations are all derivable from the AWE. 

4. Discussions 

We have derived the E & M, equation (for ( )= r  ), and shown that it is the 
same as Schrödinger (and Klein-Gordon) equations. Also this solves the prob-
lem of the difference in the time dependence of Quantum mechanical and E & 
M, wave equations. The ψ = ξ = rEr (or rBr) is deterministic now. And as we will 
discuss in detail in future papers the AWE is compatible with relativity.  

This solves many problems of quantum mechanics including: it gives a deter-
ministic version for its solution. Plus the fact that the AWE is the same as the 
Schrödinger (and Klein-Gordon) equations means nothing is changed in quan-
tum mechanics.  
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