
Journal of Applied Mathematics and Physics, 2024, 12, 4322-4332
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2024.1212265 Dec. 31, 2024 4322 Journal of Applied Mathematics and Physics

On Some Systems of Word Equations for
Automata

Nikolai I. Krainukov1*, Mikhail E. Abramyan1,2, Boris F. Melnikov1

1Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University, Shenzhen, China
2Algebra and Discrete Mathematics Department, Southern Federal University, Rostov-on-Don, Russian Federation

Abstract
In this paper, we use some programing tools and algorithms for solving system
of word equation for regular languages. There are many possibilities for
presentation of regular languages such as grammars, finite automata, rewrit-
ing systems and so on. Some of these systems is presented by system of com-
putational discrete algebra GAP and the possibilities of presentation now in
some systems interactive theorem provers (Isabelle, Coq). This computer sys-
tem can give to detailed understanding of solution of system of word equation,
compared the languages and regular expressions of the languages.

Keywords
Finite Automata, Word Equation, Free Algebra, Regular Expressions,
Normal Forms

1. Introduction

Formal Languages, Automata and Logic are basic concepts of computer science.
In this contribution, we shall see how different presentation for regular languages
helps us to solve problems of minimization finite automata and find the normal
forms for classes of equivalence of factor algebra of free algebra with generators
in alphabet Σ.

The theory of automata [1] and system of word equation already was consid-
ered in [2]. Our goal is to pay more attention to applied work with automata, reg-
ular expressions and to receive the results of these calculations.

We discussed also minimization problems for the finite automata.
Section 2 contains the basic definition and notation of formal languages, rewrit-

ing system, finite automata and some logical notation.

How to cite this paper: Krainukov, N.I.,
Abramyan, M.E. and Melnikov, B.F. (2024)
On Some Systems of Word Equations for
Automata. Journal of Applied Mathematics
and Physics, 12, 4322-4332.
https://doi.org/10.4236/jamp.2024.1212265

Received: October 26, 2024
Accepted: December 27, 2024
Published: December 31, 2024

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2024.1212265
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4323 Journal of Applied Mathematics and Physics

In Section 3, we discuss the algorithm of Knuth-Bendix for constructing a con-
fluent rewriting system for language and a practical example of application of the
algorithms.

In Section 4, we apply the computer discrete algebra system GAP to find normal
form state languages for automatons.

2. Definitions and Notation

In this section, we remember the definition and notation about formal languages,
free monoid, free algebra, automata and rewriting system. The following defini-
tions taken from [3]-[6] will be used.

An alphabet Σ is finite set letters { }Σ , , ,a b c= … . A word or string w is fi-
nite length sequence of letters over alphabet Σ . We denote as *Σ the set of all
finite words. The set of *Σ with respect to the concatenation operation forms a
free monoid. Semigroup *Σ Σ \ ε+ = is monoid *Σ without empty word ε .
Language L is subset of monoid *Σ .

A basic operation of free monoid *Σ is concatenation of two words w uv= .
The operation of concatenation is defined for languages in the natural way:

1 2 1 2 1 1 2 2{ | and }L L w w w L w L= ∈ ∈

The concatenation closure or Kleene star of a language 𝐿𝐿:

{ }* 2L L Lε= ∪ ∪ ∪…

Infinite tree presents of monoid { }*Σ , , , , , ,a b aa ab bbε= … over alphabet
{ },a bΣ = (Figure 1). Every word w has unambiguous path from root (node 1)

of this tree to the leaves.

Figure 1. Infinite tree presents the free monoid over alphabet { },A a b= .

The word u is a prefix of a word v , denoted as u v≤ , if v uw= , for some

*w∈Σ . We say that u and v are prefix comparable if either v u≤ , or u v≤ .
An automaton A [1] [3]-[5] over alphabet Σ consists of a set of states Q ,

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4324 Journal of Applied Mathematics and Physics

the initial states I Q⊂ , the final/terminal states T Q⊂ , and a set
F Q A Q⊂ × × called the set of edges. The automaton is denoted by

(), , ,A Q F I T= .
The automaton is finite when the set Q is finite. The language L is recognized

by A , denoted ()L A , is the set of words in *Σ which are labels of paths from
I to T .

Figure 2 shows the automaton A with three states, the set of initial states

{ }1I = , the set of terminal states { }3T = , the set of edges
() () () () (){ }1, ,1 , 1, , 2 , 1, , 3 , 1, , 3 , 3, , 3F a a a b b= . The finite language

() { }, , ,L A a ab b= … is recognized by automaton A .

Figure 2. Automaton A with three states.

Let M be a monoid [3] [5]. Recall that a subset MΣ ⊂ of M generates

M if every element of M is a product of elements of Σ . If M is a monoid
generated by a finite set Σ then there is a homomorphism * : Mφ Σ → , from
free monoid *Σ to monoid M :

() () ()αφ βφ αβ φ= for all words α and β in *Σ .
In this case, the monoid M is isomorphic to * /Σ ≈ where ≈ is the congru-

ence, equivalence relation compatible with respect to the concatenation on *Σ
defined by:

.α β αφ βφ≈ ⇔ =

Let this congruence R is a set of equations of the form α β= where
*,α β ∈Σ and where α and β represent the same element αφ βφ= of mo-

noid M Then R generates a congruence ≈ on *Σ and that R is a set of
defining relations for M .

A string-rewriting system R is a subset of * *Σ ×Σ . Each element (),l r R∈
of rewriting system R is a (rewrite) rule. Suppose an element *u∈Σ has a sub-
word l and (),l r is a rule of the rewriting system R , then we can replace the
subword l of u by the subword r and obtain a new word v

u xly xry v= → = and u xly xry v= ↔ = .

For any string-rewriting system R , if u and v are strings such that

Ru v↔ , then for all *,x y A∈ , Rxuy xvy↔ , that the relation R↔ is called a
congruence relation too: it is an equivalence relation that is compatible with re-
spect to the concatenation of strings.

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4325 Journal of Applied Mathematics and Physics

We can define the word equation by two steps [2].
First step, we define the expressions over the alphabet A in the variables

1 , , nX X… for given set CONST coefficients of equation and OP set of op-
eration:

()1; ; , , ,A nEX CONST OP X X…

Let { },A a b= , CONST is the class of finite languages, and OP contains
precisely union and left-concatenation.

For example, the expression α is contained in (); ; , , ,AEX CONST OP X Y Z

(); ; , ,AabXUaYUbZ EX CONST OP X Y Zα = ∈ .

Second step, now we can define a system of language equations.
Let 1 2 , ,, kα α α… and 1 2 ,, , kβ β β… be expression in

()1; ; , ,A nEX CONST OP X X… ,
1 1α β=

2 2α β=
…

k kα β=

Then this is a system of language equations for variable , ,X Y Z , set
CONST and OP :

aX Yb=
,aZa Y=

The possible solution of this system of equations:

() () ()1 1, ,n n nX ab Y a ab a Z ab− −= = =

Recall that an algebra [6] [7] over a field K is a K -vector space A with a
binary operation (multiplication) A A A× → , (),a b ab→ specified on it, satis-
fying the following requirements:

1) ()a b c ab ac+ = + , ()b c a ba ca+ = + for any , ,a b c A∈ ;
2) () () ()a b a b abλ λ λ= = for any Kλ ∈ , ,a b A∈ .
We will additionally assume that:
3) there is a unit in A , i.e., an element 1 such that 1 1a a a= = for any a A∈ ;
4) algebra A is associative, i.e., () ()ab c a bc= for any , ,a b c A∈ .
Throughout the following, we will additionally assume, that the field K is the

field of rational numbers. We can embed monoid *Σ over alphabet

{ }1 2Σ , , , nx x x= … into free algebra of polynomials []1 2 , , , nK x x x… with homo-
morphism []*

1 2: Σ , , , nK x x xϕ → … by definition on letters of alphabet Σ :

() , 1, ,i ix x i nϕ = = … .

Then we can define a lineal presentation [8] of syntactical monoid of the deter-
ministic automaton A by matrices correspondent the transformations of the let-
ters alphabet.

3. Finite Automaton and the System of Equations

At first, we consider the deterministic finite automata [9] [10]. Consider a

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4326 Journal of Applied Mathematics and Physics

deterministic finite automaton (DFA) ()0, , , ,DA A Q q Fδ= , where A is the
underlying alphabet, { }0 1 2 1, , , ,n nQ q q q q− −= … is the finite, nonempty set of
states, 0q is the (single) initial state (0q Q∈), F a subset of (F Q⊆), is the
set of final states, and δ is the transition function:

: .Q A Qδ × →

A system of word equations associates with DA in the following way:
• CONST is a class of finite languages (it may contain one word).
• OP consists of the operations union and left-concatenation.
• The set of variables be { },i iL q Q∈

() ,i j iL a L U qλ= ⋅


(), ,j ia A q q aδ∈ =

where ()iqλ ε= if iq F∈ and ()iqλ = ∅ if q F∉ .
Let iL is the language of automaton (), , , ,iDA A Q r q F= with initial state

iq . If the state iq is the final state iq F∈ of automaton DA , then the empty
word ε belongs language iL .

For example, Figure 3 shows the automaton DA with four states.

Figure 3. The automaton DA with four states.

The language ()*1L abaUbb= are the set of the paths from initial state 1 1q =

to the final state 1 1q = .
The system of word equations for automaton on Figure 3 can be written in form:

1 3 2L aL bL ε= ∪ ∪

2 1L bL=

3 4L bL=

4 1L aL=

The solution of this system of equations can be found by substitution or by
Gauss’s method.

1 4 2 1 1L abL bL abaL bbLε ε= ∪ ∪ = ∪ ∪

1 1()L aba bb L ε= ∪ ∪ , ()*1L aba bb= ∪

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4327 Journal of Applied Mathematics and Physics

Lemma 1. Let the equation X N X M= ⋅ ∪ over the alphabet A in the var-
iable. Then solution of this equation: *X N M= . (Just substitute it into the equa-
tion)

We use the system of computational discrete algebra GAP for calculation with
finite automata. There are many functions with operation with finite automaton
in package “Automata” such as for creating automata, minimization the number
of states, determination and so on.

gap> aut1:=Automaton("det",4,2,[[3,,,1],[2 ,1,4,]],[1],[1]);

< deterministic automaton on 2 letters with 4 states >

gap> Display(aut1);

 | 1 2 3 4

a | 3 1

b | 2 1 4

Initial state: [1] Accepting state: [1]

gap>re1:=AutomatonToRatExp(aut1);

(abaUbb)*

Let consider a nondeterministic finite automaton (NFA) (), , , ,NA A Q I Fν= ,
where A is alphabet, Q is the finite set of states, I is the set initial state
(I Q⊂), F , is the set of final states, and ν is the transition function:

: 2 .QQ Aν × →

For example, Figure 4 shows the nondeterministic automaton NA with three
states.

Figure 4. The automaton NA with three states.

The corresponding system of equations for nondeterministic automaton NA

is then:

1 1 2 2 3L aL aL bL bL= ∪ ∪ ∪

2 1 2 3L bL bL cL ε= ∪ ∪ ∪

3 1 1 1L aL bL cL ε= ∪ ∪ ∪

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4328 Journal of Applied Mathematics and Physics

The solution of this system of equations can be find by substitution or by
Gauss’s method:

1 1 2 1() ()L aL a b L b a b c L b= ∪ ∪ ∪ ∪ ∪ ∪

2 1 2 1()L bL bL c a b c L c ε= ∪ ∪ ∪ ∪ ∪ ∪

3 1()L a b c L ε= ∪ ∪ ∪

The usage of the system algebra GAP gives the solution of these system equa-
tions:

gap> Display(naut1);

 | 1 2 3

 a | [1, 2] [1]

 b | [2, 3] [1, 2] [1]

 c | [3] [1]

Initial state: [1]

Accepting states: [2, 3]

gap> ren1:=AutomatonToRatExp(naut1);

((aUb)b*(c(aUbUc)Ub)Ub(aUbUc)Ua)*((aUb)b*(cU@)Ub)

 gap> naut2:=Automaton("nondet",3,3,

[[[1,2],,1],[[2,3],[1,2],1],[,3,1]],[2],[2,3]);

< non deterministic automaton on 3 letters with 3 states >

gap> ren2:=AutomatonToRatExp(naut2);

((c(aUbUc)Ub)(b(aUbUc)Ua)*(aUb)Ub)*((c(aUbUc)Ub)(b(aUbUc)Ua)*bUcU@)

gap> naut3:=Automaton("nondet",3,3,

[[[1,2],,1],[[2,3],[1,2],1],[,3,1]],[3],[3,3]);

< non deterministic automaton on 3 letters with 3 states >

gap> ren3:=AutomatonToRatExp(naut3);

((aUbUc)((aUb)b*bUa)*((aUb)b*cUb))*((aUbUc)((aUb)b*bUa)*(aUb)b*U@)

The results solutions are the languages 1 2 3, ,L L L= = =ren1 ren2 ren3 , where
regular expressions ren1, ren2, ren3 build from the correspondence nondeter-
ministic automata naut1, naut2, naut3.

For nondeterministic automaton, (), , , ,NA A Q I Fν= , we can define the ad-
jacency matrix:

,, , 1, if (,) , else 0a i j i jM a A M q a qν∈ = = .

The size of matrix aM is equal N N× , where N is a number of state nonde-
terministic automaton NA [1] [11] [12]. There is homomorphism *: A AMϕ →
from free monoid *A to matrix algebra AM with generators aM .

There is path that is the word w from state iq to state jq . The homomor-
phism *: A AMϕ → maps the word w to a product of matrix wG and element

,i jG is the path from state iq to state jq in nondeterministic automaton D .
For example, for automaton NA the matrices ,,a b cM M M and , ,a b cG G G

have the correspondents structure:

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4329 Journal of Applied Mathematics and Physics

gap> Ma;

[[1, 1, 0],

 [0, 0, 0],

 [1, 0, 0]]

gap> Mb;

[[0, 1, 1],

 [1, 1, 0],

 [1, 0, 0]]

gap> Mc;

[[0, 0, 0],

 [0, 0, 1],

 [1, 0, 0]]

gap> Ga;

[[a, a, 0],

 [0, 0, 0],

 [a, 0, 0]]

gap> Gb;

[[0, b, b],

 [b, b, 0],

 [b, 0, 0]]

gap> Gc;

[[0, 0, 0],

 [0, 0, c],

 [c, 0, 0]]

gap> Aabc:=FreeAssociativeAlgebraWithOne(Rationals,"a","b","c");

<algebra-with-one over Rationals, with 3 generators>

gap> A:= Algebra(Aabc, [Ma, Mb, Mc]);

<free left module over AlgebraWithOne(Rationals, ...), and ring,

with 3 generators>

Lemma. The homomorphism : MA AMϕ → map word w v MA+ ∈ free
left module MA over free algebra A to the matrix () ,i jw Pϕ = , where ,i jP –
path that the the two word ,w v from state iq to state jq [5] [6].

Example is continued:
For automaton, NA we have the results:

gap> P1:=Ga^3+Gb*Ga*Gc^2;

[[(1)*a^3, (1)*a^3, <zero>],

[(1)*b*a*b^2, <zero>, <zero>],

[(1)*a^3+(1)*b*a*b^2, (1)*a^3, <zero>]]

gap> P2:= Ga^2+Gb^2*Ga*Gc^2+Ga*Gb*Gc^2*Ga^5;

[[(1)*a^2+(2)*b^2*a*b^2+(2)*a*b^3*a^5,(1)*a^2+(2)*a*b^3*a^5,<zero>],

 [(1)*b^2*a*b^2, <zero> , <zero>],

 [(1)*a^2+(1)*a*b^3*a^5, (1)*a^2+(1)*a*b^3*a^5, <zero>]]

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4330 Journal of Applied Mathematics and Physics

The results are for matrices P1 show the path from state 1q to state 1q by
the word ^3w = a and for matrices P2 to from state 3q to state 2q by the word

 ^3 ^5w = ∗ ∗a b a .

4. Apply Computer Discrete Algebra System GAP for Find
Normal Form of State Languages for Automaton

The computer discrete algebra system GAP has more than 130 different packages.
The package name KBMag reflects the Knuth-Bendix algorithm and program for
constructing a rewriting system from a finitely presented semigroup, monoid or
group.

The words in a rewriting system created in GAP for use by KBMag are defined
over an alphabet that consists of the generators of a free monoid, called the word-
monoid of the system.

First, we define nondeterministic automaton NA :

gap> aut1:= NFAtoDFA(naut1);

< deterministic automaton on 3 letters with 7 states >

gap> Display(aut1);

 | 1 2 3 4 5 6 7

 a | 2 2 1 4 2 1 2

 b | 3 5 2 4 5 1 5

 c | 4 6 7 4 7 1 1

Initial state: [1]

Accepting states: [2, 3, 5, 6, 7]

gap> ta:=Transformation([2, 2, 1, 4, 2, 1, 2]);

Transformation([2, 2, 1, 4, 2, 1, 2])

gap> tb:=Transformation([3, 5, 2, 4, 5, 1, 5]);

Transformation([3, 5, 2, 4, 5, 1, 5])

gap> tc:=Transformation([4, 6, 7, 4, 7, 1, 1]);

Transformation([4, 6, 7, 4, 7, 1, 1])

gap> ma1:=Monoid([ta,tb,tc]);

<transformation monoid of degree 7 with 3 generators>

gap> Size(ma1);

73

Then we construct syntactic monoid for transformation states of deterministic
automaton aut1. The size of syntactic monoid ma1 is equal 73.

MappingByFunction(<transformation monoid of size 73, degree 7 with 3

generators>, <fp monoid on the generators

[m1, m2, m3]>, function(x) ... end, function(x) ... end)

gap> m1:=Image(mhom1);

<fp monoid on the generators [m1, m2, m3]>

gap> k1:=KnuthBendixRewritingSystem(m1);

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4331 Journal of Applied Mathematics and Physics

R := KBMAGRewritingSystem(m1);

gap> Size(R);

73

gap> GrowthFunction(R);

x_1^6+12*x_1^5+25*x_1^4+22*x_1^3+9*x_1^2+3*x_1+1

Figure 5. Deterministic automaton aut1 with seven states.

Returns the growth function of the set of irreducible words in the rewriting

system R . This is a rational function, of which the coefficient of ^x n in its Tay-
lor expansion is equal to the number of irreducible words of length n .

This deterministic automaton aut1 seven states and the syntactic monoid ma1
has seven congruence classes.

5. Conclusions

The system GAP has many packages to solve problems with finite automata, for-
mal languages and other algebraic structures: monoid, free algebra, matrix alge-
bra.

Usage system GAP for: solving the systems of equations for finite automata,
finding the regular expressions for languages describing state-to-state paths, using
a rewriting system to reduce regular expression and transform it into its normal
form.

Funding

This work is supported by a grant from the research program of Chinese univer-
sities “Higher Education Stability Support Program” (Section “Shenzhen 2022 Sci-
ence, Technology and Innovation Commission of Shenzhen Municipality”).

https://doi.org/10.4236/jamp.2024.1212265

N. I. Krainukov et al.

DOI: 10.4236/jamp.2024.1212265 4332 Journal of Applied Mathematics and Physics

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References
[1] Aho, A. and Ullman, J. (1973) The Theory of Parsing, Translation, and Compiling.

Prentice Hall.

[2] Leiss, E. (1999) Language Equations. Springer-Verlag.
https://doi.org/10.1007/978-1-4612-2156-2

[3] Brauer, W. (1984) Automation Theory: An Introduction to the Theory of Finite Au-
tomata. Vieweg + Teubner Verlag.

[4] Rozenberg, G. and Salomaa A. (1997) Handbook of Formal Languages. Volume 1.
Word, Language, Grammar. Academic Press.
https://doi.org/10.1007/978-3-642-59136-5

[5] Lallement, G. (1979) Semigroups and Combinatorial Applications. Wiley & Sons,
376.

[6] Berstel, J. and Perrin, D. (2008) Theory of Codes. Academic Press, 345.

[7] Winberg, E.B. (2005) Course of Algebra. M. Factorial Press. (In Russian)

[8] Berstel, J. and Perrin, D. (2005) Codes and Automata. Springer, 545.

[9] Melnikov, B. (2017) The Complete Finite Automaton. International Journal of Open
Information Technologies, 5, 9-17.

[10] Melnikov, B. (2018) Regular Languages and Nondeterministic Finite Automata.
RGSU Publisher. (In Russian)

[11] Melnikov, B. and Dolgov, V. (2022) Simplified Regular Languages and a Special
Equivalence Relation on the Class of Regular Languages. Part I. International Journal
of Open Information Technologies, 10, 12-20. (In Russian)

[12] Abramyan, M. (2021) Computing the Weight of Subtasks in State Minimization of
Nondeterministic Finite Automata by the Branch and Bound Method. University
proceedings. Volga Region. Physical and Mathematical Sciences, 2, 46-52. (In Rus-
sian)

https://doi.org/10.4236/jamp.2024.1212265
https://doi.org/10.1007/978-1-4612-2156-2
https://doi.org/10.1007/978-3-642-59136-5

	On Some Systems of Word Equations for Automata
	Abstract
	Keywords
	1. Introduction
	2. Definitions and Notation
	3. Finite Automaton and the System of Equations
	4. Apply Computer Discrete Algebra System GAP for Find Normal Form of State Languages for Automaton
	5. Conclusions
	Funding
	Conflicts of Interest
	References

