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Abstract

In this paper, we use some programing tools and algorithms for solving system
of word equation for regular languages. There are many possibilities for
presentation of regular languages such as grammars, finite automata, rewrit-
ing systems and so on. Some of these systems is presented by system of com-
putational discrete algebra GAP and the possibilities of presentation now in
some systems interactive theorem provers (Isabelle, Coq). This computer sys-
tem can give to detailed understanding of solution of system of word equation,
compared the languages and regular expressions of the languages.
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1. Introduction

Formal Languages, Automata and Logic are basic concepts of computer science.
In this contribution, we shall see how different presentation for regular languages
helps us to solve problems of minimization finite automata and find the normal
forms for classes of equivalence of factor algebra of free algebra with generators
in alphabet 2.

The theory of automata [1] and system of word equation already was consid-
ered in [2]. Our goal is to pay more attention to applied work with automata, reg-
ular expressions and to receive the results of these calculations.

We discussed also minimization problems for the finite automata.

Section 2 contains the basic definition and notation of formal languages, rewrit-

ing system, finite automata and some logical notation.
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In Section 3, we discuss the algorithm of Knuth-Bendix for constructing a con-
fluent rewriting system for language and a practical example of application of the
algorithms.

In Section 4, we apply the computer discrete algebra system GAP to find normal

form state languages for automatons.

2. Definitions and Notation

In this section, we remember the definition and notation about formal languages,
free monoid, free algebra, automata and rewriting system. The following defini-
tions taken from [3]-[6] will be used.

An alphabet X is finite set letters ¥ ={a,b,c,...}. A word or string w is fi-
nite length sequence of letters over alphabet X . We denote as X the set of all
finite words. The set of £" with respect to the concatenation operation forms a
free monoid. Semigroup X =X \g is monoid X" without empty word &.
Language L issubset of monoid X .

A basic operation of free monoid X" is concatenation of two words w=uv.

The operation of concatenation is defined for languages in the natural way:
LL ={ww, |w el andw, e L,}
The concatenation closure or Kleene star of a language L:
L ={gu Lul® u}
Infinite tree presents of monoid X" ={¢,a,b,aa ab,bb,...} over alphabet

T = {a, b} (Figure 1). Every word w has unambiguous path from root (node 1)
of this tree to the leaves.

Figure 1. Infinite tree presents the free monoid over alphabet A ={a,b}.

The word u is a prefix of a word v, denoted as u<v,if v=uw, for some
weX . Wesaythat u and v are prefix comparable if either v<u,or u<v.

An automaton A [1] [3]-[5] over alphabet X consists of a set of states Q,
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the initial states | < Q, the final/terminal states T < Q, and a set
F cQxAxQ called the set of edges. The automaton is denoted by
A=(QF,1,T).
The automaton is finite when the set Q is finite. Thelanguage L isrecognized
by A, denoted L(A), is the set of wordsin =" which are labels of paths from
| to T.
Figure 2 shows the automaton A with three states, the set of initial states
| = {1}, the set of terminal states T = {3}, the set of edges
F= {(1, a,1),(La2),(1a,3),(1b,3),(3h, 3)} . The finite language
L(A)={a,ab,b,...} is recognized by automaton A.

Terminal State

Figure 2. Automaton A with three states.

Let M be a monoid [3] [5]. Recall that a subset XM of M generates
M if every element of M is a product of elements of X.If M isa monoid
generated by a finite set X then there is a homomorphism ¢ :2" — M, from
free monoid X" to monoid M :

(ap)(p¢)=(ap)¢ forallwords & and S in T,

In this case, the monoid M isisomorphicto X'/~ where =~ isthe congru-
ence, equivalence relation compatible with respect to the concatenation on T
defined by:

axf S ap= Lo

Let this congruence R is a set of equations of the form a =/ where
a,p ey andwhere a and [ representthe sameelement a¢= ¢ ofmo-
noid M Then R generates a congruence ~ on Y and that R is a set of
defining relations for M .

A string-rewriting system R is a subset of £ xX . Each element (LreRr
of rewriting system R is a (rewrite) rule. Suppose an element UecX" has a sub-
word | and (1,r) isarule of the rewriting system R, then we can replace the

subword | of U by the subword r and obtain a new word V

u=xly > xry=v and u=xly <« xry=v.

For any string-rewriting system R, if U and V are strings such that
U<y V, then for all x,ye A", Xuy <>; Xvy, that the relation <> is called a
congruence relation too: it is an equivalence relation that is compatible with re-

spect to the concatenation of strings.
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We can define the word equation by two steps [2].
First step, we define the expressions over the alphabet A in the variables
Xii..., X, for given set CONST coefficients of equation and OP set of op-
eration:
EX, (CONST;OP; X,,..., X,),

Let A={a,b}, CONST is the class of finite languages, and OP contains
precisely union and left-concatenation.
For example, the expression ¢ is contained in EX, (CONST;OP; X,Y,Z),
a = abXUaYUbZ € EX, (CONST;OP; X,Y,Z).

Second step, now we can define a system of language equations.
Let o, 0,,...,a, and B, f3,,..., B be expression in
EX, (CONST;OP; X,,..., X, )>

o =p
a, =p,
o =P

Then this is a system of language equations for variable X,Y,z , set

CONST and OP:
aX =Yb
aZa=Y,

The possible solution of this system of equations:
X =(ab)",Y =a(ab)" " a,z =(ab)""

Recall that an algebra [6] [7] over a field K isa K -vector space A with a
binary operation (multiplication) AxA— A, (a,b)—ab specified on it, satis-
fying the following requirements:

1) a(b+c)=ab+ac, (b+c)a=ba+ca forany a,b,ceA;

2) (aa)b=a(4ib)=A(ab) forany AeK, abeA.

We will additionally assume that:

3) thereisaunitin A, ie,anelement 1 suchthat la=al=a forany aeA;

4) algebra A isassociative, Le., (ab)c=a(bc) forany a,b,ceA.

Throughout the following, we will additionally assume, that the field K is the
field of rational numbers. We can embed monoid X~ over alphabet

T ={X,%,...,X,} into freealgebra of polynomials K[x,,x,,...,x,] with homo-
morphism ¢:X — K [Xi, Xpyeue Xn] by definition on letters of alphabet X :

p(x)=%,i=1...,n.

Then we can define a lineal presentation [8] of syntactical monoid of the deter-
ministic automaton A by matrices correspondent the transformations of the let-
ters alphabet.

3. Finite Automaton and the System of Equations

At first, we consider the deterministic finite automata [9] [10]. Consider a
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deterministic finite automaton (DFA) DA=(AQ,5,q,,F), where A is the
underlying alphabet, Q={q,,q,,..., U, 2.0} Iis the finite, nonempty set of
states, (, is the (single) initial state (g, €Q ), F a subset of (F = Q), is the
set of final states, and & is the transition function:

0:QxA—>Q.

A system of word equations associates with DA in the following way:
e CONST is a class of finite languages (it may contain one word).
e OP consists of the operations union and left-concatenation.

e The set of variablesbe {L,,q, €Q}
L=Ua Lui(q),
acAq; =6(q,a)
where A(q)=¢ if ,€eF and A(q)=0 if q¢F.
Let L; is the language of automaton DA=(A Q,r,q;, F) with initial state
q; . If the state 0, is the final state @, € F of automaton DA, then the empty
word ¢ belongs language L.

For example, Figure 3 shows the automaton DA with four states.

Figure 3. The automaton DA with four states.

The language L, = (abanb)* are the set of the paths from initial state g, =1
to the final state @, =1.

The system of word equations for automaton on Figure 3 can be written in form:

L =al,ublL, ue

L, =bL,
L, =bL,
L, =al,

The solution of this system of equations can be found by substitution or by

Gauss’s method.

L, =abL, ubL, ue =abal, UbbL, Ue

L, = (abaubb)L, Ue, L =(abaubb)
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Lemma 1. Let the equation X =N-X UM over the alphabet A in the var-
iable. Then solution of this equation: X = N"M . (Just substitute it into the equa-
tion)

We use the system of computational discrete algebra GAP for calculation with
finite automata. There are many functions with operation with finite automaton
in package “Automata” such as for creating automata, minimization the number

of states, determination and so on.

gap> autl:=Automaton(*'det",4,2,[[3,,.1 1.[2 ,1.4, 11.[11.[11);
< deterministic automaton on 2 letters with 4 states >

gap> Display(autl);

| 1 2 3 4
al 3 1
bl 2 1 4

Initial state: [ 1 ] Accepting state: [ 1 ]
gap>rel:=AutomatonToRatExp( autl );
(abaUbb)*

Let consider a nondeterministic finite automaton (NFA) NA=(A,Q,v,I,F),
where A is alphabet, Q is the finite set of states, | is the set initial state
(1cQ), F,isthesetof final states, and Vv is the transition function:

ViQxA—2°.

For example, Figure 4 shows the nondeterministic automaton NA with three

states.

Figure 4. The automaton NA with three states.

The corresponding system of equations for nondeterministic automaton NA

is then:
L, =al, val, ubL, UbL,
L, =bL, ubL, ucl, Ue
L, =al, ubL ucL ve
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The solution of this system of equations can be find by substitution or by
Gauss’s method:
L =al, u(aub)L, ub(aubuc)L, Ub
L, =bL, ubL, uc(aubuc)L ucue
L, =(avbuc)l ue
The usage of the system algebra GAP gives the solution of these system equa-

tions:

gap> Display(nautl);

| 1 2 3
all1, 2] L11
bl1[2 31 [1,2] [1]
c | [L31 L11]
Initial state: [1]

Accepting states: [ 2, 3 ]

gap> renl:=AutomatonToRatExp( nautl );
((aub)b*(c(aubuc)Ub)Ub(aUbuc)Ua)*((aUb)b*(cu@)Ub)

gap> naut2:=Automaton(‘'nondet",3,3,
[C[1.21..1]1.002.31.01.2].11.[.3.111.[2]1.[2.31):

< non deterministic automaton on 3 letters with 3 states >

gap> ren2:=AutomatonToRatExp( naut2 );

((c(aubuc)ub) (b(aubuUc)Ua)*(aub)Ub)*((c(aubUc)uUb) (b(aUbUc)Ua)*bUcU@)
gap> naut3:=Automaton(‘'nondet',3,3,
CCr:.23,.11.002.3]1.01.2].1].[,3,111.[31.[3.3D):

< non deterministic automaton on 3 letters with 3 states >

gap> ren3:=AutomatonToRatExp( naut3 );

((aubuc) ((aub)b*bua)*((aub)b*cUb))*((aubUc) ((aUb)b*bUa)*(aUb)b*U@)

The results solutions are the languages L =renl, L, =ren2, L, =ren3, where
regular expressions renl, ren2, ren3 build from the correspondence nondeter-
ministic automata nautl, naut2, naut3.

For nondeterministic automaton, NA=(A,Q,v,I,F), we can define the ad-
jacency matrix:

M, ,aeAM,; =1 if v(qi,a):qj,elseo.

The size of matrix M, isequal NxN, where Nis a number of state nonde-
terministic automaton NA [1] [11] [12]. There is homomorphism ¢: A" — AM
from free monoid A’ to matrix algebra AM with generators M, .

There is path that is the word W from state ¢, to state q;. The homomor-
phism ¢: A" — AM mapstheword W toaproductof matrix G, and element
Gij

is the path from state ¢; tostate g; innondeterministic automaton D.
For example, for automaton NA the matrices M,,M,, M, and G,,G,,G,

have the correspondents structure:
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gap> Ma;
[L[1, 1,01,
[0,0,01,
[1,0,01]1]
gap> Mb;
LCLo, 1,117,
[1, 1,01,
[1,0,01]1]
gap> Mc;
L[o0,0,01,
[0,0,11,
[1,0,01]1]
gap> Ga;
[[La a 01,
[0,0,01,
[a 0,011
gap> Gb;
LLO, b, bl,
[ b, b, 0],
[b,0,01]1
gap> Gc;
LLo, 0,01,
[0,0,c1,
[c,0,011
gap> Aabc:=FreeAssociativeAlgebraWithOne(Rationals,"a","b"," " c'");
<algebra-with-one over Rationals, with 3 generators>
gap> A:= Algebra( Aabc, [ Ma, Mb, Mc ] );
<free left module over AlgebraWithOne( Rationals, ... ), and ring,

with 3 generators>

Lemma. The homomorphism ¢:MA— AM map word w+ve MA free
left module MA over free algebra A to the matrix ¢(w)=PR,;, where B; -
path that the the two word w,v from state (, to state g i [5] [6].

Example is continued:

For automaton, NA we have the results:

gap> P1:=Ga"3+Gb*Ga*Gc"2;

[ [ (D*an3, (1)*a"3, <zero> ],

[ (1)*b*a*b"2, <zero>, <zero>],

[ (D*an3+(1)*b*a*b"2, (1)*an3, <zero> ] ]

gap> P2:= Gan2+Gb"2*Ga*GcN2+Ga*Gb*GenN2*Gans;

[ [ (D*ar2+(2)*b 2*a*bN2+(2)*a*b"3*an5, (1)*aN2+(2)*a*bN3*an5,<zero>],

[ (1)*b~2*a*b"2, <zero> , <zero>],
[ (D*an2+(1)*a*b"3*an5, (L)*ar2+(1l)*a*b"3*an5, <zero>]]
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The results are for matrices P1 show the path from state ¢, to state (¢, by
theword w=a"3 and for matrices P2 to from state @, tostate g, bytheword

w=ax*b"3*a"5.

4. Apply Computer Discrete Algebra System GAP for Find
Normal Form of State Languages for Automaton

The computer discrete algebra system GAP has more than 130 different packages.
The package name KBMag reflects the Knuth-Bendix algorithm and program for
constructing a rewriting system from a finitely presented semigroup, monoid or
group.

The words in a rewriting system created in GAP for use by KBMag are defined
over an alphabet that consists of the generators of a free monoid, called the word-
monoid of the system.

First, we define nondeterministic automaton NA:

gap> autl:= NFAtoDFA( nautl );
< deterministic automaton on 3 letters with 7 states >
gap> Display(autl);
] 1 2 3 456 7
al 2 214 2 1 2
b|] 3524515
cl|] 46 7 47 11
Initial state: [L1]
Accepting states: [ 2, 3, 5, 6, 7]
gap> ta:=Transformation([ 2, 2, 1, 4, 2, 1, 2]);
Transformation( [ 2, 2, 1, 4, 2, 1, 21])
gap> tb:=Transformation([ 3, 5, 2, 4, 5, 1, 51);
Transformation( [ 3, 5, 2, 4, 5, 1, 57 )
gap> tc:=Transformation([ 4, 6, 7, 4, 7, 1, 11);
Transformation( [ 4, 6, 7, 4, 7, 1, 1 1)
gap> mal:=Monoid([ta,tb,tc]);
<transformation monoid of degree 7 with 3 generators>
gap> Size(mal);
73

Then we construct syntactic monoid for transformation states of deterministic

automaton autl. The size of syntactic monoid mal is equal 73.

MappingByFunction( <transformation monoid of size 73, degree 7 with 3
generators>, <fp monoid on the generators

[ mi, m2, m3 ]>, function( x ) ... end, function( x ) ... end )

gap> ml:=Image(mhoml);

<fp monoid on the generators [ m1, m2, m3 ]>

gap> kl:=KnuthBendixRewritingSystem(ml);
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R := KBMAGRewritingSystem( ml );

gap> Size( R );

73

gap> GrowthFunction( R );
X_IN6+12*X_AN5+25*x_1MN+22%Xx_173+9*x_1M2+3*x_1+1

Figure 5. Deterministic automaton aufl with seven states.

Returns the growth function of the set of irreducible words in the rewriting
system R . This is a rational function, of which the coefficient of x/n inits Tay-
lor expansion is equal to the number of irreducible words of length n.

This deterministic automaton aufl seven states and the syntactic monoid mal

has seven congruence classes.

5. Conclusions

The system GAP has many packages to solve problems with finite automata, for-
mal languages and other algebraic structures: monoid, free algebra, matrix alge-
bra.

Usage system GAP for: solving the systems of equations for finite automata,
finding the regular expressions for languages describing state-to-state paths, using
a rewriting system to reduce regular expression and transform it into its normal

form.
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