
Journal of Applied Mathematics and Physics, 2024, 12, 4322-4332 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2024.1212265  Dec. 31, 2024 4322 Journal of Applied Mathematics and Physics 
 

 
 
 

On Some Systems of Word Equations for  
Automata 

Nikolai I. Krainukov1*, Mikhail E. Abramyan1,2, Boris F. Melnikov1 

1Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University, Shenzhen, China 
2Algebra and Discrete Mathematics Department, Southern Federal University, Rostov-on-Don, Russian Federation 

  
 
 

Abstract 
In this paper, we use some programing tools and algorithms for solving system 
of word equation for regular languages. There are many possibilities for 
presentation of regular languages such as grammars, finite automata, rewrit-
ing systems and so on. Some of these systems is presented by system of com-
putational discrete algebra GAP and the possibilities of presentation now in 
some systems interactive theorem provers (Isabelle, Coq). This computer sys-
tem can give to detailed understanding of solution of system of word equation, 
compared the languages and regular expressions of the languages. 
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1. Introduction 

Formal Languages, Automata and Logic are basic concepts of computer science. 
In this contribution, we shall see how different presentation for regular languages 
helps us to solve problems of minimization finite automata and find the normal 
forms for classes of equivalence of factor algebra of free algebra with generators 
in alphabet Σ. 

The theory of automata [1] and system of word equation already was consid-
ered in [2]. Our goal is to pay more attention to applied work with automata, reg-
ular expressions and to receive the results of these calculations. 

We discussed also minimization problems for the finite automata.  
Section 2 contains the basic definition and notation of formal languages, rewrit-

ing system, finite automata and some logical notation.  
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In Section 3, we discuss the algorithm of Knuth-Bendix for constructing a con-
fluent rewriting system for language and a practical example of application of the 
algorithms. 

In Section 4, we apply the computer discrete algebra system GAP to find normal 
form state languages for automatons. 

2. Definitions and Notation 

In this section, we remember the definition and notation about formal languages, 
free monoid, free algebra, automata and rewriting system. The following defini-
tions taken from [3]-[6] will be used. 

An alphabet Σ  is finite set letters { }Σ , , ,a b c= … . A word or string w  is fi-
nite length sequence of letters over alphabet Σ . We denote as *Σ  the set of all 
finite words. The set of *Σ  with respect to the concatenation operation forms a 
free monoid. Semigroup *Σ Σ \ ε+ =  is monoid *Σ  without empty word ε . 
Language L  is subset of monoid *Σ . 

A basic operation of free monoid *Σ  is concatenation of two words w uv= . 
The operation of concatenation is defined for languages in the natural way: 

1 2 1 2 1 1 2 2{ | and }L L w w w L w L= ∈ ∈  

The concatenation closure or Kleene star of a language 𝐿𝐿: 

{ }* 2L L Lε= ∪ ∪ ∪…  

Infinite tree presents of monoid { }*Σ , , , , , ,a b aa ab bbε= …  over alphabet 
{ },a bΣ =  (Figure 1). Every word w  has unambiguous path from root (node 1) 

of this tree to the leaves. 
 

 

Figure 1. Infinite tree presents the free monoid over alphabet { },A a b= . 

 
The word u  is a prefix of a word v , denoted as u v≤ , if v uw= , for some 

*w∈Σ . We say that u  and v  are prefix comparable if either v u≤ , or u v≤ . 
An automaton A  [1] [3]-[5] over alphabet Σ  consists of a set of states Q , 
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the initial states I Q⊂ , the final/terminal states T Q⊂ , and a set  
F Q A Q⊂ × ×  called the set of edges. The automaton is denoted by 

( ), , ,A Q F I T= . 
The automaton is finite when the set Q  is finite. The language L  is recognized 

by A , denoted ( )L A , is the set of words in *Σ  which are labels of paths from 
I  to T . 

Figure 2 shows the automaton A  with three states, the set of initial states 

{ }1I = , the set of terminal states { }3T = , the set of edges  
( ) ( ) ( ) ( ) ( ){ }1, ,1 , 1, , 2 , 1, , 3 , 1, , 3 , 3, , 3F a a a b b= . The finite language  

( ) { }, , ,L A a ab b= …  is recognized by automaton A .  
 

 
Figure 2. Automaton A with three states. 

 
Let M  be a monoid [3] [5]. Recall that a subset MΣ ⊂  of M  generates 

M  if every element of M  is a product of elements of Σ . If M  is a monoid 
generated by a finite set Σ  then there is a homomorphism * : Mφ Σ → , from 
free monoid *Σ  to monoid M : 

( ) ( ) ( )αφ βφ αβ φ=  for all words α  and β  in *Σ . 
In this case, the monoid M  is isomorphic to * /Σ ≈  where ≈  is the congru-

ence, equivalence relation compatible with respect to the concatenation on *Σ  
defined by:  

.α β αφ βφ≈ ⇔ =  

Let this congruence R  is a set of equations of the form α β=  where 
*,α β ∈Σ  and where α  and β  represent the same element αφ βφ=  of mo-

noid M  Then R  generates a congruence ≈  on *Σ  and that R  is a set of 
defining relations for M .  

A string-rewriting system R  is a subset of * *Σ ×Σ . Each element ( ),l r R∈  
of rewriting system R  is a (rewrite) rule. Suppose an element *u∈Σ  has a sub-
word l  and ( ),l r  is a rule of the rewriting system R , then we can replace the 
subword l  of u  by the subword r  and obtain a new word v   

u xly xry v= → =  and u xly xry v= ↔ = . 

For any string-rewriting system R , if u  and v  are strings such that 

Ru v↔ , then for all *,x y A∈ , Rxuy xvy↔ , that the relation R↔  is called a 
congruence relation too: it is an equivalence relation that is compatible with re-
spect to the concatenation of strings.  

https://doi.org/10.4236/jamp.2024.1212265


N. I. Krainukov et al. 
 

 

DOI: 10.4236/jamp.2024.1212265 4325 Journal of Applied Mathematics and Physics 
 

We can define the word equation by two steps [2].  
First step, we define the expressions over the alphabet A  in the variables 

1 , , nX X…  for given set CONST  coefficients of equation and OP  set of op-
eration: 

( )1; ; , , ,A nEX CONST OP X X…  

Let { },A a b= , CONST  is the class of finite languages, and OP  contains 
precisely union and left-concatenation.  

For example, the expression α  is contained in ( ); ; , , ,AEX CONST OP X Y Z  

( ); ; , ,AabXUaYUbZ EX CONST OP X Y Zα = ∈ . 

Second step, now we can define a system of language equations. 
Let 1 2 , ,, kα α α…  and 1 2 ,, , kβ β β…  be expression in  

( )1; ; , ,A nEX CONST OP X X… , 
1 1α β=  

2 2α β=  
…  

k kα β=  

Then this is a system of language equations for variable , ,X Y Z  , set 
CONST  and OP : 

aX Yb=  
,aZa Y=  

The possible solution of this system of equations: 

( ) ( ) ( )1 1, ,n n nX ab Y a ab a Z ab− −= = =  

Recall that an algebra [6] [7] over a field K  is a K -vector space A  with a 
binary operation (multiplication) A A A× → , ( ),a b ab→  specified on it, satis-
fying the following requirements: 

1) ( )a b c ab ac+ = + , ( )b c a ba ca+ = +  for any , ,a b c A∈ ; 
2) ( ) ( ) ( )a b a b abλ λ λ= =  for any Kλ ∈ , ,a b A∈ . 
We will additionally assume that: 
3) there is a unit in A , i.e., an element 1 such that 1 1a a a= =  for any a A∈ ; 
4) algebra A  is associative, i.e., ( ) ( )ab c a bc=  for any , ,a b c A∈ . 
Throughout the following, we will additionally assume, that the field K  is the 

field of rational numbers. We can embed monoid *Σ   over alphabet  

{ }1 2Σ , , , nx x x= …  into free algebra of polynomials [ ]1 2  , , , nK x x x…  with homo-
morphism [ ]*

1 2: Σ , , , nK x x xϕ → …  by definition on letters of alphabet Σ : 

( ) , 1, ,i ix x i nϕ = = … . 

Then we can define a lineal presentation [8] of syntactical monoid of the deter-
ministic automaton A  by matrices correspondent the transformations of the let-
ters alphabet. 

3. Finite Automaton and the System of Equations 

At first, we consider the deterministic finite automata [9] [10]. Consider a 
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deterministic finite automaton (DFA) ( )0, , , ,DA A Q q Fδ= , where A  is the 
underlying alphabet, { }0 1 2 1, , , ,n nQ q q q q− −= …  is the finite, nonempty set of 
states, 0q  is the (single) initial state ( 0q Q∈ ),  F  a subset of ( F Q⊆ ), is the 
set of final states, and δ  is the transition function:  

: .Q A Qδ × →  

A system of word equations associates with DA  in the following way:  
• CONST is a class of finite languages (it may contain one word). 
• OP consists of the operations union and left-concatenation. 
• The set of variables be { },i iL q Q∈  

( ) ,i j iL a L U qλ= ⋅


 

( ), ,j ia A q q aδ∈ =  

where ( )iqλ ε=  if iq F∈  and ( )iqλ = ∅  if q F∉ . 
Let iL  is the language of automaton ( ), , , ,iDA A Q r q F=  with initial state 

iq . If the state iq  is the final state iq F∈  of automaton DA , then the empty 
word ε  belongs language iL . 

For example, Figure 3 shows the automaton DA  with four states.  
 

 
Figure 3. The automaton DA with four states. 

 
The language ( )*1L abaUbb=  are the set of the paths from initial state 1 1q =  

to the final state 1 1q = .  
The system of word equations for automaton on Figure 3 can be written in form: 

1 3 2L aL bL ε= ∪ ∪  

2 1L bL=  

3 4L bL=  

4 1L aL=  

The solution of this system of equations can be found by substitution or by 
Gauss’s method. 

1 4 2 1 1L abL bL abaL bbLε ε= ∪ ∪ = ∪ ∪  

1 1( )L aba bb L ε= ∪ ∪ , ( )*1L aba bb= ∪  
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Lemma 1. Let the equation X N X M= ⋅ ∪  over the alphabet A  in the var-
iable. Then solution of this equation: *X N M= . (Just substitute it into the equa-
tion) 

We use the system of computational discrete algebra GAP for calculation with 
finite automata. There are many functions with operation with finite automaton 
in package “Automata” such as for creating automata, minimization the number 
of states, determination and so on. 

gap> aut1:=Automaton("det",4,2,[[3,,,1 ],[2 ,1,4, ]],[1],[1]); 

< deterministic automaton on 2 letters with 4 states > 

gap> Display(aut1);   

  |  1  2  3  4   

-----------------  

a |  3        1  

b |  2  1  4     

Initial state:   [ 1 ] Accepting state: [ 1 ] 

gap>re1:=AutomatonToRatExp( aut1 ); 

(abaUbb)* 

Let consider a nondeterministic finite automaton (NFA) ( ), , , ,NA A Q I Fν= , 
where A  is alphabet, Q  is the finite set of states, I  is the set initial state 
( I Q⊂ ), F , is the set of final states, and ν  is the transition function:  

: 2 .QQ Aν × →  

For example, Figure 4 shows the nondeterministic automaton NA  with three 
states. 

 

 
Figure 4. The automaton NA with three states. 

 
The corresponding system of equations for nondeterministic automaton NA  

is then: 

1 1 2 2 3L aL aL bL bL= ∪ ∪ ∪  

2 1 2 3L bL bL cL ε= ∪ ∪ ∪  

3 1 1 1L aL bL cL ε= ∪ ∪ ∪  
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The solution of this system of equations can be find by substitution or by 
Gauss’s method: 

1 1 2 1( ) ( )L aL a b L b a b c L b= ∪ ∪ ∪ ∪ ∪ ∪  

2 1 2 1( )L bL bL c a b c L c ε= ∪ ∪ ∪ ∪ ∪ ∪  

3 1( )L a b c L ε= ∪ ∪ ∪  

The usage of the system algebra GAP gives the solution of these system equa-
tions: 

gap> Display(naut1); 

   |  1            2          3 

--------------------------------- 

 a | [ 1, 2 ]               [ 1 ] 

 b | [ 2, 3 ]   [ 1, 2 ]   [ 1 ] 

 c |              [ 3 ]      [ 1 ] 

Initial state:    [ 1 ] 

Accepting states: [ 2, 3 ] 

gap> ren1:=AutomatonToRatExp( naut1 ); 

((aUb)b*(c(aUbUc)Ub)Ub(aUbUc)Ua)*((aUb)b*(cU@)Ub) 

 gap> naut2:=Automaton("nondet",3,3, 

[[[1,2],,1],[[2,3],[1,2],1],[,3,1]],[2],[2,3]); 

< non deterministic automaton on 3 letters with 3 states > 

gap> ren2:=AutomatonToRatExp( naut2 ); 

((c(aUbUc)Ub)(b(aUbUc)Ua)*(aUb)Ub)*((c(aUbUc)Ub)(b(aUbUc)Ua)*bUcU@) 

gap> naut3:=Automaton("nondet",3,3, 

[[[1,2],,1],[[2,3],[1,2],1],[,3,1]],[3],[3,3]); 

< non deterministic automaton on 3 letters with 3 states > 

gap> ren3:=AutomatonToRatExp( naut3 ); 

((aUbUc)((aUb)b*bUa)*((aUb)b*cUb))*((aUbUc)((aUb)b*bUa)*(aUb)b*U@) 

The results solutions are the languages 1 2 3, ,L L L= = =ren1 ren2 ren3 , where 
regular expressions ren1, ren2, ren3 build from the correspondence nondeter-
ministic automata naut1, naut2, naut3. 

For nondeterministic automaton, ( ), , , ,NA A Q I Fν= , we can define the ad-
jacency matrix: 

,, , 1, if ( , ) , else 0a i j i jM a A M q a qν∈ = = . 

The size of matrix  aM  is equal N N× , where N is a number of state nonde-
terministic automaton NA [1] [11] [12]. There is homomorphism *: A AMϕ →  
from free monoid *A  to matrix algebra AM with generators aM .  

There is path that is the word w  from state iq  to state jq . The homomor-
phism *: A AMϕ →  maps the word w  to a product of matrix wG  and element 

,i jG  is the path from state iq  to state jq  in nondeterministic automaton D . 
For example, for automaton NA  the matrices ,,a b cM M M  and , ,a b cG G G  

have the correspondents structure: 
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gap> Ma; 

[ [ 1, 1, 0 ], 

  [ 0, 0, 0 ],  

  [ 1, 0, 0 ] ] 

gap> Mb; 

[ [ 0, 1, 1 ], 

  [ 1, 1, 0 ], 

  [ 1, 0, 0 ] ] 

gap> Mc; 

[ [ 0, 0, 0 ], 

  [ 0, 0, 1 ],  

  [ 1, 0, 0 ] ] 

gap> Ga; 

[ [ a, a, 0 ], 

  [ 0, 0, 0 ],  

  [ a, 0, 0 ] ] 

gap> Gb; 

[ [ 0, b, b ], 

  [ b, b, 0 ], 

  [ b, 0, 0 ] ] 

gap> Gc; 

[ [ 0, 0, 0 ], 

  [ 0, 0, c ], 

  [ c, 0, 0 ] ] 

gap> Aabc:=FreeAssociativeAlgebraWithOne(Rationals,"a","b","c"); 

<algebra-with-one over Rationals, with 3 generators> 

gap>  A:= Algebra( Aabc, [ Ma, Mb, Mc ] ); 

<free left module over AlgebraWithOne( Rationals, ... ), and ring, 

with 3 generators> 

Lemma. The homomorphism : MA AMϕ →  map word w v MA+ ∈  free 
left module MA  over free algebra  A  to the matrix ( ) ,i jw Pϕ = , where ,i jP  – 
path that the the two word ,w v  from state iq  to state jq  [5] [6]. 

Example is continued:  
For automaton, NA  we have the results: 

gap> P1:=Ga^3+Gb*Ga*Gc^2; 

[ [ (1)*a^3,    (1)*a^3,          <zero> ],  

[ (1)*b*a*b^2,  <zero>,            <zero>], 

[ (1)*a^3+(1)*b*a*b^2, (1)*a^3, <zero> ] ]  

gap> P2:= Ga^2+Gb^2*Ga*Gc^2+Ga*Gb*Gc^2*Ga^5; 

[ [ (1)*a^2+(2)*b^2*a*b^2+(2)*a*b^3*a^5,(1)*a^2+(2)*a*b^3*a^5,<zero>], 

  [ (1)*b^2*a*b^2,                          <zero> ,                  <zero>], 

  [ (1)*a^2+(1)*a*b^3*a^5, (1)*a^2+(1)*a*b^3*a^5,                <zero>]] 
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The results are for matrices P1 show the path from state 1q  to state  1q  by 
the word ^3w = a  and for matrices P2 to from state 3q  to state 2q  by the word 

  ^3 ^5w = ∗ ∗a b a . 

4. Apply Computer Discrete Algebra System GAP for Find  
Normal Form of State Languages for Automaton 

The computer discrete algebra system GAP has more than 130 different packages. 
The package name KBMag reflects the Knuth-Bendix algorithm and program for 
constructing a rewriting system from a finitely presented semigroup, monoid or 
group. 

The words in a rewriting system created in GAP for use by KBMag are defined 
over an alphabet that consists of the generators of a free monoid, called the word-
monoid of the system. 

First, we define nondeterministic automaton NA :  

gap> aut1:= NFAtoDFA( naut1 ); 

< deterministic automaton on 3 letters with 7 states > 

gap> Display(aut1); 

   |  1  2  3  4  5  6  7 

-------------------------- 

 a |  2  2  1  4  2  1  2 

 b |  3  5  2  4  5  1  5 

 c |  4  6  7  4  7  1  1 

Initial state:    [ 1 ] 

Accepting states: [ 2, 3, 5, 6, 7 ] 

gap> ta:=Transformation([ 2,  2,  1,  4,  2,  1,  2]); 

Transformation( [ 2, 2, 1, 4, 2, 1, 2 ] ) 

gap> tb:=Transformation([ 3,  5,  2,  4,  5,  1,  5]); 

Transformation( [ 3, 5, 2, 4, 5, 1, 5 ] ) 

gap> tc:=Transformation([ 4,  6,  7,  4,  7,  1,  1]); 

Transformation( [ 4, 6, 7, 4, 7, 1, 1 ] ) 

gap> ma1:=Monoid([ta,tb,tc]); 

<transformation monoid of degree 7 with 3 generators> 

gap> Size(ma1); 

73 

Then we construct syntactic monoid for transformation states of deterministic 
automaton aut1. The size of syntactic monoid ma1 is equal 73.  

MappingByFunction( <transformation monoid of size 73, degree 7 with 3 

generators>, <fp monoid on the generators 

[ m1, m2, m3 ]>, function( x ) ... end, function( x ) ... end ) 

gap> m1:=Image(mhom1); 

<fp monoid on the generators [ m1, m2, m3 ]> 

gap> k1:=KnuthBendixRewritingSystem(m1); 
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R := KBMAGRewritingSystem( m1 ); 

gap> Size( R ); 

73 

gap> GrowthFunction( R ); 

x_1^6+12*x_1^5+25*x_1^4+22*x_1^3+9*x_1^2+3*x_1+1 
 

 
Figure 5. Deterministic automaton aut1 with seven states. 

 
Returns the growth function of the set of irreducible words in the rewriting 

system R . This is a rational function, of which the coefficient of ^x n  in its Tay-
lor expansion is equal to the number of irreducible words of length n . 

This deterministic automaton aut1 seven states and the syntactic monoid ma1 
has seven congruence classes.  

5. Conclusions 

The system GAP has many packages to solve problems with finite automata, for-
mal languages and other algebraic structures: monoid, free algebra, matrix alge-
bra.  

Usage system GAP for: solving the systems of equations for finite automata, 
finding the regular expressions for languages describing state-to-state paths, using 
a rewriting system to reduce regular expression and transform it into its normal 
form. 
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