
Journal of Applied Mathematics and Physics, 2024, 12, 1571-1581
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2024.124096 Apr. 30, 2024 1571 Journal of Applied Mathematics and Physics

On Some Properties of Graph of Prefix Code

Nikolai I. Krainiukov1, Mikhail E. Abramyan1,2, Boris F. Melnikov1

1Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University, Shenzhen, China
2Department of Algebra and Discrete Mathematics, Southern Federal University, Rostov-on-Don, Russian Federation

Abstract
We investigate decomposition of codes and finite languages. A prime decom-
position is a decomposition of a code or languages into a concatenation of
nontrivial prime codes or languages. A code is prime if it cannot be decomposed
into at least two nontrivial codes as the same for the languages. In the paper, a
linear time algorithm is designed, which finds the prime decomposition. If
codes or finite languages are presented as given by its minimal deterministic
automaton, then from the point of view of abstract algebra and graph theory,
this automaton has special properties. The study was conducted using system
for computational Discrete Algebra GAP.

Keywords
Finite Languages, Minimal Deterministic Automata, Concatenation, Codes,
Graph of Automaton, Free Algebra

1. Introduction

A formal language is set of the words over some alphabet [1]. The standard set
operations, like union and interception, can be performed under formal lan-
guages [2]. Another simple basic operation of formal languages is their concate-
nation. However, the complexity of the inverse operation of decomposing a formal
language into a nontrivial concatenation of factor languages is more sophisticated
and has a long history of studying [3]. A concatenation is trivial if one of the
languages consists exactly of the empty string {ε}. A non-empty language is said
to be prime if it cannot be written as a catenation of two languages neither one
of which is the singleton language consisting of the empty word.

We investigate decomposition problems for the class of finite languages. The
finite language is finite set of words. This class contends the codes, the codes are
languages recognized by special kind of automata, so-called flower automata. The
representation of the finite language in special graph of automata makes it poss-

How to cite this paper: Krainiukov, N.I.,
Abramyan, M.E. and Melnikov, B.F. (2024)
On Some Properties of Graph of Prefix Code.
Journal of Applied Mathematics and Phys-
ics, 12, 1571-1581.
https://doi.org/10.4236/jamp.2024.124096

Received: February 22, 2024
Accepted: April 27, 2024
Published: April 30, 2024

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2024.124096
https://www.scirp.org/
https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1572 Journal of Applied Mathematics and Physics

ible to decompose into a product of prime languages.
Section 2 contains the basic definition and notation of formal languages, codes,

graphs, finite automata and formal serials over the semiring.
Section 3 discusses the algorithm of decomposition prefix codes and finite lan-

guage and a practical example of application of this algorithm.
Section 4 applies computer discrete algebra system GAP to decompose prefix

codes and finite language.

2. Definitions and Notation

In this section, we remember the definition and notation about formal languag-
es, codes, free monoid, free algebra, automata and graphs. The following defini-
tions taken from [4] [5] [6] will be used.

An alphabet Σ is finite set letters { , , , }a b cΣ = … . A word or string w is finite
length sequence of letters over alphabet Σ. We denote as *Σ the set of all finite
words. The set of *Σ with respect to the concatenation operation forms a free
monoid. Language L is subset of monoid *Σ . Free monoid *Σ contains the
empty word ε. Semigroup * \ ε+Σ = Σ is monoid *Σ without empty word ε.

A basic operation of free monoid *Σ is concatenation of two words w uv= .
The concatenation can be expanded to the formal languages 1 2,L L . The result
of concatenation is the language 1 2 1 2{ | , , }L L w w v u v L u L⋅ ⋅= = = ∈ ∈ .

This operation is like integer multiplication. The inverse operation that is fac-
torization is more complicated. There is problem to find factors/divisors for big
integer numbers and prime integer numbers.

The complexity of the inverse operation of decomposing a language L into a
nontrivial concatenation 1 2,L L is also complicated.

A concatenation is obvious if one of languages 1 2,L L consists exactly of the
empty string. A language L is prime language if it cannot be decomposed to a
non-trivial concatenation of two languages L1∙and L2. The prime factorization of
language is the decomposition into prime factors, prime languages.

The problem of prime factorization is undecidable for context-free languages
[6]. A set X is a code if any word in X + can be written uniquely as a product of
words in X. To say other words, word w X +∈ has a unique factorization in
words from X. A code X never contains the empty word ε, because word
w w wε ε= = has different presentation. Any subset words from a code X is a
code too.

The word u is a prefix of a word v, denoted as u v≤ , if v uw= , for some
*w∈Σ . We say that u and v are prefix comparable if either v u≤ , or u v≤ .

The set X is a prefix code if no element of X is a proper prefix of another element
in X. This is equivalent to say that there are no comparable words u v≤ of the
relation ≤ in the set X. For all words ,u v X∈ , if u v≤ , then u v= .

We use standard graph theory notions, as contained in [7], so we only fix the
notation and give a few definitions and example below.

A digraph (directed graph) (,)G V E= consists of a finite set of vertices V and

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1573 Journal of Applied Mathematics and Physics

a set of edges 2E V⊆ . For a subset of vertices V⊆ , let []G U denote the in-
duced sub(di)graph (,)U E U U× , which is obtained by restricting the vertex
set V of G to U and redefining the edge set E appropriately.

The graph (,)G V E= has vertices {1,2,3,4,5}V = and edges
() () () () () () () () (){ }1,1 , 1,2 , 1,3 , 2,5 , 5,5 , 5,2 , 3,3 , 3, 4 , 4,1E = (Figure 1).

An automaton A [2] [4] [8] over alphabet Σ consists of a set of states Q, the
initial states I Q⊂ , the final/terminal states T Q⊂ , and a set F Q A Q⊂ × ×
called the set of edges. The automaton is denoted by:

(, , ,)A Q F I T=
The automaton is finite when the set Q is finite. The language L is recognized

by A, denoted L(A), is the set of words in *Σ which are labels of paths from I to
T.

Figure 2 shows the automaton A with four states, the set of initial states {1}I = ,
the set of terminal states {3,4}T = , the set of edges

() () () (){ }1, , 2 , 1, , 4 , 2, ,3 , 2, , 4F a a a b= . The finite language () { , , }L A aa ab b= is
recognized by automaton A.

Recall that an algebra [9] over a field K is a K-vector space A with a binary
operation (multiplication) A A A× → , (,)a b ab→ specified on it, satisfying
the following requirements:

1) ()a b c ab ac+ = + , ()b c a ba ca+ = + for any , ,a b c A∈ ;
2) () () ()a b a b abλ λ λ= = for any Kλ ∈ , ,a b A∈ .
We will additionally assume that:
3) There is a unit in A, i.e. an element 1 such that 1 1a a a= = for any a A∈ ;
4) Algebra A is associative, i.e. () ()ab c a bc= for any , ,a b c A∈ .

Figure 1. Graph G with V = 5 vertices and E = 9 edges.

Figure 2. Automaton A with four states.

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1574 Journal of Applied Mathematics and Physics

Throughout the following, we will additionally assume that the field K is the
field of rational numbers or the field Z/2Z. We can embed monoid *Σ over al-
phabet 1 2{ , , }nx x xΣ = … into free algebra of polynomials 1 2[, ,]nK x x x… with
homomorphism *

1 2: [, ,]nK x x xϕ Σ → … by definition on letters of alphabet
Σ:

() , 1, ,i ix x i nϕ = = … .

We need to use the formal series over the alphabet Σ with coefficients in se-
miring K. We recall the definition of semiring [10].

Let K be a semiring.
A semiring K is a set equipped with two operations denoted + and ⋅ satisfy-

ing the following axioms:
1) The set K is a commutative monoid for addition + with a neutral element

denoted by 0;
2) The set K is a monoid for multiplication ⋅ with a neutral element denoted

by 1;
3) Multiplication is distributive on addition;
4) For all x K∈ , 0 0 0x x⋅ = ⋅ = .

A formal series over alphabet Σ with coefficients in K is a mapping:
*: Kσ Σ →

We denote the set of formal series σ over *Σ by
*

K Σ or *K Σ . The
value of σ on *w∈Σ is denoted (,)wσ and we can formally denote:

()* ,w wσ σ
∈Σ

=∑
The support of a series

*Kσ ∈ Σ is the set:
*() { | (,) 0}.supp w wσ σ= ∈Σ ≠

If the set ()supp σ is finite, then we denote that set of formal series σ by
*K < Σ > .

Another words the set of formal series
*

Kσ Σ∈ such that (,) 0wσ = for all
but a finite number of *w∈Σ is denoted *K < Σ > and then σ is called a po-
lynomial.

We define the formal series τ+ , στ , and kσ by:

() () (), , ,w w wσ τ σ τ+ = +
() ()()*, , ,w uvw u vσ τ σ τ

= ∈Σ
⋅ = ∑

(,) (,).k w k wσ σ=
For example, let K is Boolean semiring with addition and multiplication table:

0 0 0, 0 1 1 0 1, 1 1 1+ = + = + = + =
0 0 0, 1 0 0 1 0, 1 1 1.⋅ = ⋅ = ⋅ = ⋅ =

alphabet { , }a bΣ = ,
and series ,σ τ is defined (), 1aσ = , (), 1abσ = , (), 1τ ε = , (), 1bτ = :

1 1a abσ = ⋅ + ⋅

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1575 Journal of Applied Mathematics and Physics

1 1 abτ ε= ⋅ + ⋅
Then,

1 1 1a abσ τ ε+ = ⋅ + ⋅ + ⋅
1 1 1 1a ab aab ababσ τ⋅ = ⋅ + ⋅ + ⋅ + ⋅

It is easy to see that in this case, *K < Σ > is a free semiring of noncommut-
ative polynomials and for finite languages *,X Y ⊆ Σ X Y X Yσ σ σ= +

,

X Y X Yσ σ σ⋅ = ⋅ .

3. Decomposition of Codes and Finite Languages

At the first, we consider decomposition problems for the class of finite prefix
codes. Then, subset X is a prefix code if no element of X is a proper prefix of
another element in X. This is equivalent to the fact that there are no comparable
words u v≤ of the relation ≤ in the set X. That is for all words, v X∈ , if
u v≤ , then u v= . For example, the set { , }X bb aba= is prefix code. A conve-
nient representation for the prefix code is a tree view.

Figure 3 shows the presentation of prefix code { , }X bb aba= .
The bold lines present the words of code, the dotted lines present the words

*∈Σ . A given code X can be associated a subtree of the literal representation of
this code X. The infinite tree may present the free monoid *Σ . In this case the
root of tree of relation ≤ over *Σ is drawing in Figure 3 as node 1.

Regular prefix codes are languages recognized by finite automata and such
that no word is a prefix of another. The representation of the code is a determi-
nistic finite automaton. Let two automaton 1 2,A A present two prefix codes

1 2,X X appropriately, then we can draw finite set of words 1 2X X X= ⋅ same
kind like Figure 3. In this case, tree presents code X consists of the words of pre-
fix code X1 and then words of prefix code X2. It is easy to see that X is prefix code

Figure 3. Presentation of prefix code X.

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1576 Journal of Applied Mathematics and Physics

too. The word of code X is the leaf of this tree. There is the only (unambiguous)
path from root of this tree to the leafs for each word of code X. Then, determi-
nistic automaton A, which presents code X, has a graph like in Figure 4. The
words 1 2 1 2, , , , , , ,n nu u u v v v… … are words of codes 1 1 2{ , , , }nX u u u= … and

2 1 2{ , , , }nX v v v= … , where n, m are the number of words in codes X1 and X2.
We denote the vertex divisorV of graph (,)G V E= of minimal deterministic

automaton A and call divisor-border vertex divisorV of automaton A. The DB-
vertex of complete minimal deterministic automaton A [11] of prefix code X is
the vertex that we have to divided graph G by this vertex on several automaton

iA . The automaton iA is automaton appropriately factors iX of code

1 2 kX X X X= … .
Theorem
A prefix code 1 2 kX X X X= … is divided on k prefix code iX if and only if

a prefix code X has graph G of its minimal deterministic automaton A with
(1)k − DB-vertex.

Proof
If prefix code 1 2 kX X X X= … is divided on k prefix code iX , then the words

of this code X present the unambiguous paths from root of the tree for prefix code
X to the leaves of the tree. So, we can factorize this tree after the end of words
each codes iX as the result of this operation is like Figure 4. Then, graph G of
its minimal deterministic automaton A has (1)k − DB-vertex.

If the graph G has (1)k − DB-vertex, we can prove by mathematical induc-
tion. The theorem is obvious for =2. Suppose that it is true for k n= , then
prove it for 1k n= + . We can divide the graph G on last DB-vertex Vn on two
graph Gn and G1. For graph Gn, we have presentation 1 2 nX X X… and just con-
catenate the words of automaton for graph G1. The results 1 2 1n nX X X X X += … .

Example
For prime prefix code 1 {" "," "," "}X a ba bb= , 2 {" "," "," "}X aa ba bb= .

1 2 {" "," "," "," "," "," "," "," "," "}X X X aaa aba abb baaa baba babb bbaa bbba bbbb= =
We construct the automaton from the prefix code X.
Display(A);
1 2 3 4 5 6 7
 a | 5 4 1 6 5 1 4
 b | 5 7 1 3 5 5 4
Initial state: [2]
Accepting state: [1]

Figure 4. Graph of automaton A.

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1577 Journal of Applied Mathematics and Physics

Figure 5 shows the automaton A with DB-vertex (state) V = 4.
The state V = 5 is a “dead” state of automaton A.
Figure 6 shows Graph 1G and 2G for automata A.
We decompose the prefix code 1 2X X X= to the product of two prefix codes

1 2,X X .
Now, we can formulate Theorem of decomposing for finite language L.
Theorem
A finite language 1 2L L L L= … is divided on k finite languages iL if and

only if a finite language L has graph G of its minimal deterministic automaton A
with (1)k − DB-vertex and the number of final state automaton A is equal one.

Proof
It is the same as the Theorem for prefix codex.
Algorithm for factorization prefixes code and finite language.
Input
An finite prefix set 1 2{ , , , }nX u u u= … .
Step 1
Built the minimal deterministic automaton A of prefix set X.
Step 2
Define the number n of DB-vertex in the graph of automaton A.
It can be do with complexity of (max(length of words in prefix set))O n X⋅ .
Step 3
Cut the graph of automaton A and find 1n + factors of prefix set

1 2 1n nX X X X X += … .
There is algebraic approach to decomposing the finite language. The main

idea is the embedding language 1 2{ , , , }nL v v v= … into free algebra of polyno-
mials 1 2[, , ,]nK x x x… or set of formal series σ over semiring K. We can embed
language *L ⊆ Σ over alphabet 1 2Σ { , , , }nx x x= … with homomorphism

*
1 2: [, , ,]nK x x xϕ Σ → … by definition on letters of alphabet Σ:

() , 1, ,i ix x i nϕ = = …
The homomorphism ()i iv pϕ = maps the word iv L∈ into monomials ˚ ip .

Figure 5. Automaton A with DB-vertex V = 4.

Figure 6. Graph 1G and 2G for automata A.

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1578 Journal of Applied Mathematics and Physics

The set of monomials generate the ideal LI . Then, we can try to find the divi-
sors of this ideal LI . We use an exhaustive search for the divisors just added
monomials dq with less power to the ideal LI and apply Buchberger algorithm
for this set to find the noncommutative Groebner basis. If the Groebner basis
will be equals the added monomials dq , then we find this divisors for finite lan-
guage L. This algorithm has exponential time, but it will be ended because finite
alphabet Σ and finite language L.

4. Apply System GAP for Decomposition Prefix Codes and
Finite Language

The computer discrete algebra system GAP is the system for Groups, Algorithms
and Programming. The name GAP reflects the original aim of the system, but
now GAP has many packages for wide field investigation of modern algebra. The
discrete algebra system GAP has become somewhat broader, and contained the
information about algorithms and programming for other algebraic structures,
such as semigroups, algebras, discrete automata and many other things.

Below describes the data and structures used in packages “automata” for finite
deterministic and nondeterministic automata [12] [13] and some functions to
determine property about them.

We can easy create free monoid over alphabet { , }a bΣ = .
gap> m1:=FreeMonoid(["a","b"]);
<free monoid on the generators [a, b]>
gap> gm1:=GeneratorsOfMonoid(m1);
[a, b]
gap> a:=gm1[1];
a
gap> b:=gm1[2];
b
alphabet { , }a bΣ = .
It is easy to form the list of elements free monoid (associative words) and prod-

uct of two lists:
gap> s1:=[a,b*a,b*b];
[a, b*a, b^2]
gap> s2:=[a*a,b*a,b*b];
[a^2, b*a, b^2]
gap> s3:=Mult_Sp(sp1,s2);
[a^3, a*b*a, a*b^2, b*a^3, (b*a)^2, b*a*b^2, b^2*a^2, b^3*a, b^4]
Now, we transform the list of associative words to list of words:
gap> aw1:=AssocWord_Sp(s3, gm1);
["aaa", "aba", "abb", "baaa", "baba", "babb", "bbaa", "bbba", "bbbb"]
Build the minimal deterministic automaton new3 from list of words:
new3:=ListOfWordsToAutomaton("ab",aw1);
gap> Display(new3);

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1579 Journal of Applied Mathematics and Physics

1 2 3 4 5 6 7
 a | 5 4 1 6 5 1 4
 b | 5 7 1 3 5 5 4
Initial state: [2]
Accepting state: [1]
Then, we can draw the graph of automaton new3:
newS3:=DotStringForDrawingAutomaton(new3);
At the last, we discuss algebraic algorithm decomposing the finite set of words

free monoid Σ*.
We can embedding the finite set of words set 1 2{ , , , }nX u u u= … in free semir-

ing of polynomials as described earlier *
1 2: [, , ,]nK x x xϕ Σ → … and find the

noncommutative Groebner bases in this ideal generate by polynomials from words

1 2{ , , , }nu u u… [14]. In our example, K is field of rational numbers.
gap> A1:=FreeAssociativeAlgebraWithOne(Rationals, "a", "b");;
gap> gA1:=GeneratorsOfAlgebraWithOne(A1);
[(1)*a, (1)*b]
gap> e:=One(A1);
(1)*<identity ...>
gap> a:=gA1[1];
(1)*a
gap> b:=gA1[2];
(1)*b
We defined the generators of free associative algebra with one.
Now, we use the list of associative words as the prefix code. The prefix code is

the same as above example with automaton new3.
gap> s2:=[a*a,b*a,b*b];
[a^2, b*a, b^2]
gap> s3:=[a^3, a*b*a, a*b^2, b*a^3, (b*a)^2, b*a*b^2, b^2*a^2, b^3*a,

b^4];;
gap> pL2:=[(1)*a^3, (1)*a*b*a, (1)*a*b^2, (1)*b*a^3, (1)*(b*a)^2,

(1)*b*a*b^2, (1)*b^2*a^2, (1)*b^3*a, (1)*b^4,(1)*a^2, (1)*b*a, (1)*b^2];;
gL2:=GP2NPList(pL2);
[[[[1, 1, 1]], [1]], [[[1, 2, 1]], [1]], [[[1, 2, 2]], [1]], [[[2, 1, 1,

1]], [1]],
 [[[2, 1, 2, 1]], [1]], [[[2, 1, 2, 2]], [1]], [[[2, 2, 1, 1]], [1]],
 [[[2, 2, 2, 1]], [1]], [[[2, 2, 2, 2]], [1]], [[[1, 1]], [1]], [[[2,

1]], [1]],
 [[[2, 2]], [1]]][[[1, 2, 2], [1, 2, 1], [1, 1, 1], [1]], [1, 1, 1, 1]]
Function GP2NPList() transforms list of polynomials into internal presenta-

tion polynomials in the package gbnp . Now, we use the list gL2 for
gap> GB := Grobner(gL2);
#I number of entered polynomials is 12
#I number of polynomials after reduction is 3

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1580 Journal of Applied Mathematics and Physics

#I End of phase I
#I End of phase II
#I List of todo lengths is [0]
#I End of phase III
#I The computation took 2 msecs.
[[[[1, 1]], [1]], [[[2, 1]], [1]], [[[2, 2]], [1]]]
gap> PrintNPList(GB);
 a^2
 ba
 b^2
The result polynomials 2 2, ,a ba b consists a basis of divisor for polynomials

list 3 2 3 2 2 2 2 3 4 2 2[, , , , () , , , , , , ,]a a b a a b b a b a b a b b a b a b a ba b∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . Thus,
we obtain the decomposition of the prefix code into products of codes using the
Buchberger algorithm. Similarly, factorization can be obtained for a finite lan-
guage.

5. Conclusions

The linear time algorithm is designed, which finds the prime decomposition for
prefix codes. It can be applied to some modifications for finite languages.

The algorithm for factorization of finite languages has exponential complexi-
ty. From the point of view of abstract algebra, we can apply Buchberger algorithm
for an exhaustive search of the factors of the finite language.

The study was conducted using system for computational Discrete Algebra GAP.
The results of decomposition of languages are obtained when considering mod-
ified graphs of this automaton.

There is a big gap between complexity factorization of prefix codes (lineal com-
plexity) and finite languages (exponential complexity). Further research will re-
lated to the search for a polynomial algorithm to determine the class of languag-
es for which such an algorithm is applicable.

Founding

This work is supported by a grant from the research program of Chinese univer-
sities “Higher Education Stability Support Program” (Section “Shenzhen 2022—
Science, Technology and Innovation Commission of Shenzhen Municipality”).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Aho, A. and Ullman, J. (1973) The Theory of Parsing, Translation, and Compiling.

Vol. 1, Prentice Hall, Upper Saddle River.

[2] Brauer, W. (1984) Automation Theory: An Introduction to the Theory of Finite Au-

https://doi.org/10.4236/jamp.2024.124096

N. I. Krainiukov et al.

DOI: 10.4236/jamp.2024.124096 1581 Journal of Applied Mathematics and Physics

tomata. Vieweg + Teubner Verlag, Wiesbaden.

[3] Mateescu, A., Salomaa, A. and Yu, S. (1998) On the Decomposition of Finite Lan-
guages. Technical Report 222, Turku Centre for Computer Science, Turku.

[4] Lallement, G. (1979) Semigroups and Combinatorial Applications. Wiley & Sons,
Inc., Hoboken, NJ, 376 p.

[5] Berstel, J. and Perrin, D. (2008) Theory of Codes. Academic Press, New York, 345 p.

[6] Mateescu, A., Salomaa, A. and Yu, S. (2002) Factorizations of Languages and Com-
mutativity Conditions. Acta Cybernetica, 15, 339-351.

[7] Diestel, R. (2005) Graph Theory. 3rd Edition, Springer, Berlin, 421 p.

[8] Melnikov, B. (2018) Regular Languages and Nondeterministic Finite Automata.
RGSU Publ., Moscow. (In Russian)

[9] Winberg, E.B. (2005) Course of Algebra. Factorial Press, Providence. (In Russian)

[10] Berstel, J. and Perrin, D. (2005) Codes and Automata. Springer, Berlin, 545 p.

[11] Melnikov, B. (2017) The Complete Finite Automaton. International Journal of Open
Information Technologies, 5, 9-17.

[12] Melnikov, B. and Dolgov, V. (2022) Simplified Regular Languages and a Special Equi-
valence Relation on the Class of Regular Languages. Part I. International Journal of
Open Information Technologies, 10, 12-20. (In Russian)

[13] Abramyan, M.E. (2021) Computing the Weight of Subtasks in State Minimization
of Nondeterministic Finite Automata by the Branch and Bound Method. University
Proceedings. Volga Region. Physical and Mathematical Sciences, 2, 46-52. (In Rus-
sian) https://doi.org/10.21685/2072-3040-2021-2-4

[14] Mora, T. (1994) An Introduction to Commutative and Noncommutative Griibner
Bases. Theoretical Computer Science, 134, 131-173.
https://doi.org/10.1016/0304-3975(94)90283-6

https://doi.org/10.4236/jamp.2024.124096
https://doi.org/10.21685/2072-3040-2021-2-4
https://doi.org/10.1016/0304-3975(94)90283-6

	On Some Properties of Graph of Prefix Code
	Abstract
	Keywords
	1. Introduction
	2. Definitions and Notation
	3. Decomposition of Codes and Finite Languages
	4. Apply System GAP for Decomposition Prefix Codes and Finite Language
	5. Conclusions
	Founding
	Conflicts of Interest
	References

