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Abstract 
With the advent of Industry 4.0, smart construction sites have seen significant 
development in China. However, accidents involving digitized tower cranes 
continue to be a persistent issue. Among the contributing factors, human un-
safe behavior stands out as a primary cause for these incidents. This study 
aims to assess the human reliability of tower crane operations on smart con-
struction sites. To proactively enhance safety measures, the research employs 
text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify 
patterns of human errors among tower crane operators. Building upon the 
SHEL model, the study categorizes behavioral factors affecting human reliabil-
ity in the man-machine interface, leading to the establishment of the Perfor-
mance Shaping Factors (PSFs) system. Furthermore, the research constructs 
an error impact indicator system for the intelligent construction site tower crane 
operator interface. Using the DEMATEL method, it analyzes the significance 
of various factors influencing human errors in tower crane operations. Addi-
tionally, the ISM-MICMAC method is applied to unveil the hierarchical rela-
tionships and driving-dependent connections among these influencing factors. 
The findings indicate that personal state, operating procedures, and physical 
environment directly impact human errors, while personal capability, technol-
ogical environment, and one fundamental organizational management factor 
contribute indirectly. 
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1. Introduction 

The integration of modern information technology in smart construction sites 
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has facilitated a high level of interconnectivity among people, objects, and ma-
chinery, incorporating safety principles into the production process. Chen et al. 
[1] emphasize the comprehensive integration of safety concepts, enhancing both 
safety and productivity goals. Notably, the installation of visual devices on crane 
hooks in many tower cranes has significantly reduced the probability of acci-
dents such as mis-hooking and collisions [2]. However, the widespread adoption 
of visual devices in smart construction sites poses challenges, as it demands heigh-
tened situational awareness from crane operators [3]. Statistics reveal that between 
2016 and 2020, China experienced 605 tower crane accidents, averaging approx-
imately 121 incidents annually [4]. Distracted behavior contributes to 19% of tower 
crane accidents [5], and the introduction of visual devices on crane hooks may 
increase the likelihood of operator distraction [6]. Despite advancements in tower 
crane information and automation, human unsafe behavior emerges as a prima-
ry cause of accidents [7]. Unsafe actions by construction personnel not only di-
rectly lead to accidents, but can also indirectly trigger incidents by altering the 
state of objects [8]. The introduction of additional interface management tasks 
for crane operators increases cognitive and operational loads, elevating the poten-
tial for human errors such as mode confusion and loss of situational awareness 
[9]. As a result, the reliability and safety of human-machine interaction systems 
for cranes with visual hooks increasingly depend on human factors [10]. Ana-
lyzing the causes of accidents in smart tower cranes in a timely manner is crucial 
for improving safety management and has been a focal point in the construction 
industry. 

Currently, scholarly research on traditional tower cranes has explored human 
errors, primarily focusing on factors influencing safety incidents. Researchers, us-
ing Rasmussen’s risk management theory, identified 56 factors related to tower 
crane safety, illustrating causal paths between system levels and influencing fac-
tors [11]. Other scholars employed a framework approach to systematically ana-
lyze the causes and influencing factors of crane safety incidents in the Australian 
construction industry [12]. A fuzzy-set-based risk analysis framework (ERAFF) 
was developed to provide an overview of key causal factors, key risks, and control 
measures within the overall framework, enhancing tower crane operation safety 
[13]. Additionally, some studies treated all causes of tower crane accidents as a 
system, using network analysis to identify seven key factors and three key paths 
by calculating statistical indicators such as degree, strength, and shortest paths in 
the network model [14]. 

Initially, text mining was employed on 229 accident reports from 2018 to 2023 
to categorize human factors affecting crane operators into 28 aspects, including 
physical fitness, fatigue level, attention level, emotional state, knowledge skills, and 
operational capabilities, using the SHEL model commonly used in aviation safe-
ty. A factor questionnaire survey was conducted, excluding factor S10. Subsequent-
ly, for the first time, the Decision-Making Trial and Evaluation Laboratory In-
terpretive Structural Modeling (DEMATEL-ISM) method was utilized to assess 
human errors in smart building construction tower cranes. The comprehensive 
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impact matrix of indicators was calculated using the decomposition method 
through expert surveys, establishing the ISM model and constructing a topolog-
ical network. The MICMAC model was then employed to reflect relationships be-
tween various reasons. This study aims to address gaps in previous research on the 
causes of accidents involving tower cranes. 

2. Tower Crane Human-Machine Interface (HMI) and PSF 
System Construction 

2.1. Text Mining for Tower Crane Accidents 

To ensure the credibility, accuracy, and timeliness of data, 229 accident reports 
from traditional and smart tower cranes between 2018 and 2023 were collected 
from the website of the State Administration of Work Safety and the Crane En-
gineer website. Due to issues such as the lack of standardization and consistency 
in recording tower crane accident reports, data cleaning and processing were 
necessary. Information unrelated to unsafe behaviors and their causes, such as 
details about the accident unit, improvement suggestions, and the accident in-
vestigation process, were excluded. Only the accident process, causes, and re-
sponsibility division were retained, and these were integrated for subsequent text 
mining. 

Firstly, using Python, the tower crane accident text corpus was preprocessed 
by removing non-Chinese characters, tokenizing, and eliminating stop words to 
construct a tower crane safety feature dictionary. Given the length and semantic 
complexity of text, the choice for feature vector extraction is the Term Frequen-
cy-Inverse Document Frequency (TF-IDF) mode [15]. The TF-IDF algorithm was 
then applied to extract keywords from all the tower crane safety texts obtained. 
Lastly, based on the constructed tower crane safety feature dictionary, feature 
matching was performed on keywords to obtain the feature attributes of each tower 
crane safety accident text. Due to the large number of features obtained through 
TF-IDF (around 600,000 words), according Chandrasekaran et al.’s research [16], 
SVM establishes a boundary to separate categories, minimizing the distance be-
tween each category and the boundary. Truncated SVD was employed to reduce 
the dimensionality of the features to 127. A Complement NB class was used to 
train a Naive Bayes classifier with the obtained features and target variables for fit-
ting [17]. The model parameters were obtained, and predictions were made, re-
sulting in an accuracy output of 1. This preliminary result suggests that the model 
exhibits accuracy and generalization on the training set. As there were numerous 
feature words, a representative subset of 97 feature values with top-weighted ranks 
was selected. After manually removing irrelevant terms such as “construction” and 
“safety management”, 97 feature values were retained, encoded, and the encoding 
results are shown in Table 1. 

2.2. Identification and Survey on Behavior Formation Factors 

Based on the SHEL model frequently used in the field of aviation safety [18], the  
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Table 1. Dimension reduction results of the feature items of the intelligent site tower crane accident investigation report. 

Impact factors Frequency Impact factors Frequency Impact factors Frequency 

Feel unwell 0.1273 Teamwork 0.0202 Cockpit temperature 0.0015 

Physical state 0.0079 Teamwork 0.0015 Cockpit humidity 0.0014 

Illness 0.0318 Operating specification 0.0099 Illumination 0.0028 

Health 0.0015 Operating system 0.0128 Hue 0.0014 

Fatigued 0.0012 Rules and regulations 0.0124 Noise 0.0014 

Dispersion of 
attention 

0.0012 
Reward and punishment 

system 
0.0028 Vibration 0.0012 

Distract 0.0020 Management system 0.0076 Crossing condition 0.0014 

Inattention 0.0021 Job training 0.0318 Construction site 0.0049 

Emotional stability 0.0014 Safety education 0.0341 Site obstacle 0.0330 

Testiness 0.0021 Job management 0.0012 Weather 0.0034 

Safety awareness 0.0069 Operating procedure 0.0180 
Digital interface 

display 
0.0049 

Professional skill 0.0861 Technical specification 0.0036 
Digital interface 

information delivery 
0.0055 

Operational skill 0.0359 Regulation 0.0031 
Information 
transmission 

0.0082 

Defense 0.0038 Long working hours 0.1220 Safety sign 0.0440 

Safety belt 0.0029 
The work schedule is not 

reasonable 
0.0012 

Display and control 
page layout 

0.0070 

Safety helmet hat 0.0015 
Cable worker 

communication 
0.0021 

Display and control 
operation mode 

0.0015 

Safety measure 0.0018 Signalman 0.0096 
Display and control 

device density 
0.0073 

Protective device 0.0015 Untimely signal 0.0055 
Drive-by-wire 

reliability 
0.0144 

Working hours 0.0021 Improper command 0.0250 Space comfort 0.0063 

Staffing 0.0023 Emergency drill 0.0507 Cockpit seat comfort 0.0011 

Distribution of 
responsibilities 

0.0423 Emergency plan 0.0032 
Communication 

equipment 
0.0064 

Time pressure 0.0091 Preventive measures 0.0061 System intelligence 0.0076 

Time shortage 0.0334 Working atmosphere 0.0954 System reliability 0.0070 

 
elements covering the human-machine interface of the intelligent construction 
site tower crane are divided into four aspects: System Personnel (L), System Soft-
ware Operating Specifications (S), System Hardware (H), and System Environ-
ment (E). The focus of the assessment is to determine the relationships between 
L-L, L-S, L-H, and L-E. Through text mining, we obtained indicators and expert 
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interviews, resulting in a total of 28 PSFs. These indicators provide valuable in-
formation about various aspects of the human-machine interface of the intelli-
gent construction site tower crane and can be utilized for further research and 
analysis. 

1) L-L Relationship: Study on the information exchange and collaborative ca-
pacity between the crane operator and the team members. 

2) L-H Relationship: Research on the interaction between the crane operator 
and the hardware operating equipment. 

3) L-S Relationship: Investigation of the human-machine relationship between 
the crane operator and the team management, technical training, and operation-
al standards. 

4) L-E Relationship: Examination of the relationship between the crane oper-
ator and the operating environment of the driver’s cabin. 

To establish a human reliability Performance Shaping Factors (PSFs) system 
for the human-machine interface of smart construction tower cranes, a survey 
questionnaire was used to investigate the 28 identified behavior formation fac-
tors [19]. The questionnaire was distributed to male participants, the participants 
had an average age of around 40 years. Through the analysis of questionnaire 
data, the survey provided strong support for constructing the PSFs system. The 
questionnaire included basic information and an investigation of the PSFs that 
influence human reliability, using a Likert 5-point scale where 1 represented “mi-
nimal impact” and 5 represented “significant impact”. A pilot survey was con-
ducted before distributing the formal questionnaire to ensure its validity. A total 
of 137 questionnaires were collected, with 132 of them considered as valid. A re-
liability test was conducted to ensure the data’s validity. The questionnaire was 
assessed for its reliability and validity: 

a) Using SPSS software, the overall reliability of the questionnaire was found 
to be 0.982, with reliability coefficients of 0.941 (L-L), 0.895 (L-H), 0.940 (L-S), 
and 0.937 (L-E) for the four dimensions, indicating good consistency across all 
dimensions. 

b) Content validity, correlation calibration validity, and structural validity of the 
questionnaire were examined. The KMO (Kaiser-Meyer-Olkin) test value for the 
questionnaire data was 0.974, and Bartlett’s spherical test’s approximate chi-square 
value was 3779.906. The communalities for all research items were above 0.4, in-
dicating that the information from the research items could be effectively extracted. 
Additionally, the KMO value was 0.963, which is higher than 0.6, indicating ef-
fective information extraction from the data. The variance interpretation rates of 
the four factors were 25.172%, 21.044%, 18.427%, and 11.352%, respectively, 
with cumulative variance interpretation rates of 68.388%, 70.481%, 72.498%, and 
74.265% after rotation, suggesting that the information from the research items 
could be effectively extracted. Items with scores lower than 0.5 were filtered out 
through principal component analysis. In this study, S10 (operational standard 
completeness) did not meet the research conditions and was therefore excluded 
(Figure 1). 
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Figure 1. Behavior Formation Factor (PSF) system. 

3. DEMATEL-ISM-MICMAC Model 
3.1. The DEMATEL-ISM Model 

The DEMATEL-ISM model combines expert knowledge and utilizes graph theory 
and matrix theory to describe the strength of interrelationships between various 
influencing factors. It calculates indicators such as influence degree, being in-
fluenced degree, cause degree, and centrality to identify key elements in complex 
systems. ISM reflects the intrinsic relationships between influencing factors in a 
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complex system through reachable matrices and constructs a multi-level hierar-
chical structure model [20]. 

The specific steps are as follows: 
1) Determine the set of influencing factors. Through literature review and anal-

ysis of actual accident cases, similar or duplicate factors are merged to ultimately 
determine the set of influencing factors, S = {s1, s2, …, sn}. 

2) Calculate the initial direct influence matrix, D. Based on expert knowledge 
and experience, the interrelationships between factors are obtained, resulting in 
the influence relationship matrix D = [dij]n×n. The matrix coefficient dij represents 
the direct influence of factor ai on factor aj. 

0
1
2
3

ij

Factor i has no effect on j
Factor i has weak influence on j

d
Factor i has a strong influence on j
Factor i has the strongest influence on j



= 



           (1) 

When i = j, dij = 0. 
3) Normalize the direct influence matrix. Normalization is performed on the 

direct influence matrix D to obtain the normalized direct influence matrix C, as 
shown in Equation (2). 

1 1

1

max
ij nn n

ijp n q

C c D
D

×

≤ ≤ =

 = = 
∑

                   (2) 

4) Solve the comprehensive influence matrix T to identify the most critical 
factors, as shown in Equation (3). Here, I represents the identity matrix, indicating 
the influence of factors on themselves. 

( )2 3 4 1··· /n n
ij n n

T C C C C C C I C I C t−

×
 = + + + = − − =          (3) 

5) Based on the comprehensive influence matrix T, calculate the impact degree 
fi, being influenced degree ei, centrality zi, and cause degree yi of each influencing 
factor, as shown in Equations (4)-(7). 

( )
1

1, 2, ,i ij
j

f t i n
=

= =∑                       (4) 

( )
1

1, 2, ,
n

i ji
j

e t i n
=

= =∑                       (5) 

( )1,2, ,i i iz f e i n= + =                      (6) 

( )1,2, ,i i iy f e i n= − =                      (7) 

6) Calculate the reachable matrix. By calculating I + T, the overall influence 
matrix is obtained. The reachable matrix in the ISM model is determined, where 
kij is calculated as shown in Equation (8). Here, the threshold λ = α + β (α and β 
are the mean and standard deviation of elements in matrix T). 

1

0
ij

ij
ij

h
k

h

λ

λ

>

≤
= 


                        (8) 
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7) Hierarchical structure analysis. Based on the reachable matrix K, the reacha-
ble set R(Si) and the antecedent set A(Si) can be obtained. R(Si) represents the set 
of columns in the reachable matrix K where the i-th row factor contains the ele-
ment 1, while A(Si) represents the set of rows in the reachable matrix K where 
the i-th column factor contains the element 1. The hierarchical division of the 
system is performed according to Equation (9). 

( ) ( ) ( ) , 1, 2, ,i i iR S R S A S i n= =                  (9) 

If the discriminant formula holds true, it indicates that the corresponding factor 
“a” is a bottom-level factor, and the row and column containing this factor are 
deleted from the reachable matrix K. The remaining factors repeat step 7) until 
all factors are deleted. 

In a given system, factors along with their reachable sets and antecedent sets 
are outlined in Table 2. If the discriminant formula holds true, it indicates that 
the corresponding factor “a” is a foundational element. In the reachable matrix 
K, the row and column containing this factor are removed. The remaining fac-
tors undergo a repetition of Step 7 until all factors are eliminated. Considering 
the excessive number of initial indicators, not only does it pose challenges for eva-
luators, but it also introduces distortions in questionnaire responses, potentially 
leading to significant issues in subsequent calculations. To mitigate this, a catego-
rization is implemented to reduce errors. L-L relationships can be classified into 
personal states and personal capabilities. Personal states encompass aspects such 
as physical fitness, fatigue level, concentration, and emotional state. Personal ca-
pabilities include knowledge skills and business acumen, adherence to personal 
protective equipment, clarity of personnel assignments and responsibilities, and 
time pressures. L-S relationships are divided into organizational management and 
safety culture. Organizational management covers team collaboration, complete-
ness of operational procedures, reasonableness of reward and penalty systems, and 
completeness of tower crane operating procedures. Safety culture encompasses 
the reasonableness of working hours, effective communication with supervisors, 
emergency drills and plans, and the overall work atmosphere. L-E relationships 
and L-H relationships can be respectively categorized as physical environment 
and technical environment (Table 3). 

Invitations have been extended to 10 researchers specializing in the field of 
construction engineering to participate in a questionnaire survey. These research-
ers, drawing on their own experiences and professional insights, are providing bi-
directional ratings for seven influencing factors. Based on the survey results and  

 
Table 2. Reachable set and antecedent set of a certain factor. 

Factors R(Si) A(Si) R(Si) ∩ A(Si) Distinguish 

a {a} {a,b,c} {a} R(Si) = R(Si) ∩ A(Si) 

b {a,b,c} {b,c} {b,c} R(Si) ≠R(Si) ∩ A(Si) 

c {a,c} {b,c} {c} R(Si) ≠R(Si) ∩ A(Si) 
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expert opinions, a direct impact matrix D is computed. The comprehensive impact 
matrix is then calculated using Formulas (1) and (2), with detailed data provided 
in Table 4 and Table 5. 

Through Python programming, the impact, affectedness, causality, and cen-
trality of each factor were calculated, and the results are presented in Table 6. A 
causality factor is considered when causality is greater than 0, while a result fac-
tor is considered when causality is less than or equal to 0. All causal attributes 
in this study belong to causality attributes, indicating direct impacts on other  

 
Table 3. System of human error factors in driver interface. 

Target layer Criteria layer Indicator layer 

 L-L T11 Personal status 

  T12 Personal ability 

Human error L-S T21 Organization and management 

  T22 Safety culture 

  T23 Operating procedures 

 L-E T3 Physical environment 

 L-H T4 Technical environment 

 
Table 4. Direct influence matrix. 

 T11 T12 T21 T22 T23 T3 T4 

T11 0 1.5 1.9 2.2 2.4 2.6 1.7 

T12 2.3 0 1.9 2.1 2.4 1.6 2 

T21 2.4 2.5 0 2.3 1.8 2.1 2.3 

T22 2 1.6 2.2 0 1.5 2.3 1.8 

T23 2.3 2.2 1.4 1.7 0 2.1 2.4 

T3 1.1 1.4 1.9 2.1 2.2 0 1.7 

T4 2 1.8 1.7 1.6 2.5 2 0 

 
Table 5. Modified comprehensive influence matrix. 

 T11 T12 T21 T22 T23 T3 T4 

T11 1.055663 1.075533 1.100771 1.194473 1.268384 1.276701 1.159853 

T12 1.215277 0.983644 1.108619 1.197282 1.279076 1.229425 1.186417 

T21 1.299244 1.214147 1.059597 1.288935 1.330228 1.340742 1.281043 

T22 1.122567 1.022812 1.060257 0.99109 1.150961 1.1927 1.101973 

T23 1.19073 1.102499 1.05971 1.152246 1.105842 1.233553 1.185946 

T3 0.995949 0.94213 0.970772 1.048161 1.107962 0.963953 1.02199 

T4 1.139729 1.049454 1.043702 1.111785 1.225564 1.191473 1.000376 
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attributes in the original causal relationship matrix. Strong chain reaction effects 
may exist among the interactions of these attributes, necessitating a comprehen-
sive consideration of their effects to deepen the understanding of the problem’s 
essence and complexity. 

Table 7 reveals that the causality factors for human errors, ranked in descend-
ing order of causality, are T21 organizational management, T12 personal capabili-
ty, T11 personal status, T23 operating procedures, T4 technical environment, T22 
safety culture, and T3 physical environment. This suggests that organizational 
management has a higher degree of influence on other factors, implying it may be 
a crucial factor with significant impact on the overall system or issue. Organiza-
tional management likely plays a pivotal role in causing changes in other factors 
and leading to corresponding changes in the system. Moreover, compared to other 
factors, inadequate organizational management is more likely to result in human 
errors. The centrality rankings from Table 7 indicate that T11 personal status, 
T4 technical environment, T21 organizational management, T12 personal capa-
bility, T3 physical environment, T23 operating procedures, and T22 safety cul-
ture have higher centrality, signifying greater importance. Therefore, T11 personal 
status, T4 technical environment, and T21 organizational management emerge 
as the primary factors contributing to the occurrence of human errors. 

On the basis of the comprehensive impact matrix, the consideration of self-factor 
influences (added to the identity matrix) is used to establish the overall impact 
matrix. During the transformation process from the overall impact matrix to the 
reachable matrix, it is essential to set an appropriate threshold to streamline rela-
tionships with lower impact between factors, ensuring a moderate degree of node 
connectivity. Traditional methods for setting the threshold primarily rely on em-
pirical values obtained through multiple iterations to achieve satisfactory results. 
Through extensive analysis of multiple threshold values, it is observed that a thre-
shold value (λ) of 0.18 results in a more suitable node connectivity, facilitating 
the delineation of the hierarchical structure of factors. Therefore, in this study, a 
threshold value of 0.18 is selected based on the results of the overall impact matrix 
and Equation (8), yielding the reachable matrix for forming factors, as shown in  

 
Table 6. DEMATEL analysis results for driver interface human error factors. 

Influence 
factor 

Influence 
degree 

Affected 
degree 

Causality 
degree 

Factor 
attribute 

Centrality 
Centrality 
ranking 

T11 12.1 12.3 21.61286 Cause factor 33.71 5 

T12 11 12.3 21.61286 Cause factor 32.61 4 

T21 11 13.4 25.65143 Cause factor 36.65 7 

T22 12 11.4 18.56571 Cause factor 30.57 2 

T23 12.8 12.1 20.91571 Cause factor 33.72 6 

T3 12.7 10.4 15.45143 Cause factor 28.15 1 

T4 11.9 11.6 19.22286 Cause factor 31.12 3 
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Figure 2. Node degree-influencing factor diagram for driver interface-related human er-
rors at different thresholds. 

 
Table 7. Reachable matrix K of the influencing factors for driver interface-related human 
errors. 

Factors T11 T12 T21 T22 T23 T3 T4 

T11 1 0 0 0 1 1 0 

T12 1 1 0 1 1 0 0 

T21 1 1 1 1 0 1 1 

T22 0 0 1 1 0 1 0 

T23 0 0 0 0 1 0 1 

T3 0 0 0 0 0 1 0 

T4 0 0 0 0 1 0 1 
 

Table 7. 
Due to the presence of cycles in the reachable matrix, a Depth-First Search 

(DFS) algorithm is chosen to traverse the graph. DFS efficiently explores each 
connected component of the graph [21]. While this method is an approximate 
approach and does not guarantee optimal layering results, it proves effective in 
approximating layers in graphs with cycles. The hierarchical structure of factors 
influencing human errors among intelligent construction site tower crane oper-
ators can be divided into four levels, revealing a complex network of interrelated 
factors. Surface-level factors, such as individual state, operating procedures, and 
physical environment, directly impact the occurrence of human errors in tower 
crane operators. It is crucial to ensure the safety and stability of these surface-level 
factors by addressing potential hazards and ultimately safeguarding the well-being 
of crane operators. Key nodes in the occurrence of human errors in intelligent 
construction site tower crane operators include two shallow-level factors, personal 
capabilities, technical environment, and one deep-level factor, organizational man-
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agement. These factors play a vital role in the transmission of interactions be-
tween various elements, necessitating close attention and reasonable control to 
create a positive influence on surface-level factors and gradually improve issues 
related to human errors among crane operators. Deep-level factor organizational 
management possesses both sudden and widespread characteristics, capable of ra-
pidly exerting profound impacts on tower crane operators at intelligent construc-
tion sites. Consequently, preventive and emergency measures are essential to mi-
tigate uncontrollable situations. Safety culture, as a foundational factor, fundamen-
tally influences human errors among intelligent construction site tower crane op-
erators. Strengthening the development of this factor plays a decisive role in en-
suring the safety of crane operators. 

3.2. Analysis of Causal Attribute Features Based on MICMAC 

MICMAC is a quantitative method that uses matrix multiplication principles to 
reflect the interaction relationships among causal factors. Its core idea is to cal-
culate the driving force values and dependency values between various factors 
through the reachable matrix Z [22]. Based on the driving force and dependency 
values, risk factors are categorized into four types: autonomous, dependent, as-
sociated, and independent elements, to clarify the attribute characteristics of dif-
ferent hierarchical causes, as shown in Figure 2. 

From Figure 3, it can be observed that the seven factors mentioned above are 
all associated factors. From Figure 4, these factors, including personal status, 
personal abilities, organizational management, safety culture, operating proce-
dures, physical environment, and technical environment, possess relatively high 
driving force values and dependency values, belonging to indirect factors. These  

 

 
Note: PS represents Personal Status, OP represents Operating Procedures, PE represents Physical 
Environment, PA represents Personal Ability, SE represents Skill Environment, OM represents Or-
ganizational Management, and SC represents Safety Culture. 

Figure 3. Multi-level and hierarchical model of influencing factors of human error related to driver 
interface. 
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Figure 4. Analysis of causal attribute features based on MICMAC. 

 
factors’ states are highly susceptible to change, exhibiting poor stability and be-
ing difficult to control. As all factors are associated factors, this implies that each 
factor is to some extent related to others. In this scenario, there exist interactions 
and dependency relationships among risk factors. Therefore, compared to other 
situations, this condition signifies comprehensive risk, whereby the alteration or 
occurrence of problems in a single factor may trigger a chain reaction affecting 
the entire system. Complexity adds to the challenge of understanding and man-
aging risks, as changes or risks in the system may propagate through multiple 
pathways and influences. Interdependence indicates that the dependency rela-
tionship between correlated factors may suggest that some factors require sup-
port or interaction from other factors to exert their impact. Systemic risk implies 
that if all factors are interrelated, it may reflect the risk level of the entire system 
or domain. In such cases, comprehensive risk management methods are needed, 
considering the system as a whole rather than just the risk of individual factors. 
In summary, when all factors are associated factors, it indicates that the risk ex-
ists not only in the individual factors themselves but also involves interactions 
and dependency relationships within the entire system or domain. Based on the 
above analysis, controlling human unsafe behaviors is relatively complex. Hu-
man unsafe behavior is a high-incidence factor leading to human errors in tower 
crane drivers on smart construction sites, consistent with previous research results 
and preliminary case statistics. 
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4. Research Conclusions 

The factors influencing human error behaviors in tower crane operations at smart 
construction sites are affected by various factors such as personal status, personal 
abilities, organizational management, safety culture, operating procedures, physical 
environment, and technical environment. It is a complex system involving mul-
tiple factors such as human-machine-environment. The main research conclusions 
are as follows: 

Organizational management has a relatively high degree of influence on other 
factors. This indicates that this factor may be a key factor, exerting significant 
influence on the overall system or issues. This factor may play a crucial role in 
causing changes in other factors, leading to corresponding changes in the sys-
tem. Compared to other factors, inadequate organizational management is more 
likely to lead to human errors. Physical environment has the smallest degree of 
causality and is the most sensitive, also most susceptible to the influence of other 
factors, and should be emphasized in the management of tower cranes at smart 
construction sites. 

The ISM multilayer hierarchical structure model divides the influencing fac-
tor system of human error behaviors in tower crane operations at smart con-
struction sites into four levels, demonstrating inherent relationships. In the 
surface factors, personal status, operating procedures, and physical environment 
directly affect the probability of human errors in tower crane operators. Efforts 
must be made to maintain the safety stability of these factors to ensure driver 
safety, addressing potential hazards in surface factors first to safeguard driver 
safety. In critical nodes, personal abilities, technical environment, and organi-
zational management, two surface factors and one deep factor play a crucial role 
in the transmission process of various factors’ interactions. Close attention and 
reasonable control of these factors form a benign effect on surface factors, grad-
ually improving the problem of human error in tower crane operators at smart 
construction sites. Organizational management in deep factors has the cha-
racteristics of suddenness and universality, and can rapidly generate profound 
impacts. Therefore, it is necessary to take preventive and emergency measures 
to reduce its uncontrollable conditions. All seven factors are interconnected 
and have relatively high driving force values and dependency values, belonging 
to indirect factors. The states of these factors change frequently, exhibiting 
poor stability and being difficult to control. Because all factors are interrelated, 
this means that each factor is to some extent correlated with other factors. In 
this case, there are interactions and dependency relationships among various 
risk factors, increasing the comprehensive risk of the entire system being af-
fected. 
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