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Abstract 
This paper investigates a class of coupled neural networks with delays and ad- 
dresses the exponential synchronization problem using delay-compensatory 
impulsive control. Razumikhin-type inequalities involving some destabilizing 
delayed impulse gains are proposed, along with a new delay-compensatory 
concept demonstrating two crucial roles in system stability. Based on the 
constructed inequalities and the introduced delay-compensatory concept, 
sufficient stability and synchronization criteria for globally exponential syn-
chronization of coupled neural networks are provided. To address the expo-
nential synchronization problem in coupled neural networks. Utilizing delay- 
compensatory impulsive control and Razumikhin-type inequalities. The 
Lyapunov function for coupled neural networks with delays and integral 
terms exhibits exponential estimates.  
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1. Introduction 

In recent years, impulsive control systems, possessing the dual characteristics of 
both continuous-time dynamics (piecewise continuous part of the system) and 
the discrete one (instantaneous jump part of the system), have been widely used 
for the modeling of physical evolutionary processes showing instantaneous sys-
tem state changes, such as, cyber- physical systems [1] [2] [3], networked control 
systems [4] [5] [6], and mechanical systems [7] [8] [9] [10]. The core idea of the 
impulse control method is to alter system states instantaneously at some specific 
time so that control information can only be transmitted in some discrete time. 
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The stability of impulsive control systems, as the basic problem in the field of 
control theory, has received more and more attention, and much significant 
work has been presented in the literature [11] [12] [13] [14]. In particular, the 
exponential synchronization problem of delay-coupled neural networks with 
delay-compensatory impulsive control has been established. Therefore, this pa-
per mainly investigates whether the Lyapunov function still exhibits exponential 
estimates when an integral term is added to the system. 

2. Problem Formulation and Preliminaries 

Notations. Let R and R+ represent the set of real numbers and the set of nonneg-
ative real numbers, respectively. Z+ and 0Z+  represent the set of positive integer 
numbers and the set of nonnegative integer numbers, respectively. Rn and Rn×m 
represent the set of n-dimensional real-valued vectors and n × m dimensional 
real matrices, respectively. The notation ( )maxλ A  and AT  denote the largest 
eigenvalue and the transpose of a matrix ( ) n n

ija ×= ∈A , respectively. +D  in-
dicates the upper right-hand Dini derivative and ⊗  refers to the Kronecker 
product. Let I  indicate the identity matrix with appropriate dimensions and 
⋅  the absolute value of a function. =x x xT  is defined for a vector n∈x .  

Moreover, we denote the norm of matrix A  by ( )maxλ=A A AT . We de-

note by ( ), , n
b ft t     and ( ), , n

b ft t     the set of continuous and piece-

wise right continuous functions : , n
b ft tφ   →   , respectively. Denote 

( ) sup
0t τ

φ   

as ( )
0 0

supt tτ θ φ θ− ≤ ≤ . Function expressions are sometimes simplified; for exam-
ple, one functional ( )( ),V t x t  is denoted by ( )V t . 

Consider a type of delayed coupled neural network with delayed impulses and 
integral terms: 
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i i

t

x t Dx t B f x t B g x t

s a x t x t g x s s t t
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∑ ∫



 (A) 

where n
ix ∈  is the ith neuron state, 1, 2, ,i m=  . ( ) ( )ij k i kx t x t∆ = −

( )j kx t , D represents a self-feedback constant matrix, s > 0 is a coupling gain, 
and the inner-coupling matrix Γ is positive-definite. ( ) ( ) ( )( )T

1 , ,i i n if x f x f x=   
and ( ) ( ) ( )( )T

1 , ,i i n ig x g x g x=   are the activation functions on  
[ ]( )1, , n

k kPC t t−  , ( ) ( ) ( ) T
1 , ,i i int t tφ φ φ=     on [ ]( )0 0, , mnC t tτ−  . The im-

pulse sequence { }kt  needs to meet 1 0k kt t −− > , limt kt→+∞ = +∞ , and  

1k k kt tτ −− > . Suppose that the solution ( )x t  is precewise continuous, and 

( )x t− , ( )x t+  exist at every time. This paper is devoted to deriving sufficient 
conditions for system stability under the delayed impulsive controllers { }, ,k k kt h τ . 

https://doi.org/10.4236/jamp.2024.123054


N. Li, L. Wang 
 

 

DOI: 10.4236/jamp.2024.123054 872 Journal of Applied Mathematics and Physics 
 

Remark 1. Note that the ith neural network is coupled with the other ones de-
fined by matrix A. Moreover, at the impulse time kt , what changes is the dif-
ference between the states of two adjacent neural networks rather than a change 
in the state of a single neural network itself. 

To solve the synchronization problem of neural networks (1), firstly, construct 
a new Razumikhin-type differential inequalities with variably delayed impulses: 

 ( )( ) ( )( ), , ,D V t x t aV t x t+ ≤  (1) 

whenever 

 ( )( ) ( )( ), e , , , ,kV t x t V t x t t t kητ τ +− − ≤ ≠ ∈  (2) 

 ( )( ) ( ) ( )( )( ), e , ,kd
k k k k k kV t x t V t x tτ τ− −−≤ − −  (3) 

where the continuity of the function ( )( ), : nmV t x t +× →    is broken by 
some points kt , at which ( )( ),k kV t x t− −  and ( )( ),k kV t x t+ +  exist, and suppose 

( )( ) ( )( ), ,k k k kV t x t V t x t+ + − −= , 0a > , kd ∈ , and 0η >  with  

( )* *
0 0̂T Nη δ τ δ λτ= + + −  with *δ , 0̂δ , *T , 0N , and λ  defined as the 

following definitions. 
Definition 1 [15]. Let , st tN  be the number of impulses that the impulse se-

quence { }kt  occurs in the interval ( ],st t , if 

0 , 0* *s
s s

t t
t t t tN N N
T T
− −

− ≤ ≤ −  

we say 0T >  is the average impulsive integral (AII), and 0 0N >  is a chatter 
number. 

Definition 2 (Delay-Compensatory Condition) [16]. If two parameters δ   
and 0̂δ  meet 

 
, 0

, 0

, 0 , 0
1

ˆ ˆ
t t

s s
t ts

N

t t j j t t
j N

N d Nδ δ λτ δ δ
= +

− ≤ + ≤ +∑   (4) 

Then we say δ   is the average parameter of the delay-compensatory based 
condition, where 0δ > , and 0̂ 0δ >  is a chatter number. Also, , st tN  is de-
fined as above, and Tλ δ ν= −   with ν representing the decay rate corres-
ponding to exponential stability, which will be defined later. 

Suppose at least one impulse occurs in the interval ( ],st t  in this paper. The 
newly constructed Razumikhin-type inequality differs from the one proposed by 
Li et al. (refer to reference). The inequalities in Equation (3) are associated with 
the variable kd . Therefore, when 0kd < , it can be observed that the impulse 
corresponds to a destabilizing gain. Since kd ∈ , some destabilizing gains can 
be encompassed within the entire set of impulses set. In addition, the instanta-
neous jump counterpart may be asynchronous. The main idea of AID is shown 
in the inequality 

 
, 0

, 0

, 0 , 0
1

ˆ ˆ
t t

s s
t ts

N

t t j j t t
j N

N d Nδ δ λτ δ δ
= +

− ≤ + ≤ +∑   (5) 
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Inspired by this idea, a new idea of delay-compensatory is proposed. We con-
struct a delay-compensatory condition for a system with integral terms, aiming 
to achieve the stabilization effect of pulse delays in unstable delayed systems and 
simultaneously compensate for the adverse effects caused by some destabilizing 
gains. In the delay-compensatory condition, the three coefficients kd  asso-
ciated with impulse gains, the decay rate v corresponding to exponential stabili-
ty, and impulse delays kτ  are interdependent and integrated into the stability 
criteria. When the decay rate v is determined, one can design some larger delays 

kτ  to balance the aforementioned conditions, thereby allowing for the intro-
duction of some destabilizing gains in pulse control. 

The coupled network system (a) is said to achieve Globally Exponential Syn-
chronization (GES) if two parameters M > 0 and ν > 0 meet. 

 ( ) ( ) ( )0e .t t
i jt t M ν− −− ≤x x  (6) 

The following lemma will give the exponential estimate for the differential 
dynamics (3) and (4). 

Assumption 1. There exist matrices ( )1 1ij n n
L l

×
=  and ( )2 2ij n n

L l
×

=  such that 

for any ( )T
1, , nu u u=   and ( )T

1, , nv v v=  , ( ) ( ) 11i i ij j
n

jjf u f v l u v
=

− ≤ −∑ , 

and ( ) ( ) 21i i ij j
n

jjg u g v l u v
=

− ≤ −∑ , where ( )if ⋅  and ( )ig ⋅  are given in 

(A). 
Theorem 2.1. Given constants 0a > , kd ∈ . Suppose there exist positive 

constants * *
0 0̂, , , ,T N δ δ ν  that satisfy aλ >  and the AII condition (4) and the 

delay-compensatory condition (5) hold, then one exponential estimation can be 
obtained for inequalities (2) and (3). 

 ( ) ( ) [ )0
0 1 0e , , , .t t

k k kV t V t t t kλ − +
+≤ Γ ∈ ∈  (7) 

where 
*

*T
δλ ν= − , [ ] ( )

0 00 ,supu t tV V uτ∈ −= , 01e e
k

jjk k
k

δδ =− −− Γ ∑Γ = =  with  

:k k kdδ λτ= + , and 0 0d = , 0 0τ = . 

Proof. For convenience, construct the following auxiliary inequality: 

 ( ) ( ) ( ) [ )
( )

1

0 0

e , if , ,
, if .

kt t
k kV t t t tt

V t t t t

λ

ϕ
τ

− −
+

 ∈= 
− ≤ ≤

 (8) 

Thus, the proof of inequality (7) is now transformed into the following one: 

 ( ) ( ) [ )0
0 1e , , .kt t

k k kt V t t tλϕ −
+≤ Γ ∈  (9) 

We construct a new function ( )V t  based on the proof technique from 
Lemma 1 in Reference [16]. Let the Lyapunov function in the reference be de-
noted as ( )originalV t . Then, our new Lyapunov function is given by 

 ( ) ( ) ( ) ( )( ) ( )( )
0

T
original e d .t s

t

t
V t V t g x s Qg x s sαρ − −= + ∫  (10) 

According to the proof of Lemma 1, it can be concluded that ( )originalV t  satis-
fies conditions (1), (2), and (3) [16]. Next, we prove that the newly constructed 
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( )V t  satisfies inequality (1). 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( )
0

T T
original e dst t

t
V t V t g x s Qg x s g x s Qg x s sαρ α − −= + − ∫  (11) 

For the equation: 

 ( )( ) ( )( )Tg x s Qg x s  (12) 

g(x) is globally Lipschitz continuous (g(0) = 0) Thus, we have 

 ( ) ( ) 20 0g x g L x− ≤ −  (13) 

Namely, 

 ( ) 2g x L x≤  (14) 

 ( )( ) ( )( ) ( )( ) 2T

Q
g x s Qg x s g x t=  (15) 

( )2
2 Q

L x≤                   (16) 

( ) ( ) 22
2 maxL Q x tλ≤            (17) 

There exists c s.t 

 ( )2
2 maxcP L Q Iρ λ≥  (18) 

Then 

 ( ) ( ) 2T 2
2 maxX cP X L Q xρ λ≥  (19) 

 ( ) ( )22
2 max originalL Q x cV tρ λ ≤  (20) 

Consider ( ) ( )original originalV t aV t≤  (see Reference [16]). Then 

 ( ) ( ) ( ) ( ) ( )( ) ( )( )
0

T
original original e d

t t s

t
V t aV t cV t g x s Qg x s sαρ − −≤ + + ∫  (21) 

( ) ( ) ( ) ( )( ) ( )( )
0

T
original e d

t t s

t
a c V t g x s Qg x s sαρ − −= + + ∫          (22) 

( ) ( ) ( )( ) ( )( )( )
0

T
original e d

t t s

t
b V t g x s Qg x s sα− −≤ + ∫              (23) 

( )bV t=                                              (24) 

where { }max ,b a c=  Thus, it is shown that (1) holds. Thus, following a similar 
discussion as in Reference (Equation (10)), it can be proved that ( ) ( )0

0e t t
kV t Vλ −≤ Γ , 

for [ )1,k kt t t +∈ , 
0

k +∈ .  
Proof is over. The following theorem states the globally exponential stability 

for ( )( ),V t x t . 
Theorem 2.2. Given constants 0a > , kd ∈ . Suppose that there exist posi-

tive constants * *
0 0̂, , , ,T N δ δ ν  such that aλ >  and the AII condition (4) and 

the delay-compensatory condition (5) hold, then the system composed of (2) 
and (3) is globally exponentially stable,  

 ( ) ( ) [ )0
0 1e , ,t t

k kV t MV t t tν− −
+≤ ∈  (25) 

where [ ] ( )
0 00 ,supu t tV V uτ∈ −= , and 

*
0 0ˆe NM δ δ+= . 
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The proof follows a similar process as in Reference, which proves inequality 
(19). Details are omitted here. 

3. Conclusion 

This paper investigates the exponential estimation of the Lyapunov function for 
neural network systems with integral terms and pulse delays. It is demonstrated 
that, under certain parameter conditions, there indeed exists an exponential es-
timation for the Lyapunov function.  
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