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Abstract 
We develop a cosmological model in a physical background scenario of four 
time and four space dimensions ((4+4)-dimensions or (4+4)-universe). We 
show that in this framework the (1+3)-universe is deeply connected with the 
(3+1)-universe. We argue that this means that in the (4+4)-universe there ex-
ists a duality relation between the (1+3)-universe and the (3+1)-universe. 
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1. Introduction 

Recent discoveries from the James Webb Space Telescope [1] [2] [3] (JWST) 
have provided evidence that the standard cosmological model needs to be ex-
tended with an alternative theory, which is surely unexpected. Among these dis-
coveries is the observation of 6 galaxies that are so close to the supposed big 
bang that they force us to rethink the usual ideas about the big bang and the 
evolution of the universe. In fact, these galaxies are larger than the Milky Way, 
but in the cosmological sense, they formed too early. In other words: these ga-
laxies are where no one would expect them to be. This unexpected observation 
from the James Webb Space Telescope is framed by famous physicist Roger Pe-
nrose who says; “There is a big bang, but the big bang was not the beginning”. In 
the same way, the also famous theoretical physicist Michio Kaku said: “Suddenly 
we realize that we need to rewrite all text books about the beginning of the un-
iverse. Now it takes thousands of millions of years to recreate a galaxy, like the 
Milky Way galaxy, with one hundred thousand millions of stars. But the James 
Webb Space Telescope identifies 6 galaxies that exist around 500 million years 
after the big bang, that are 10 times larger than the Milky Way galaxy” (see Ref. 
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[4] and references therein). 
We believe that the above observations can be seen as a theoretical opportu-

nity to propose such an alternative unexpected cosmological model. For theo-
retical reasons explained below, in this work, we would like to propose a cosmo-
logical model with background scenario in four time and four space dimensions 
((4+4)-universe). We show that in this framework the (1+3)-universe is deeply 
connected with the (3+1)-universe. We argue that this means that in the 
(4+4)-universe there exists a duality relation between the (1+3)-universe and the 
(3+1)-universe. Indeed, a solution of our cosmological model allows us to choose  

the relation ( ) ( )
2

3
la a+ − = , with ( )a +  the scale factor of the (1+3)-universe and  

( )a −  the scale factor associated with (3+1)-universe. Here, l  is some funda-
mental constant, such as the Plank length. An interesting aspect of this relation 
is that there is a duality expansion/contraction correspondence between the un-
iverses (1+3)-universe and the (3+1)-universe. In particular, if ( ) 0a + →  we 
have that ( )a − →∞  and vice versa. This proves that in fact “the big bang is not 
the beginning” as Roger Penrose said. 

It seems to us it is necessary to give an argument about the relationship be-
tween theory and observations of the JWST. It is clear to any physicist that 
theory and observations must go hand in hand. But sometimes the theory comes 
forward and sometimes the experiment. Curiously, the JWST remarkable obser-
vations (6 galaxies that are so close to the big bang) are so recently that surely 
will require a lot of time to be able propose a correct cosmological theory. At 
least in this work, as mentioned in the previous paragraph, we have found a so-
lution in which the singularity ( ) 0a + →  is not the beginning. 

Let us now mention some theoretical reasons why ((4+4)-universe) may be 
interesting. In Refs. [5] [6] it is shown that there exists a triality relation between 
the signatures (9+1), (5+5) and (1+9). This means that from the (5+5)-universe 
we may obtain, via triality, the (9+1)-universe or the (1+9)-universe. At the same 
time it is known that (5+5)-universe is a common signature in both type IIA 
strings and type IIB strings [7] [8]. 

Since the (4+4)-universe (see Refs. [9]-[16]) can be understood as the 
transverse scenario of the (5+5)-universe we may conclude that just as by im-
posing a coordinate constraint in the (1+4)-universe it leads to a de Sitter 
space associated with the (1+3)-universe, with positive cosmological constant, 
and (2+3)-universe to the anti-de Sitter space-time associated with the (3+1)-un- 
iverse, with the negative cosmological constant, a coordinate constraint in the 
(4+4)-universe may lead to a kind of (1+3)-universe/(3+1)-universe (de Sit-
ter/anti-de Sitter) correspondence. 

It turns out that due to a number of remarkable results, the (4+4)-universe, by 
itself, may be considered, mathematically and physically interesting. Physically, 
the Dirac equation in (4+4)-dimensions is consistent with Majorana-Weyl spi-
nors which give exactly the same number of components as the complex spinor  
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of 1
2

-spin particles such as the electron or quarks (see Refs. [10] and [15]).  

Second, the most general Kruskal-Szekeres transformation of a black-hole coor-
dinates in (1+3)-dimensions leads to 8-regions (instead of the usual 4-regions), 
which can be better described in (4+4)-dimensions [17]. Third, it also has been  

shown [11] that duality 2
2

1σ
σ

↔ , of a Gaussian distribution in terms of the  

the standard deviation σ  of 4-space coordinates associated with the de Sitter 
space (anti-de Sitter) and the vacuum zero-point energy yields a Gaussian of 
4-time coordinates of the same vacuum scenario. Moreover, loop quantum grav-
ity in (4+4)-dimensions [13] admits a self-duality curvature structure analog to 
the traditional self-duality in (1+3)-dimensions. Furthermore, it has been shown 
[13] that there existed a duality symmetry in a black hole in (4+4)-dimensions. 
Finally, in Ref. [18] it is proved that a 4-rank totally antisymmetric field strength 

ˆˆ ˆˆF µναβ  in (4+4)-dimensions can be broken into two electromagnetic field 
strengths; the antisymmetric field strength F µν  associated with the 
(1+3)-universe and the antisymmetric field strength ijG  associated with the 
(3+1)-universe. An interesting aspect of this result is that there is a hidden dual-
ity symmetry feature between the fields F µν  and ijG  in the sense that ijG  
contribute to the source of F µν  and vice versa. Mathematically, it has been 
suggested that the mathematical structures of oriented matroid theory (see Refs. 
[19]-[26] and references therein) and surreal number theory (see also Refs [27] 
[28] and references therein) may provide interesting routes for a connection 
with the (4+4)-universe. 

2. A Short Review of Cosmology in a (1+3)-Universe 

We shall start considering one of the simplest cosmological models which is de-
termined by the line element [29]; 

( ) ( )2 2 2d d d d .k i j
ijs t a t g ξ ξ ξ= − + �                   (1) 

Here, we use geometric units such that the speed of light in vacuum, c, and the 
gravitational constant, G, are set equal to unity, i.e. 1c =  and 1G = . We also 
consider that ijg�  is a known quantity and refers to a 3-dimensional homoge-
neous space. In this context, the only unknown variable is ( )a t , which may be 
interpreted as the radius of a 3-sphere and its evolution in time must be deter-
mined by the relativistic gravitational field equations. Moreover, iξ  denotes 
the three angles ( ), ,ψ θ φ . The ansatz associated with (1) is 

( ) ( )2

1 0
,

0 , ,ij
g

a t gµν ψ θ φ
− 

=  
 �

                   (2) 

which inverse is given by 

( ) ( )2

1 0
.

0 , ,ijg
a t g

µν

ψ θ φ−

− 
=  
 �

                  (3) 

Using (2) and (3), we obtain that the non-vanishing Christoffel symbols are 
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1
1, ,

,

i i
ij ij j j

k k
ij ij

aaag
a
δΓ = Γ =

Γ = Γ

�
� �

�
                      (4) 

where d
d
aa
t

≡� . Furthermore, from (4), we find that the non-vanishing compo-

nents of the Riemann tensor are 

( )

1
1 1 1

2

, ,

.

i i
i j ij j j

i i i i
jkl jkl k jl l jk

aR aag R
a

R R a g g

δ

δ δ

= = −

= + −

��
���

� � � �
                   (5) 

Thus, from (5) we get that non-vanishing components of the Ricci tensor 
R Rα
µν µαν=  are given by 

( )
11

2

3 ,

2 ,ij ij ij

aR
a

R R aa a g

= −

= + +

��

� �� � �
                      (6) 

while the scalar curvature R g Rµν
µν=  becomes 

2

2 26 6 6 ,a a kR
a a a

= + +
�� �

                       (7) 

where we had set 6R k=� , with { }1,0,1k = − , which is true for a 3-dimensional 
homogeneous space. Our task is now to substitute (6) and (7) into the relativistic 
gravitational field equations [29]: 

1 8 .
2

R g R Tµν µν µνπ− =                        (8) 

Here, Tµν  is the energy-momentum tensor. We get the splitting equations 

11 11 11
1 8 ,
2
1 8 .
2ij ij ij

R g R T

R g R T

π

π

− =

− =
                       (9) 

Since we have only one unknown quantity ( )a t , we can focus on the first of 
these two equations. Thus, substituting (6) and (7) into the the first equation of 
(9) gives us 

( )
2

2 2
13 1 6 6 6 8 ,
2

a a a k
a a a a

ρ
 

− − − + + = π
 

�� �� �
             (10) 

where the variable 

11Tρ ≡  

shall be identified with the matter-energy density of the system. Simplifying (10) 
we end up with 

2

2 2
8 .
3

a k
a a

ρ=
π

+
�

                       (11) 

Hence, given ρ  as a function of ( )a t , in principle from (11), we may be able 
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to determine a  as a function of time t (see Ref. [28] for details). 

3. Cosmological Model in (4+4)-Universe 

Let us now consider the ansatz for the metric gµν  in (4+4)-dimensions: 

( )( ) ( )

( )( ) ( )

2

2

1 0 0 0

0 0 0
,

0 0 1 0

0 0 0

ij

AB

a g
g

a g

µν

+ +

− −

− 
 
 
 =
 
 
 − 

�

�

             (12) 

where ( )
ijg +�  is a function of three parameters, let’s say ( )ψ + , ( )θ +  and ( )φ + , 

while ( )
ABg −�  is a function of other three parameters, let’s say ( )ψ − , ( )θ −  and 

( )φ − . It turns out that, for a non-singular metric, ( )det 0gµν ≠ , we can always 
find a transformation such that this metric can also be written as 

( )( ) ( )

( )( ) ( )

2

2

1 0 0 0
0 1 0 0

,0 0 0

0 0 0

ij

AB

g a g

a g

µν + +

− −

− 
 
 
 =
 
 
 − 

�

�

             (13) 

or 

( )( ) ( ) ( )

( )( ) ( ) ( )

2

2

0 0

0 0 ,

0 0

ab

a
ij

a
AB

g a t g

a t g

µν

η
+ +

− −

 − 
 

=  
 
 − 

�

�

           (14) 

with ( )1, 1ab diagη = − . 
We find that the non-vanishing Christoffel symbols are 

( ) ( ) ( )
( )

( ), ,

,

a ac i ia
ij c ij aj j

k k
ij ij

aa a g
a

η δ
+

+ + +
+

∂
Γ = ∂ Γ =

Γ = Γ

�

�
                (15) 

and also 

( ) ( ) ( )
( )

( ), ,

.

a ac A Aa
AB c AB aB B

A A
BC BC

aa a g
a

η δ
−

− − −
−

∂
Γ = − ∂ Γ =

Γ = Γ

�

�
               (16) 

Furthermore, from (15) and (16) we learn that the non-vanishing components of 
the Riemann tensor become 

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )

, ,

.

a ac i ia b
ibj b c ij ajb j

ii ab i i
jkl jkl a b k jl l jk

aR a a g R
a

R R a a g g

η δ

η δ δ

+
+ + +

+

+ + +

∂ ∂
= ∂ ∂ = −

= + ∂ ∂ −

�

� � �
             (17) 

and 
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( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )

, ,

.

a ac A Aa b
AbB b c AB aBb B

AA ab A A
BCD BCD a b C BD D BC

aR a a g R
a

R R a a g g

η δ

η δ δ

−
− − −

−

− − −

∂ ∂
= − ∂ ∂ = −

= − ∂ ∂ −

�

� � �
           (18) 

Similarly, we learn that the non-vanishing components of the Ricci tensor are 
( )

( )

( )

( )
3 3 ,a b a b

ab
a aR

a a

+ −

+ −

∂ ∂ ∂ ∂
= − −                     (19) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2cd cd
ij c d ij c d ij ijR a a g a a g Rη η+ + + + + + += ∂ ∂ + ∂ ∂ + �� �           (20) 

and 
( ) ( ) ( ) ( ) ( ) ( )2 .cd cd

AB c d AB c d AB ABR a a g a a g Rη η− − − − − −= − ∂ ∂ − ∂ ∂ + �� �          (21) 

Therefore, the scalar curvature R becomes 
( )

( )

( ) ( )

( )( )
( )

( )

( ) ( )

( )( )
( )

( )( )
( )

( )( )

2

2 2 2

6 6 6

6 6 6 .

cd cd cd
c d c d c d

cd
c d

a a a aR
a aa

a a k k

a a a

η η η

η

+ + + −

+ −+

− − + −

− + −

∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂
+ + −

          (22) 

Here, we denote ( ) ( )6R k+ +=�  and ( ) ( )6R k− −=� . Consequently, the ab relativistic 
gravitational field equation becomes 

( )

( )

( ) ( )

( )

( ) ( )

( )( )
( )

( )

( ) ( )

( )( )
( )

( )( )
( )

( )( )

( ) 2

2 2 2

3 3 6 61
2

6 6 6 6 8 ,

cd cd
a b a b c d c d

ab

cd cd
c d c d

ab

a a a a a
aa a a

a a a k k T
a a a a

η η
η

η η

+ − + + +

−+ + +

− − − + −

− − + −


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − + +





∂ ∂ ∂ ∂ + + + − =




π

     (23) 

which can be reduced to 
( )

( )

( )

( )

( )

( )

( )

( )

( ) ( )

( )( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )

.

2 2 2 2
8 .
3

cd cd
a b c d a b c d

ab ab

ab ab
a b a b

ab ab

a a a a
a a a a

a a a a k k T
a a a a

η η
η η

η η
η

+ + −

+ + − −

+ + − − + −

+ − + −

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − − −      
   

 
∂ ∂ ∂ ∂ + + + + = 

 
 

π
    (24) 

A further simplification of (24) is 

( )
( )

( )

( )

( )

( ) ( )

( )( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )2 2 2 2
8 .
3

c d cd c d c d
a b ab

cd cd
c d c d

ab ab

a a
a a

a a a a k k T
a a a a

δ δ η η

η η
η

+ −

+ −

+ + − − + −

+ − + −

 ∂ ∂ ∂ ∂
− − +  

 
 

∂ ∂ ∂ ∂ + + + − = 
 

π

 

    (25) 

We see that a possible solution of (25) depends on abT , which we may assume 
it has the form ( ) ( )( ),abT diag ρ ρ+ −= , with the quantities ( )ρ +  and ( )ρ −  asso-
ciated with the mass-energy density of the (1+3)-universe and (3+1)-universe, 
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respectively. 

4. Searching for a Cosmological Duality in (4+4)-Universe 

Since ( )( )
( )

( )ln d
d

aa
a

+
+

+

∂
∂ =  and ( )( )

( )

( )ln d
d

aa
a

−
−

−

∂
∂ =  we observe that (25) can 

also be written as 

( ) ( ) ( )( )
( ) ( )

( )( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( )( )

2 2

( ) ( )

2 2 2 2

ln

8 .
3

c d cd c d c d
a b ab c d

cd cd
c d c d

ab ab

a a a aa a
a a

a a a a k k T
a a a a

δ δ η η

η η
η

+ + − −
+ −

+ −

+ − + −+ −

+ − + −

 
∂ ∂ ∂ ∂  − − ∂ ∂ + +   

 
 

∂ ∂ ∂ ∂ + + + − = 
 

π

 

    (26) 

Hence, if we set 
( ) ( )

2

,
3
la a+ − =                           (27) 

with l  a fixed constant, we have ( ) ( )( )ln 0c d a a+ −∂ ∂ =  and consequently (26) is 
reduced to 

( ) ( )

( )( )
( ) ( )

( )( )
( )

( )( )
( )

( )( )2 2 2 2

3 3 2 2 8 ,
3

cd cd
a b a ba a a a k k T
a a a a

η η+ + − − + −

+ − + −

∂ ∂ ∂ ∂
+

π
+ − =        (28) 

where 
.ab

abT Tη=                            (29) 

Since ( ) ( )( ),abT diag ρ ρ+ −=  and ( )1, 1ab diagη = −  we discover that T be-
comes 

( ) ( ) .T ρ ρ+ −= −                          (30) 

A further simplification of (28) is achieved if we use (27). This is because in 
such a case we find 

( ) ( )

( )( )
( )

( )( )
( )( ) ( )2

2 2 4

3 9 4 .
3

cd
a ba a k a k T

la a

η + + +
+ −

+ +

∂
− =

π∂
+             (31) 

A remarkable aspect of this procedure is that the expression (27) can be inter-
preted as a duality relation. In the sense that if the radius ( )a +  of the 
(1+3)-universe increase (expansion) the radius ( )a −  of the (3+1)-universe de-
creases (contraction) and vice versa. 

5. Cosmological Constant in a (4+4)-Universe 

Except for the last term in the left-hand side of the expression (31), this formula 
can be understood as the analogue of Equation (11) of the traditional cosmolog-
ical model in (1+3)-dimensions. In fact, such a kind of term arises when the 
cosmological constant is included in the field equations of general relativity (8). 
This is a good example of how our cosmological formalism in a (4+4)-universe 
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may motivate further work. For this purpose, let us shorty develop how a cos-
mological constant can be considered in a universe of (4+4)-dimensions. A flat 
line element in the (4+4)-dimensions can be written as 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ2
ˆ ˆ ˆ ˆd d d d d ,i j A B
i j ABs x x x xη η+ + + − − −= +                (32) 

where ( )
ˆ ˆi jη +  is a flat metric in a (1+3)-universe; 

( ) ( )ˆ ˆ 1,1,1,1i j diagη + = −                       (33) 

and ( )
ˆ ˆABη −  is a flat metric in the (3+1)-universe; 

( ) ( )ˆ ˆ 1, 1, 1, 1 .AB diagη − = − − −                     (34) 

We shall now assume the coordinate constraint 
( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ 2
ˆ ˆ ˆ ˆ d d ,i j A B
i j ABx x x x lη η+ + + − − −+ =                  (35) 

with l a fixed constant. Thus, redefine (32) and (35) in the form 
( ) ( ) ( ) ( )ˆ ˆ 22
ˆ ˆd d d di j
i js x x wη + + + −= +                    (36) 

and 
( ) ( ) ( ) ( )ˆ ˆ 2 2
ˆ ˆ ,i j
i j x x w lη + + + −+ =                     (37) 

with 
( ) ( ) ( ) ( )ˆ ˆ2

ˆ ˆd d dA B
ABw x xη− − − −=                     (38) 

and 
( ) ( ) ( ) ( )ˆ ˆ2

ˆ ˆ ,A B
ABw x xη− − − −=                       (39) 

after a usual, but long, computations we end up with the line element 
( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )( )
2

2 2 2 2 22 2

2

dd 1 d d sin d ,
3

1
3

rs r t r
r

θ θ φ
+

+ + + + + +
+

+

 Λ
= − − + + +   Λ  −

 (40) 

with positive cosmological constant 

( )
2
3 .
l

+Λ =                            (41) 

This means that we have reduced the (4+4)-universe to the de Sitter 
(1+3)-universe with positive cosmological constant ( )+Λ . 

Now, we would like to discuss the case of anti-de Sitter space-time, which we 
can say is associated with negative cosmological constant ( )−Λ  in the 
(3+1)-universe. The idea is now to redefine (32) in the alternative form 

( ) ( ) ( ) ( )ˆ ˆ22
ˆ ˆd d d dA B
ABs w x xη+ − − −= +                    (42) 

and 
( ) ( ) ( ) ( )ˆ ˆ2 2

ˆ ˆ ,A B
ABw x x lη+ − − −+ =                     (43) 

with 

https://doi.org/10.4236/jamp.2024.123050


J. A. Nieto 
 

 

DOI: 10.4236/jamp.2024.123050 837 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( )ˆ ˆ2
ˆ ˆd d di j
i jw x xη+ + + +=                     (44) 

and 
( ) ( ) ( ) ( )ˆ ˆ2

ˆ ˆ
i j

i jw x xη+ + + +=                      (45) 

Since ( ) ( )
ˆ ˆˆ ˆAB ABη η− +↔ − , we learn that (43) can also be written as 

( ) ( ) ( ) ( )ˆ ˆ2 2
ˆ ˆ .A B
ABw x x lη+ + − −− + = −                   (46) 

This, of course, is the typical form of the coordinate constraint that determines 
the anti-de Sitter space-time. Making usual computations at the end we must 
obtain the line element of the form 

( )
( ) ( )

( )

( ) ( ) ( ) ( )( )
2

2 2 2 2 22 2
( )

2

dd 1 d d sin d ,
3 1

3

rs r t r
r

θ θ φ
−

− − − − − −
−

−

 Λ
= − − − +   Λ  −

 (47) 

with the negative cosmological constant ( )−Λ  given by 

( )
2
3 .
l

−Λ = −                          (48) 

This means that the (4+4)-universe implies the anti-de Sitter (3+1)-universe 
with negative cosmological constant ( )−Λ . 

Hence, we have shown that from the (4+4)-universe we can obtain both the de 
Sitter space-time, associated with (1+3)-universe and corresponding to positive 
cosmological constant ( )+Λ , and the anti-de Sitter space-time, associated with 
(3+1)-universe and corresponding to the negative cosmological constant ( )−Λ . 
From (43) and (46) we note that 

( ) ( )2 2 2.w w l+ −+ =                        (49) 

Therefore, since the quantity l is a commune constant for both (1+3)-universe 
and (3+1)-universe we must conclude that the cosmological constants ( )+Λ  and 

( )−Λ  must be related. In fact, if we add (41) and (48) we find the expression 
( ) ( ) 0,+ −Λ + Λ =                         (50) 

which proves that in the (4+4)-universe there exists an additive duality relation 
between the cosmological constants ( )+Λ  and ( )−Λ . 

6. Final Remarks 

In the previous section, it has been shown that it makes sense to consider the 
cosmological constant structure in the scenario of (4+4))-universe. In this con-
text, we can say that the third term in the left hand of (31) can be interpreted as a  

cosmological term with ( ) ( )
2
3 k
l

+ −Λ =  leading 

( ) ( )

( )( )
( )

( )( )
( )

( )( )2

2 2 2
4 .
93

cd
a b

aa a k T
la a

η
++ + +

+

+ +

∂ ∂
+ −

π
Λ =            (51) 

Similarly, analysis from (27) and (28) we must obtain that 
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( ) ( )

( )( )
( )

( )( )
( )

( )( )2

2 2 2
4 ,
96

cd
a b

aa a k T
la a

η
−− − −

−

− −

∂ ∂
− +

π
Λ =            (52) 

with ( ) ( )
2
3 k
l

− +Λ = − . 

Hence, in both cases, the cosmological radius ( )a +  and ( )a −  associated with 
the (4+4)-universe describe increase/decrease (or expansion/contraction) cor-
respondence and the cosmological constants ( )+Λ  and ( )−Λ  determine posi-
tive/negative correspondence. This proves that in (4+4)-universe duality can be 
seen as an underlying symmetry. 

In Ref. [30] it was shown that, via S-duality in linearized gravity, there exists  

the possibility of duality transformation of the form 1
Λ↔

Λ
. It may be inter-  

testing to explore this small/large duality correspondence of the cosmological 
constant with the duality (50) positive/negative correspondence associated with 
the (4+4)-universe. 

Further, it has been proved that the Grassmann-Plücker relations [31] [32] [33] 
link seemingly unrelated concepts such as qubits, oriented matroids, and twis-
tors. In turn, qubits and oriented matroids admit a connection with the 
(4+4)-universe [22] [25] and [27]. Consequently, it may be attractive for further 
research to connect the present work with such mathematical concepts. 

Moreover, in the recent work Ref. [34], Lagrangians on split octonionic fields 
in (4+4)-dimensions that generalize Dirac and Maxwell systems are constructed 
using group invariant forms. We believe that this work may be useful for many 
potential directions for future research on (4+4)-universe. 

Finally, the duality expression (27) allows us to say that the beginning in the 
(1+3)-universe corresponds to the end of the (3+1)-universe and vice versa. This 
establishes a beginning/end correspondence between the (1+3)-universe and the 
(3+1)-universe. An implication of this result is that there is also expan-
sion/contraction correspondence. Thus, Penrose expression in connection with 
the James Webb Space Telescope “There is a big bang, but the big bang is not the 
beginning” can also be expressed as “there is expansion of the universe but the 
maxima expansion is not the end”. 
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