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Abstract 
In this paper, we have studied the topology of some classical functional spac-
es. Among these spaces, there are standard spaces, spaces that can be metriz-
able and others that cannot be metrizable. But they are all topological vector 
spaces and it is in this context that we have chosen to present this work. We 
are interested in the topology of its spaces and in the topologies of their dual 
spaces. The first part, we presented the fundamental topological properties of 
topological vector spaces. The second part, we studied Frechet spaces and 

particularly the space ( )nS   of functions of class C∞  on n  which are 

as well as all their rapidly decreasing partial derivatives. We have also studied 
its dual ( )nS ′   the space of tempered distributions. The last part aims to 

define a topological structure on an increasing union of Frechet spaces called 
inductive limit of Frechet spaces. We study in particular the space ( )D Ω  of 

functions of class C∞  with compact supports on Ω as well as its dual 
( )D′ Ω  the space distributions over the open set Ω.  
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1. Introduction 

On some diagrams, only a specific collection of nodes or edges (arcs) represent a 
structure. A topology on a collection of nodes and edges of a non-directed graph 
and a topology on a set of nodes and arcs of a directed graph are defined in [1]. 
In addition, Dr. Alqahtani. M highlighted some of the topological characteristics 
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of these spaces, and we examine some of the connections between them and the 
graphs. We further demonstrate that this topology meets the requirement of be-
ing Alexandrov. 

In the group of pretopological spaces with p-continuous maps, we present the 
T0-reflection as arrows. Following that, we’ll look at a few of this category’s se-
paration axioms, [2] [3]. On the other hand, [4] if A is open (respectively closed) 
and (respectively \A A  is a finite array, then the subset A of the topological 
space X is known as an F-open (respectively F-closed) set. He examined the 
key aspects of these definitions in the study and illustrated and F-closed 
groups relate to other kinds, including regularly open, regularly closed, closed, 
and open groups in topological spaces. Moreover, utilizing the ideas of F-open 
and F-closed groups, [5] I will explain several topological features for the 
group, including internal F, closure F, derivative F, etc. Eventually, I’ll discuss 
F-Continuous, F-compact, and other concepts and ideas that are relevant. 

We now provide our lesson on some classical function spaces’ topology. There 
are standard spaces among them, as well as areas that can be measured and some 
that cannot. Yet, given that they are all topological vector spaces. We have de-
cided to display this work in this setting. Both the topology of its dual spaces and 
the topology of those spaces are of interest to us. Fundamental topological fea-
tures of topological spaces comprised our first section. Part 2, He investigated 
functions of class C∞  over n  in Frechite spaces, particularly the ( )nS   
space. In addition to all of its quickly deteriorating partial derivatives, it exists. 
Also, we looked at the diluted distributions’ Double ( )nS ′   area. The final 
section seeks to specify the topology. The inductive limit of Frechet spaces is 
based on an increasing union of Frechet spaces. We focus on the area ( )D Ω  of 
the class C∞  functions on the plus ( )D′ Ω  space distributions over the open 
group. In addition to all of its quickly deteriorating partial derivatives, it exists. 
Also, we looked at the diluted distributions’ Double ( )nS ′   area.  

2. Continuous Linear Forms and Dual Space 
2.1. Standard Vector Spaces 

Proposition 2.1. E is a vector space on   or  .  
1) It is ,a b E∈ . We call the end segment a and b the subset [ab] of E defined 

by  

[ ] [ ]{ }, , 0,1 .a b x a tb t= = + ∈  

2) Let, Ω is a subset of E. They say that,  
a) Ω is convex if for all ,a b∈Ω , we have [ ],a b ∈Ω .  
b) Ω is equilibrium, if for all a∈Ω  and all λ∈ , then  

1 aλ λ≤ → ∈Ω . 

c) Ω is absorbent, if for all a E∈ , it exists 0α >  such that, 

, aλ λ α λ∀ ∈ ≤ → ∈Ω . 
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Remark 2.2.  
 A balanced or absorbing subset necessarily contains 0.  
 Vector sub-spaces are convex and balanced.  
 Only E is an absorbing vector subspace.  

Definition 2.3.  
1) A norm on E is a map [ [: 0,E → +∞  verifying,  
a) x E∀ ∈ , 0 = 0x x= ⇔ , 
b) x E∀ ∈  and λ∀ ∈ , x xλ λ= ,  
c) ,x y E∀ ∈ , x y x y+ ≤ + .  
2) We say that the pair ( ),E  is a norm vector space if  is a norm on E.  
( ),E  is a norm vector space on  . We call an open ball with center 

a E∈  and radius 0r >  the set,  

{ } ( ), 0 .r rEB x E x a r a B= ∈ − < = +  

Any ball of E is convex and the balls with center 0 are balanced and absorbent. 
A norm vector space admits a metric space structure. For the topology asso-

ciated with this metric the balls with center 0 form a fundamental system of 
neighborhood of 0. 

Two norms 1  and 2  over E are said to be equivalent, if there exist two 
strictly positive real numbers α  and β  such that,  

1 2 1 ,  .x x x x Eα β≤ ≤ ∀ ∈  

Two equivalent norms 1 2,  on E define the same topology.  
Proposition 2.4. Let ( ), EE  be a norm vector space. 

1) The map 
( ),
E E E
x y x y
× →

→ +
 is continuous. 

2) The map 
( ),

E E
x xλ λ
× →

→


 is continuous. 

3) Let a E∈ , then  
a) The translation by the vector a defined by :aT x a x→ +  is a homeomor-

phism on E,  
b) The multiplication by a scalar defined by xλ λ→  is continued on  .  
Example 2.5. 

 ( )1, , n
nx x x∀ = ∈  ,  

1

1

n pp
kp

k
x x

=

 =  
 
∑ , [ [1,p∈ ∞  and 

1
sup

k n
x x

∞
≤ ≤

= . 

p
 and 

∞
 are two norms on  . They are both equivalent.  

 For 1 p≤ < ∞ ,  

( ) ( )
0

, pp
n nn

n
l x x x

∞

∈
=

 = = ∈ < ∞ 
 

∑



   

( )pl   is a a vector space on norm by  

sup n
n

x x
∞

∈
=
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 On [ ]( )0,1 ,C  , we define the following norms,  

[ ]( )
[ ]

( )
0,1

0,1 , ,  sup ,
x

f C f f x
∞

∈
∀ ∈ =  

[ ]( ) ( )( )
1

1

0
0,1 , ,  d ,  1 .

p p
pf C f f x x p∀ ∈ = ≤ < ∞∫  

 More generally  
- Let ( ), ,X τ ν  be a measure space and 1 p≤ ≤ ∞ . The spaces ( ), , ,p

pL X τ ν  
are norm vector spaces.  

- For k∈ ∪∞  and Ω an open set of n , we note,  
 ( )kC Ω  the space of functions :f Ω→  of class kC  on Ω.  
 ( )k

pC Ω  the space of functions ( )kf C∈ Ω  shach that f and all its partial 
derivatives up to order k are bounded on Ω.  

 ( )k
cC Ω  the space of functions ( )kf C∈ Ω  has compact support included 

in Ω.  
 ( )0

kC Ω  the space of functions ( )kf C∈ Ω  shach that f and all its partial 
derivatives up to order k tend to 0 at infinity. 

The map ( ): supxf f x∈Ω∞
→  is a norm on the spaces ( )( ), k k

b cC CΩ Ω  
and ( )0

k nC  .  
Definition 2.6. Let ( ),E  be a norm vector space and k E⊂ . We say that 

K is a compact if for any covering of K by a family of open sets of E, we can ex-
tract a finite subcovering. More precisely, let I be any set ( ) Iα α∈

Ω  a family of 
open sets of E such that I

K αα∈
⊂ Ω


, then there is 1, , n Iα α ∈  such that 

1 ii n
K α≤ ≤
⊂ Ω


.  
Remark 2.7. It is easy to verify that 

 The finished sets are compacts.  
 If ( ) 0n n

a E
≥
⊂  converge to a E∈ . Then { } { }, na n a∈ ∪  is a compact.  

 If K is a compact, then K is a closed bound of E.  
 If K is a compact of E and 0M > , then { }, K Mλ λ ≤  is compact.  

Definition 2.8. Let ( ),E  be a norm vector space. We say that K locally 
compact if 0 admits a compact neighborhood.  

Proposition 2.9. ( ),E  is locally compact if and only if the closed unit ball 
( )1 0B  is compact.  
Definition 2.10. Let ( ),E  be a norm vector space.  
1) Let ( ) 0n n

a
≥

 be a sequence in E. We say that ( ) 0n n
a

≥
 is a cauchy sequence 

if,  

0 00,  ,  .n mn n m n x xε ε∀ > ∃ ∈ ≥ ≥ ⇒ − ≤  

2) We say that ( ),E  is complete if every cauchy sequence in E is conver-
gent. In this case, we say that E is a Bannach space.  

2.2. Continuous Linear Forms and Dual Space 

( ),E  denotes a norm vector space. 
We call linear form on E any linear application defined on E and takes its val-

ues in the body  .  

https://doi.org/10.4236/jamp.2024.123048


M. A. Elamin 
 

 

DOI: 10.4236/jamp.2024.123048 782 Journal of Applied Mathematics and Physics 
 

Proposition 2.11. Let l be a linear form on E. Then the following properties 
are equivalent 

1) l is continuous on E. 
2) l is uniformly continuous on. 
3) l is continuous in 0. 
4) Le noyau de l est un sous-espace vectoriel ferme de E. 
5) There is a constant 0M > , such that  

( ), .x E l x M x∀ ∈ ≤
 

 

Let l be a continuous linear form on E. Then l is bounded on the closed unit 
ball of E and we set:  

( ) ( )1sup .xN l l x≤=
 

 

Remark 2.12. 
1) There are linear shapes that are not continuous. For example, consider the 

vector space :l E →  be defined by ( ) ( )1l P P′= . The map l is a linear form 
and we have: for all n∈   

1nX =  and ( )nl X n= . 

So l is not continuous.  
2) On the other hand, if E is not reduced to {0}, then there exist nonzero con-

tinuous linear forms on E. The existence of such linear forms is ensured by the 
following Hahn-Banach theorem.  

Theorem 2.13. Hahn-Banach theorem 
Let E be a norm vector space and F a vector subspace of E not reduced to {0}. 

If l is a continuous linear form on F, then there exists l  a continuous linear 
form on E such that  

1) |Fl l= ,  
2) ( ) ( )N l N l= ,  
Let a E∈  be nonzero. Then there exists l a continuous linear form on E 

such that ( )l a a=  et ( ) 1N l = .  
Corollary 2.14. Let E be a norm vector space and a E∈  a nonzero vector. 

Then there exists l a continuous linear form on E which satisfies ( ) 1l a = .  
Proof. Let a E∈  be a nonzero vector. Let l be the linear form defined on 

F a=  by ( )f aλ λ= . So we have:  

( ) 1 .f a
a

λ λ λ= =
 

 

So l is continuous on F and ( ) 1N l
a

= . The Hahn-Banach theorem ensures 

the existence of a continuous linear form l  on E which verifies  

( ) ( ) 11 and .l a N l
a

= =   
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Proposition 2.15. Let E be a norm vector space. So E’ is a space vectoril on 
 , the map ( )El l N l′ =  is a norm on E’ etr ( ), EE ′

′  is a Banach space. 
We note E" the dual of E' also calls the bidual space of E. The space E" en-

dowed with norm  

( )
1

sup ,
E

E
l

lφ φ
′

′′
≤

=  

is a Banach space. 
Let a E∈ . The map ( ) :J a E →  defined by ( )( ) ( )J a l l a= , is a linear 

form on E’ which verifies  

( )( ) ( )( )
1 1

sup sup .
E E

E
l l

J a l l a l a
′ ′≤ ≤

= =  

We deduce that the map :J E E′′→  is an isometric bijection of E in E". 
In general, the map J is not surjective and particularly it is not surjective if E is 

not a Banach space. But the map J makes it possible to prove that any norm vec-
tor space E can be injected isometrically into a Banach space. Therefore it is 
dense in the Banach space ( )J E .  

Definition 2.16. We say that E is a reflexive space if the isometric injection J 
from E into E" is surjective. We are going to define a topology on E weak topol-
ogy site. Let  

( ){ }1 ,    .l l E and open fromτ − ′= Ω ∈ Ω   

Definition 2.17. We call weak topology on E and we denote by ( ),E Eσ ′  the 
topology on E generated by τ .  

Remark 2.18.  
1) The topology ( ),E Eσ ′  is less fine than the topology of the standard space 

E.  
2) Let a E∈ . We obtain a fundamental system of neighborhoods of a for the 

topology ( ),E Eσ ′  by considering the open sets of the form  

( ) ( )( )( )1
1

1
, , , , , ,p i i

i p
V a l l l D l aε ε−

≤ ≤

=

   

where 0ε > , p∈ , 1, , pl l E′∈ .  
3) We assume that E is not of finite dimension. Let ( )10, , , , pV l lε   an open 

neighborhood of 0 for the weak topology. There exists a nonzero vector in E, 
such that  

( ) ( )1 0.pl a l a= = =  

So the line a  is included in ( )10, , , , pV l lε  . This proves that the balls 
( )0rB  are not open for the weak topology.  

Remark 2.19. Let E be a norm vector space. therefore  
1) The topology ( ),E Eσ ′  is separated.  
2) The map ( ),x y x y+  of E E×  in E and the map ( ), x xλ λ  of 

E×  in E are continuous when E is endowed with the weak topology.  
Proof. Let a and b be two distinct vectors in E. By the corollary (2.14) there 
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exists l E′∈  such that ( ) 1l a b− = . So the disks ( ) 1,
4

D l a 
 
 

  ( ) 1,
4

D l b 
 
 

  

are disjoint. 

We deduce that ( )1 1,
4

l D l a−  
 
 

  and ( )1 1,
4

l D l b−  
 
 

  are indeed two dis-

joint open sets and which contain respectively a and b.  
Definition 2.20. Let ( )nx  be a sequence in E and x E∈ .  
1) We say that ( )nx  converges (strongly) to x, if the sequence ( )nx x−  

converges to 0.  
2) We say that ( )nx  converges weakly to x, if the sequence ( )nx  converges 

to x for the topology ( ),E Eσ ′ .  
Since the weak topology is less fine than the topology defined by the norm, 

then we have the following result:  
Proposition 2.21. Let ( )nx  be a sequence in E and x E∈ .  
1) The sequence ( )nx  converges weakly to x, if and only if for all l E′∈  the 

sequence ( )( )nl x  converges to ( )l x .  
2) If ( )nx  converges strongly to x, then ( )nx  converges weakly to x.  

2.3. Finite Dimensional Vector Spaces 

The characteristic properties of finite-dimensional vector spaces follow from the 
following properties of  ,  
   endowed with the absolute value is a complete metric space.  
 The compacts of ( ),  are the closed bounded subsets.  

Theorem 2.22. A finite dimensional norm vector space, ( ),E . Therefore,  
 E is compact.  
 All the norms on E are equivalent.  

Corollary 2.23. E a finite dimensional norm vector space.  
1) If E has finite dimension n, then it is homeomorphic to n .  
2) Any linear map defined on a finite-dimensional norm vector space with 

values in a norm vector space is continuous.  
3) Let F be a vector subspace of E. If F is of finite dimension then it is closed in 

E.  
Proof.  
1) Let ( ), EE  be a finite dimensional vector space and let ( )1, , ne e  be a 

basis of E. We consider the map : nEφ →  defined by  

( )1
1

, , .j j n
j n

x e x xφ
≤ ≤

 
= 

 
∑   

The map φ  is an isomorphism of E on n . We endow n  with the norm 
N defined by  

( )1
1

, , n j j
j n E

N x x x e
≤ ≤

= ∑  

Thus the application ϕ  verifies, for any vector u E∈ ,  
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( )( ) .EN u uφ =  

We deduce that ϕ  is a surjective isometry between the spaces ( ), EE  and 
( ), N  and therefore it is a homeomorphism. 

2) Let ( ), EE , ( ), FF  be two norm vector spacesa, and let :L E F→  
be a linear map. We assume that E is finite dimensional and let ( )1, , ne e  be a 
basis of E. We consider on E the norm 

∞
 defined by  

11
max .j j jj nj n

x e x
≤ ≤≤ ≤ ∞

=∑  

Let  

( )
1

,j Fj n
M x L e

≤ ≤

= ∑  

therefore  

( ) ( )
1

,  .j jF Fj n
u E L u x L e M u

∞
≤ ≤

∀ ∈ = ≤∑  

3) If F is a finite dimensional vector subspace, then F endowed with the norm 
of E is complete. So it is firm in E.  

Proposition 2.24. Let E be a finite dimensional vector space n, then  
1) E’ be a finite dimensional vector space n.  
2) The ( ),E Eσ ′  topology coincides with the usual topology.  
Proof.  
1) Let ( )1, , ne e  be a basis of E. We consider the linear forms ( )1 , , ne e

   
defined on E by  

( ) 1 if
0 if

k
j k j

j k
e e

j k
σ

=
= =  ≠

  

It is easy to check that if l is a linear form on E, then  

( )
1

.j j
j n

l l e e
≤ ≤

= ∑   

So ( )1 , , ne e

   is a basis of E’, called dual basis of ( )1, , ne e , and hence E’ 
has dimension n.  

2) To show this result, it suffices to prove that for all 0r > , the ball ( )0rB  is 
a neighborhood of 0 for the topology ( ),E Eσ ′ . Let ( )1, , ne e  be a basis of E, 
satisfying 1 1ne e= = = . We denote ( )1 , , ne e

   its dual basis. For all 
x E∈ , we have  

( ) ( )1 1 .n nx e x e e x e= + +

   

If ( )10, , , ,nx W e e r n∈ 

   then  

( )
1

,
n

i
i

rx e x n r
n=

≤ < =∑   

which implies ( ),Ex B a r∈ , so  

( ) ( )10, , , , 0, .n EV r n e e B r⊂

 

 
 

https://doi.org/10.4236/jamp.2024.123048


M. A. Elamin 
 

 

DOI: 10.4236/jamp.2024.123048 786 Journal of Applied Mathematics and Physics 
 

2.4. Hilbert Space 

Let H be a vector space over  .  
Definition 2.25.  
1) We call sesquilinear form on H any map :b H H× →  satisfying for all 

, ,x y z H∈  and λ∈ ,  

( ) ( ) ( ), , ,b x y z b x z b y zλ λ+ = +  and ( ) ( ) ( ), ,b x y z b x y b x zλ λ+ + = + . 

2) A Hermitian form b on H is a ferifying sesquilinear form  

( ) ( ), ,  , , .x y H b x y b y x∀ ∈ =  

3) A Hermitian form b on H is said to be positive if for all x H∈  we have,  

( ), 0.b x x ≥  

4) A Hermitian form b on H is said to be positive define, if it is positive and if 
for all x H∈  we have,  

( ), 0 0.b x x x= ⇒ =  

In this case, we say that b is a scalar product (or hermitian product) on H. 
Such a product is generally denoted by ( )x y  instead of ( ),b x y . When 

=  , a sesquilinear form is a bilinear form and a Hermitian form is a symme-
tric bilinear form.  

Theorem 2.26. Let b be a positive Hermitian form on H Then for all ,x y H∈  
we have,  

1) ( ) ( ) ( ), , ,b x y b x x b y y≤  (Schwarz’s inequality). If moreover b is posi-
tive definite, then the equality holds if and only if x and y are collinear.  

2) Minkowski’s Inequality,  

( ) ( ) ( ), , , .b x y x y b x x b y y+ + ≤ +  

3) If moreover b is positive definite,  

( ), ,x x b x x→ =  

is a norm on H.  
Definition 2.27. A pre-Hilbertian space is a vector space H over   en-

dowed with a scalar product ( ). . . It is implied standard by ( ). . .= . 
A Hilbert space is a complete pre-Hilbert space.  
Definition 2.28. Let ( )( )1 1, . .H  and ( )( )2 2, . .H  be two Hilbert spaces. 

They are said to be isomorphic if there exists an isomorphism of vector spaces 

1 2:u H H→  which satisfies  

( ) ( )( ) ( )1 12
, , | | .x y H u x u y x y∀ ∈ =  

Example 2.29  
 The space n  is a Hilbert space for the Hermitian product  

( )
1

| ,
n

k k
k

x y x y
=

= ∑  

defined for all ( )1, , nx x x=   and ( )1, , ny y y=   in n .  
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 Every finite-dimensional pre-Hilbert space is a Hilbert space.  
 The set ( )2l   is a Hilbert space for the Hermitian product  

( )
0

| ,k k
k

x y x y
∞

=

= ∑  

defined for all ( )n n
x x

∈
=   and ( )n n

y y
∈

=   in ( )2l  .  
 Let ( ), ,X τ ν  be a measure space. The vector space ( )2 , ,L X τ ν  is a Hilbert 

space for the scalar product ( ). | .  defined for all ,f g  by  

( ) ( ) ( ) ( )| d .
X

f g f x g x xµ= ∫  

1) The space ( )2l   is a special case for X =  , ( )M p=   and µ  the 
measure of the cardinal.  

2) Let Ω be an open set of n  and ω  a positive measurable function on Ω 
for the Lebesgue measure dx. Then ( )( )2 , dL x xωΩ  into a Hilbert space.  

Let H be a Hilbert space. For all fixed a in H, the map from H to    

( ): | ,al x x a→  

is a continuous linear form because ( )|x a x a≤  and we thus obtain all the 
continuous linear forms on H.  

Theorem 2.30. (Riesz representation theorem)  
1) Let l be a continuous linear form on a Hilbert space H. Then there exists a 

unique element a H∈  such that ( ) ( )|l x x a=  for all x H∈  and we have  

.Hl a′ =  

2) The map φ  of H in H' which has each a in H associates al  is bijective an-
tilinear. In particular ( ),H ′  is a Hilbert space and φ  is an ant-isopmorphism 
of Hilbert space. So the canonical injection J of H into its bidual H’’ given by  

( )( ) ( ) ( )| ,  , .b bJ a l l a a b a b H= = ∀ ∈  

is surjective and verifies  

( ) , , .
H

J a a a b H
′′
= ∀ ∈  

So H" is a Hilbert space and the injection J is an isomorphism of Hilbert spac-
es, we deduce the following result. 

Corollary 2.31 Hilbert spaces are reflexive spaces.  

2.5. Bannach Spaces 

Banach spaces are complete vector spaces.  
Example 2.32.  

 Finite dimensional spaces and Hilbert spaces are Bannach spaces.  
 For 1 p≤ ≤ ∞ , the spaces ( )( ),p

pl   are Bannach spaces.  
 More generally, if ( ), ,X τ ν  a measure space and 1 p≤ ≤ ∞ , then the spaces 

( )( ), , ,p
pl X τ ν  are Bannach spaces.  

 Let k∈ , Ω be an open set of n , and ( )k
bf C∈ Ω . We set  

, ,k
k

f fα

α
∞ ∞

≤

= ∂∑  
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where kα ∈  is a multi-index of length α  and fα∂  is the partial deriva-
tive of f of order α . Then the map ,kf f

∞
→  is a norm on ( )k

bC Ω  and we 
have  
- ( ) ,,k

b kC f
∞

Ω  is Bannach space.  
- ( ) ,,k

b kC f
∞

Ω  is a norm vector subspace of ( ) ,,k
b kC f

∞
Ω . We denote 

( )0
kC Ω  its adherence which is a Bannach space.  

- The space ( )0
k nC   corresponds to the spaces of functions f of class kC  on 

n  which tend to 0 a l ‘infinity as well as their derivatives of order α  such 
as kα ≤ .  

 If E is a norm vector space, then E’ and E’’ are Bannach spaces. If E is dense 
without a Bannach space F, then E F′ ′=  (we restrict the elements of F’ to 
E).  

Corollary 2.33. Let E be a Bannach space. If ( ) 0n n
l

≥
 is a sequence in E’ such 

that, for all x E∈ , the sequence ( )( ) 0n n
l x

≥
 converges to ( )l x , then l E′∈  

and  

liminf nE El l′ ′≤  

In general, a Bannach space is not necessarily reductive as shown by the fol-
lowing proposition. 

Proposition 2.34. We consider the Bannach spaces ( ),l∞
∞

, ( )1
1,l  and 

( ) ( ){ }0 0
, lim 0n nn

c x x l x∞
∞≥

= = ∈ = . So we have ( ) ( )1 1 1
0,  ,   .l l c l l l∞ ∞′ ′′= = ≠  

Proof. We will start by showing that ( )1l l∞′ = . 
We consider, for all m∈ , the sequence ( ), 0m n m m

S σ
≥

=  where ,n mσ  de-
notes the symbol by Kroneker. So mS  is the sequence of which all the terms are 
zero except the term of order 1m +  which is worth 1. Let ( ) 0n n

a a l∞
≥

= ∈ . We 
denote by al  the linear form on 1l  defined by  

( ) ( ) 0
0

,  .a n n n n
n

l x a x x x l∞
≥

≥

= ∀ = ∈∑  

Then al  is a continuous linear form on 1l  and it is easy to show that  

1( ) .a ll a′ ∞
=  

Conversely, let ( )1l l ′∈ . Then the sequence ( )( ) 0n n
a l S

≥
=  is bounded and 

we have al l=  on cC  the space of sequences which are zero from a certain 
rank. But cC  is dense in 1l  which implies that al l=  and 1( )a ll a′ ∞

= . So 
the map aa l→  is a one-to-one isometry from l∞  to ( )1l ′ . 

Let’s show that 1
0c l′ = . 

Let ( ) 1
0n n

a a l
≥

= ∈  and al  be the linear form on 0c  defined by  

( ) ( ) 00
0

,  .a n n n n
n

l x a x x x c
≥

≥

= ∀ = ∈∑  

So ( ) 1al x a x
∞

≤  and hence al  is a continuous linear form on 0c  and 

0 1( )a cl a′ ≤ . 
To show that 10

=a cl a
′

   
, we consider the sequence ( ) 0k k

X
≥

 defined for 
0k ≥  by ( ), 0k k n n

X x
≥

=  or  
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,

if , 0

0 if

n
n

nk n

a n k a
ax

n k

 ≤ ≠= 
 >

 

Then the sequence ( ) 0k k
X

≥
 belongs to 0c  and verifies  

1X
∞
=  and ( )0

1
,k j

leqj k
l X a

≤

= ∑  

which implies by passing to the limit that 
0 1a cl a′ = . So the map aa l→  is an 

isommetry of ( )1l   in 0c′ . For surjectivity, we consider, for all m∈ , the 
sequence ( ), 0m n m m

S δ
≥

= . Let 0l c′∈ . We consider the sequence ( ) 0k k
b b

≥
=  de-

fined by ( )k kb l S=  and ( ) 0n n
l

≥
 the sequence in 0c′  defined by 

nn al l=  or  

( ) ( )0 1
0

, , , ,0,0, ,n j j n
j n

a l S S b b b
≤ ≤

= =∑    

therefore  

0 1
0

.
n

n n ic
i

l a b
=

= =∑  

Let ( ) 00k k
x x c

≥
= ∈ . We consider the sequence ( ) 0n n

X
≥

 in 0c  defined by  

( )0 1
0

, , , ,0, .n k k n
j n

X x S x x x
≥ ≥

= =∑  
 

So we have  

sup ,n k
k n

X x x
∞

>
− =  

therefore the sequence ( )nX  converges to x in 0c . On the other hand, we have 
( ) ( )n nl x l X= . So  

( ) ( ) ( )lim lim .n nn n
l x l X l x

→+∞ →+∞
= =  

So the series 0 j jj b x∞

=∑  is convergent and equals ( )l x . To conclude, it suf-
fices to show that the sequence 1b l∈ . We consider the sequence ( ) 0k k

B
≥

 de-
fined for 0k ≥  for ( ), 0k k n n

B b
≥

=  where  

,

if , 0

0 if

n
n

nk n

b n k a
bb

n k


≤ ≠= 

 >

 

The sequence ( ) 0k k
B

≥
 is in 0c  and 1kb

∞
≤ . So, if 0m ≥ , then we have 

( ), 0k n n
b

≥
 or  

( ) ( ) 0
1

.
n

j n n n
j

b l B l B l c
=

′= = ≤∑  

We deduce that 1b l∈  and bl l= . 
Let us show that ( ) 1l l∞ ′ ≠ . 
We consider E the space of convergent sequences in  . So E is a vector sub-

space of l∞  which contains 0c . Let l be the linear form on E defined by  

( )( )0
limn nn n

l x x
≥ →∞

=  

Then l is continuous and 1El ′ = . 
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According to the Hahn-Banach theorem (2.13), there exists a linear form 

0l c∈  is zero. There is no 1a l∈  such that al l= .  
Theorem 2.35. Let E be a Banach space. So we have,  

 E is reflexive if and only if the closed unit ball is compact for the weak topol-
ogy ( ),E Eσ ′ .  

 E is reflexive if and only if E’ is reflexive.  
We deduce from this theorem that the closed subspaces of a reflexive Banach 

space are reflexive.  

2.6. Dual of Lp Spaces 

The triple ( ), ,X τ µ  denotes a measurable space and [ ], 1,p q∈ ∞  two conju-
gate exponents.  

Definition 2.36.  
 µ  is said to be a finite measure if ( )Xµ < ∞ .  
 µ  is said to be a σ -finite measure if there exists a sequence ( ) 0n n

X
≥

 in 
τ  such that  

0 nn
X X

≥
=


 and ( ) ,  0.nX nµ < ∞ ∀ ≥  

 We say that µ  is a semi-finite measure if for all A τ∈  with ( )Aµ = +∞ , 
then there exists B τ∈  included in A and such that ( )0 Bµ< < ∞ . For 

( )pg L X∈ , we denote gl  the linear form on ( )qL X  defined by,  

: d .gl f fg µ→ ∫  

Lemma 2.37. Suppose that p and q are two conjugate exponents and 
1 q≤ ≤ ∞ . 

If ( )pg L X∈ , then  

( ) ( ){ }sup ,   1 .p
gq pg l f f L X and f= ∈ =  

Moreover, if µ  is semi-finite then the previous equality is true for q = ∞ .  
We deduce that the linear map gg l→  is an isometry of qL  in ( )pL ′ . 

More precisely, we have the following theorem,  
Theorem 2.38. Suppose p and q are two conjugate exponents if 1 1< < ∞ . 

then the linear map gg l→  is an isometric isomorphism from qL  to ( )pL ′ . 
the result remains true if 1p =  and µ  is σ -finite.  

Corollary 2.39. If 1 p< < ∞  then pL  is a reflexive Banach space. 
For the case p = ∞ , the map gg l→  may not be surjective.  
In this case the spaces 1L  and L∞  are not reductive.  

2.7. Dual of Space ( )0C Ω  

Let ( ),X τ  a space measures a signed measure on ( ),X τ  is a mapping 
[ [: ,ν τ → −∞ +∞  or ] ],−∞ +∞  such that  

1) ( )Ø 0ν =   
2) ( ) 0

 n n
X τ

≥
∀ ∈  the series ( )0 nn Xν

≥∑  is convergent and  
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( ) ( )0
0

.n nn
n

X Xν ν
≥

≥

= ∑

 

If ν  is a signed measure, then there is a unique pair ( ),ν ν+ −  of positive 
measures such that ν ν ν+ −= − . We call total variation of ν  the positive 
measure ν ν ν+ −= +  and we define the spaces,  

( ) ( ) ( ) ( ), , , , , , , , .p p p pL X L X L X L Xτ ν τ ν τ ν τ ν+ −= ∩ =  

If ν  is a complex measure, then its real part rν  and its imaginary part iν  
are two signed measures and r iiν ν ν= +  and we define the spaces,  

( ) ( ) ( ) ( ), , , , , , , , .p p p p
r iL X L X L X L Xτ ν τ ν τ ν τ ν= ∩ =  

where ν  is a positive measure, called the total change of ν  and it is defined 
by  

( ) { }sup d d d ,  1 .r iE E E
E f f i f fν ν ν ν= = + ≤∫ ∫ ∫  

In the following, we move to the case ( ) ( )( ), ,X Bτ = Ω Ω  where Ω is an open 
set of d  and ( )B Ω  is the Borelian tribe. 

A (borelian) measure signed ν  on ( )B Ω  is said to be of Radon if it is finite 
on compact sets. Let ν  be a complex (borelian) measure on B, then rν  and 

iν  are Radon measures. Similarly, its total variation ν  is a positive Radon 
measure. 

We denote by ( )M Ω  the set of complex measures on ( )B Ω , and we define 
for ( )Mν ∈ Ω  the map  

( ).ν ν= Ω  

Proposition 2.40. ( )M Ω  is a vector space over   and the map  

ν ν→  

is a norm over ( )M Ω .  
( )0C Ω  designates the complete for the norm 

∞
 of the space of conti-

nuous functions with compact support in Ω. The space ( )0
dC   is the set of 

continuous functions which tend to 0 at infinity.  
Theorem 2.41. (Riesz representation theorem) Let Ω be an open set of d . 

For ( )Mν ∈ Ω  and ( )0f C∈ Ω , let  

( ) d .l f fν ν= ∫  

Then the application  
lνν →  

is an isometric isomorphism from ( )M Ω  to ( )( )0C ′Ω   
Corollary 2.42. If K is a compact of d , then ( )( )C K ′  is isometrically 

isomorphic to ( )M K .  

3. Introduction to Topological Vector Spaces 

Definition 3.1. A topological vector space (EVT) E is a vector space over   
endowed with a topology τ  such as the maps  
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( ), ,
E E E
x y x y
× →

→ +
 

and 

( ), ,
E E
y xλ λ
× →

→


 

are continues.  
Proposition 3.2. Let ( ),E τ  be a topological vector space, a E∈  and 

λ∈  nonzero, then 
1) The translation by the vector a defined by  

: ,at x x a→ +  

is a homeomorphism from E to E.  
2) The λ  ratio scaling defined by  

: ,h x xλ λ→  

is a continuous isomorphism on E as well as its inverse.  
Proof. The maps al  and hλ  are invertible and their inverses are given by 
1

a at t−
−=  and 1

1g gλ
λ

− = . The continuity of the map and the multiplication by a  

scalar imply respectively the continuity of at  and hλ  and likewise the conti-
nuity of their inverses. 

From this proposition, we deduce that the topology τ  is inveriant under 
translation. More precisely, if A E⊂  is an open set, then its translates a A+ , 
with a E∈  are open sets of E. Consequently, the topology τ  is completely 
determined by the given basis of neighborhoods of any point of E, in particular 
at 0. Thus in a topological vector space ( ),E τ  the term neighborhood base al-
ways means a neighborhood base of 0.  

Proposition 3.3. Let E be a topological vector space and U an open neigh-
borhood of 0 in E 

1)The open set U is an absorbing subset of E.  
2) There exists V U⊂  an equilibrium open neighborhood of 0. Moreover, 

for all 1t ≥  we have V tV⊂ .  
Proof. Let U be an open neighborhood of 0 in E. Let 0α >  be a real number. 

We denote  

( ) { }0, , .D α λ λ α= ∈ <   

1) Let a E∈ . The map :af E→  defined by ( )af aλ λ=  is continuous. 
So the reciprocal image of U by af  is an open neighborhood of 0 in  . So 
there exists 0aα >  such that  

( ) ( )10, ,a aD f Uα −⊂  

so ( )( )0,a af D Uα ⊂  which proves that  

( ) , ,a af a Uλ λ α λ λ∀ ∈ < ⇒ = ∈  

therefore U is absorbent.  
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2) Let :F E E× →  be the map defined, for all ( ), x Eλ ∈ × , by  

( ), .F x xλ λ=  

By definition of the topological vector space, the map F is continuous so 
( )1F U−  is an open neighborhood of ( )0,0  in E× . Therefore, there is 
0α >  and W an open neighborhood of 0 in E such that  

( ) ( )10, .D W F Uα −× ⊂  

Therefore  

( )( ) ( ) ( )0,
0, 0,

D
V F D W D W W

λ α
α α λ

∈
= × = = ⋅



   

is an open neighborhood of 0 included in U and it is equilibrium. Let x V∈  

and 1t ≥  be a real. Since V is balanced then 
1 x V
t

∈  and since 1x t x
t

 =  
 

 

then x tV∈ . or V tV⊂ .  
Definition 3.4. A topological space is said to be separate if for all distinct 

points x and y of E there exists a neighborhood xU  of x and a neighborhood 

yV  of y such that Øx yU V∩ =   
Proposition 3.5. A topological vector space is separate if and only if the sin-

gleton {0} is closed.  
Proof. Let E be a topological vector space. 
If E is separated then it is easy to see that { }0E −  is an open and therefore {0} 

is closed. Conversely, suppose that {0} is closed. 
Let ( ){ }, , x y E E x yΩ = ∈ × ≠  and :f E E E× →  defined by  

( ), ,    , .f x y x y x y E= − ∀ ∈  

The map f is continuous and we have 1 cf − = Ω . So Ω is an open set of E. Let 
,a b E∈  be distinct, hence ( ),a b ∈Ω . Since Ω is an open, then there exists aV  

an open neighborhood of a and bV  an open neighborhood of b such that 

a bV V× ⊂ Ω . This implies that Øa bV V∩ =  and that E is a separate topological 
vector space.  

In the following, all topological vector spaces will be assumed to be sepa-
rate 

Definition 3.6. Let E be a topological vector space.  
1) Let A E⊂ . We say that A is bounded, if for every neighborhood V of 0, 

there exists 0α >  such that  
 ,  .A Vβ α β∀ ≥ ⊂  

2) Let ( ) 0n n
x

≥
 be a sequence in E. We say that ( ) 0n n

x
≥

 is a Cauchy sequence 
if for every Ω a neighborhood of 0 in E, there exists an integer 0n  such that  

( )0 m nm n n x x≥ ≥ ⇒ − ∈Ω . 

3) We say that E is complete if any cauchy sequence in E converges in E.  
Example 3.7.  
1) Any finite union of bounded sets of topological vector spaces TVS is 

bounded.  
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2) Any finite subset of a topological vector space is bounded.  
3) Any Cauchy sequence is bounded.  
Proof.  
1) Let E be a TVS and 1, , nA A E⊂  bound subsets. Let U be an open 

neighborhood of 0. Then, for all 1 j n≤ ≤ , there exists 0jα ≥  such that 

jβ α≥  implies that jA Uβ⊂ . Let 1max j n jα α≥ ≥= . SO  

1
 ,  ,jj n

A Uβ α β
≤ ≤

∀ ≥ ⊂


 

this proves that 
1 jj n

A
≤ ≤

 is bounded.  
2) According to the proposition 3.3, any neighborhood of 0 is absorbing. so 

every singleton is bounded. We conclude with item 1. of 3.3.  
3) Let ( ) 0n n

x
≥

 be a Cauchy sequence in E. Let U be a neighborhood of 0 in E. 
By proposition 3.3, there exists V U⊂  an equilibrium open neighborhood of 0 
which satisfies V tV⊂  for all 1t ≥ . There exists an integer 0n  such that for 
any integer 0n n≥ , we have 

0n nx x V∈ + . Since the singleton { }0nx  is bounded, 
then there exists 0α >  such that 

0nx Vβ∈ , for all β α≥ . This implies that 
the whole  

{ } ( )0, 1 .nx n n Vβ≥ ⊂ +  

We deduce that { }, 0nx n ≥  is bounded because it is a union finish of ensem-
bleornes.  

Definition 3.8. Let E be a TVS and K E⊂ . We say that K is said to be a 
compact if from any cover of K by open sets we can extract a finite subcover.  

Proposition 3.9. Let E be a TVS and K E⊂ . We say that K is said to be a 
compact if from any cover of K by open sets we can extract a finite subcover.  

Proof. Let K be a compact of a TVS E. To begin, we will show that K is firm. 
Let cy K∈Ω = . Then for all x K∈ , since E is separated, there exists xV , 

open neighborhood of x in E and ,x yU  an open neighborhood of y in E such 
that , Øx x yV U∩ = . So x K xK U V∈⊂ , since K is compact, then there exists 

1, , nx x K∈  such that  

1
.

i

n
xi

K V
=

⊂


 

The set ,1 i

n
x yi

U V
=

=


 is an open neighborhood of y which verifies,  

( ) ( ),1 1
Ø.

i i i

n n
x x x yi i

U K U V V U
= =

∩ ⊂ ∩ ⊂ ∩ =
 

 

The open set U is included in Ω and contains y so Ω is an open set and there-
fore K is a closed set. Show that K is bounded, let U be an open neighborhood of 
0 in E. By proposition 3.3, there exists V U⊂  an equilibrium open neighbor-
hood of 0 which satisfies V tV⊂  for all 1t ≥ . Therefore, for any integer 1n ≥  
nV  is an open and balanced neighborhood of 0. Moreover the sequence 
( ) 1nnV

≥
 is increasing and it satisfies  

1
.

n
K nV E

≥
⊂ =
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So there exists an integer 0 1n ≥  such that 0K n V⊂  and consequently, for 
all 0t n≥  we have  

0 0
0

.tK n V n V tV tU
n

⊂ ⊂ = ⊂  

which shows the result.  
Definition 3.10. Let E be a TVC. We say that,  
1) E is locally convex if E admits a basis of convex neighborhoods.  
2) E is locally bounded if 0 admits a bounded neighborhood.  
3) E is locally compact if 0 admits a compact neighborhood.  
4) E is metrisable if there is a distance on CE which defines the topology of E.  
Example 3.11.  
1) Norm vector spaces are topological vector spaces. Moreover, they are E is 

metrisable if there is a distance on E which defines the topology of E.  
a) locally convex if E admits a basis of convex neighborhoods.  
b) E is locally convex, because the balls are convex.  
c) locally bounded, because ( )1 0B  is a bounded neighborhood of 0.  
d) E is locally compact only when they are of finite dimension.  
e) metrizable .  
2) The norm vector spaces endowed with the weak topology ( ),E Eσ ′  are 

topological vector spaces.  

Topology Defined by a Family of Semi-Norms 

Definition 3.12. Let E be a vector space. A semi-norm on E is a map 
[ [: 0,p E → +∞  verifying  

1) ( ) ( ) ( )p x y p x p y+ ≤ + , ,x y E∀ ∈ .  
2) ( ) ( )p x p xλ λ≤ , x E∀ ∈  and λ∈ .  
In the following E denotes a vector space over  . Let p be a semi-norm on 

E, a E∈  and 0r > . 
We call p-ball with center a and radius r, the set,  

( ) ( ){ }, , .pB a r x E p x a r= ∈ − <  

More generally, let ( )j j J
P p

∈
=  be a family of semi-norms on E.  

It is said to be separant if it verifies, 

{ } ( )0 , , 0.jx E j J p x∀ ∈ − ∃ ∈ ≠  

Let a E∈ . We call P-ball with center a any set of the form,  

( ) ( )
1 1

, , , , , ,
k jij j pi k

W a p dots p r B a r
≤ ≤

=


 

where 1, , kj j J∈  and 0r >  a real number. We denote by PT  the topology 
on E generated by the P-balls. The topology PT  is inveriant under translation 
and the P-balls with center 0 form a fundamental system of neighborhood of 0.  

Proposition 3.13. Let ( )j j J
P p

∈
=  be a family of separating semi-norms on 

E. Then E endowed with the topology PT  is a locally convex and separate to-
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pological vector species. also for a sequence ( ) 0n n
x

≥
 converges to x in E, if and 

only if for all j J∈ , we have,  

( )lim 0.j nn
p x x

→+∞
− =  

Proof. Let ( ): ,x y x yϕ → +  defined over E E×  and has values in E and Ω 
a neighborhood of 0 in E. Then there is ( )0, , , ,

kj jW p p r ⊂Ω
. inclusion,  

( ) ( ) ( )0, , , , 2 0, , , , 2 0, , , , ,
k k kj j j j j jW p p r W p p r W p p r× = ⊂ Ω  

 

Let ( )1ϕ− Ω  is a neighborhood of ( )0,0  IN E E×  and hence ϕ  is con-
tinuous. 

Let ( ): , x xφ λ λ→  defined over E×  and has values in E and Ω a neigh-
borhood of 0 in E. Then there is ( )0, , , ,

kj jW p p r ⊂Ω
. inclusion,  

( ) ( ) ( )10,1 0, , , , ,
kj jD W p p r ϕ−× ⊂ Ω  

implies that ( )1φ− Ω  is a neighborhood of ( )0,0  in E×  and therefore φ  
is continuous. The continuity of the maps ϕ  and φ  implies that ( ), PE T  is a 
topological vector space.  

To show that this topology is separated, it suffices to show that {0} is a closed 
one. Let a E∈  be nonzero, then there exists jp P∈  a semi-norm which satis-
fies ( ) 0jp a ≠ . The P- ball ( ) ( ), , ,

jj pW a p r B a r=  is a neighborhood of a 
which does not contain 0, so {0} is firm and the topological vector space , PE T  
is separate. Finally, ( ), PE T  is locally convex because the P-balls are convex.  

Proposition 3.14. Let ( ), PE T  be a topological vector space defined by a 
family of semi-norms.  

1) Balls with center 0 are balanced sets.  
2) A set A E⊂  is bounded if and only if  

( ) ,  sup .j
x A

j J p x
∈

∀ ∈ < ∞  

E denotes a topological vector space.  
Proposition 3.15. Let l be a nonzero linear form on E. Then we have the fol-

lowing equivalences,  
 l is continued on E.  
 l is bounded on a neighborhood of 0.  
 l is continuous at 0.  
 The core of l is firm.  
 The kernel of l is not dense in E.  

Definition 3.16. E' is the set of continuous linear forms on E, E' is a vector 
space on  , called dual (topological) space of E.  

Example 3.17. Let ( ), ,X µ τ  be a measure space. Let 0 1p< <  and ( )pL X  
be the space of classes of functions measurable on X such that,  

( ) d .p
p X

f f µ∆ = < ∞∫  

The application p∆  verifies  

( ) ( ) ( ) ,p p pf g f g∆ + ≤ ∆ + ∆  
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which implies that ( )pL X  is a vector space over   and the map  

( ) ( ), ,p pd f g f g= ∆ −  

defines a translation invariant distance on ( )pL X . Then ( )pL X  endowed 
with this distance is a locally bounded topological vector space and does not 
contain any nontrivial convex open set. Moreover, on ( )pL X  the only conti-
nuous linear form is the zero linear form, so ( )( ) { }0pL X ′ = .  

The following Hahn-Banach theorem ensures that { }0LE′ ≠ , if E is locally 
convex not reduced to {0}.  

Theorem 3.18. (Hahn-Banach) Let E be a locally convex topological vector 
space. Then, for all nonzero a E∈ , there exists l E′∈  satisfying ( ) 1l a = .  

We are provided with two topologies defined by semi-norms,  
Strong topology on E’, bτ  
Let bJ  be the set of bounded subsets of E. For all bB J∈ , we consider the 

semi-norm Bq  defined by  

( ) ( )sup .B
x B

q f f x
∈

=  

We denote by bτ  the topology on E’ defined by the family of semi-norms 
( )

bB B Jq
∈

. The space E’ endowed with the topology bτ  is a topological vector 
space. 

Weak topology on E’, fτ  
For all x E∈ , we consider the semi-norm xp  defined by,  

( ) ( ) .xp f f x=  

We denote by τ  the topology on E’ defined by the family of semi-norms 
( )x x E

p
∈

. The space E’ endowed with the topology fτ  is a topological vector 
space. 

It is clear that the topology fτ  is less fine than the topology bτ .  
Proposition 3.19. The topological vector spaces ( ), fE τ′  and ( ), bE τ′  are 

locally convex and separate.  
Proof. It suffices to show that the families of semi-norms ( )x x E

p
∈

 and 
( )

bB B Jq
∈

 are separating.  

4. Frechet Space 
4.1. Definition and Properties of Frechet Spaces 

Proposition 4.1. Let E be a vector space and ( ) 0n n
p

≥
 a sequence of separat-

ing semi-norms on E. So we have,  
 The application  

( ) ( )
( )1

0

1, ,
12

n
n

n n

p x y
d x y

p x y+
≥

−
=

+ −∑  

is a distance on E.  
 For all n∈ , the map ( ) [ [: , 0,np E d → ∞  is continuous.  
 The topology on E defined by the family of semi-norms ( ) 0n n

p
≥

 coincides 
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with the metric topology ( ),E d .  
Proof.  

 The continuity of a semi-norm np  follows from the inequality  

( ) ( )
( )

1

1

2 ,
1 2 ,

n

n n

d x y
p x y

d x y

+

+− ≤
−

 

valid for all ,x y E∈  such that ( ) 1
1,

2nd x y +< .  

 Let 2x E∈  and Ω be a neighborhood of 0x  in ( ),E d . Then there exists 
0r >  such that  

( ) ( ){ }0 0, , ,dB x r x E d x x r= ∈ < ⊂ Ω . 

let 
2
rρ =  and m a natural integer satisfying  

1
1

1 ,
2n

n m
ρ

+∞

+
≥ +

<∑  

therefore  

( )
( )

0
1

1 0

1 ,  .
12

n
n

n m n

p x x
x E

p x x
ρ

+∞

+
≥ +

−
< ∀ ∈

+ −∑  

Then if  

( )00
, ,

n

m
pn

x B x ρ
=

∈


 

we have  

( )
( )

0
1 1

0 00

1 1 ,
12 2

m m
n

n n
n nn

p x x
p x x

ρ ρ+ +
= =

−
< <

+ −∑ ∑  

so ( )0,d x x r< . As a result. 0 npn m
B

≤ ≤
⊂ Ω



. This proves that Ω is a neighbor-
hood of 0x  for the topology defined by the semi-norms. The reciprocal is de-
duced from the continuity of the np .  

Definition 4.2. See [6]. 
A Frechet space is a complete topological vector space whose topology is de-

fined by a sequence of separate semi-norms.  
Example 4.3. (Examples of Frechet spaces)  

 Finite dimensional vector spaces, Hilbert spaces and Bannach spaces are 
Frechet spaces.  

 ( )kC Ω  he space of functions of class kC  on an open set of n . Let Ω be 
an open set of d  and { }k∈ ∪ ∞ . We consider ( ) 0n n

K
≥

 an increasing 
sequence of compact sets such that  

 0n∀ ≥ , 1n nK K +⊂   and 0 nn
K

≥
Ω =


. 

We denote by np  the family of semi-norms in ( )kC Ω  defined by,  

( ) ( )( )
, 

sup ,
n

n
x K k

p f f xα

α∈ ≤
= ∂  

if k is finite, else  

https://doi.org/10.4236/jamp.2024.123048


M. A. Elamin 
 

 

DOI: 10.4236/jamp.2024.123048 799 Journal of Applied Mathematics and Physics 
 

( ) ( )( )
, 

sup .
n

n
x K n

p f f xα

α∈ ≤
= ∂  

The space ( )kC Ω  equipped with the topology τ  defined by the sequence 
of semi-norms ( )np  is a Frechet space. Moreover, this topology does not de-
pend on the choice of the sequence of compacts ( ) 0n n

K
≥

. 
A sequence ( )nf  convergent to f in ( )kC Ω  if and only if, for any mul-

ti-index α  such that kα ≤ , the sequences ( )nf
α∂  converges uniformly on 

any compact from Ω to fα∂ .  
 ( )k

KC Ω  the subspace of ( )kC Ω  of functions with support included in a 
compact K. 

Let Ω be an open set of d  and K ⊂Ω  a compact. We consider the space  

( ) ( ) ( ){ }, 0  .k k c
KC f C f x in KΩ = ∈ Ω ≡  

The space ( )k
KC Ω  endowed with the induced topology is closed in ( )kC Ω  

and it is therefore a Frechet space. Indeed, let a∈Ω  and ( ):al f f a→  be a 
linear form on ( )kC Ω . There exists 0j ≥  such that jaK . So  

( ) ( ) ,a jl f p f≤  

this proves that al  is continuous, so its kernel is a farm and we have, 

( ) ( ).k
K xx K

C Ker l
∉

Ω =


 

If k ≠ ∞ , then ( )( ),k
K kC Ω  is a Banach space or  

 
sup .k

k
f fα

α ∞≤
= ∂  

When k = ∞ , we also denote ( )KD Ω  the space ( )KC∞ Ω .  
 ( )p

locL Ω  the space of functions locally pL . 
Let Ω be an open set of d  and ( )( ), ,dxΩ ℑ Ω  the measure space where 
( )ℑ Ω  is the tribe of Lebesgue and dx is the Lebesgue measure. 
Let [ ]1,p∈ +∞ . A function f measurable on Ω is said locally pL  if for any 

compact K ⊂Ω  the function ( )pf L K∈ . We denote by ( )p
locL Ω  the set of 

these functions. We consider ( ) 0n n
K

≥
 an increasing sequence of compacts sa-

tisfying the properties (1). For all 0n ≥ , let np  be the semi-norm in ( )p
locL Ω  

defined by  

( ) 1 ,
nn K p

p f f=  

or 1
nK  designates the characteristic function of nK . By considering this se-

quence of semi-norms we endow ( )p
locL Ω  with a Frechet space structure.  

 ( )dS   is the Schwartz space. A function : df →   is said to have rapid 
decrease if for all dα ∈  the function  

( ) ,x x f xα→  

is bounded on d . We denote by ( )dS   the space of functions f of class C∞  
such that for dβ ∈ , the function fβ∂  is fast decreasing over d . This space 
is also called Schwartz space. 
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We endow ( )dS   with a sequence of semi-norms ( ), 0, 0k n k n
p

≥ ≥
 defined by,  

( ) ( ) ( )( )2
,

 
sup sup 1 .

d

n

k n
k x

p f x f xα

α ≤ ∈

 = + ∂  
 

Proposition 4.4. The space ( )dS   endowed with the sequence of semi-norms 

( ),k np  is a Frechet space.  
Proof. Let ( )mf  be a cauchy sequence in ( )dS  . So, for all dα ∈ , 

( )mf
α∂  converges uniformly on d  to a function gα∂  with g is of class C∞ . 

It remains to show that the functions gα∂  are rapidly decreasing and that the 
sequence ( )mf  converges to g for the topology of ( )dS  . Let 0ε >  and 

,k n∈ . There exists 0m ∈  such that  

( )0 , .k n p mp m m p f f ε≥ ≥ ⇒ − ≤  

then, dx∀ ∈ , /d kα α∀ ∈ ≤  we have  

( ) ( )( ) ( )21 .
n

p mx f x f xα α ε+ ∂ − ∂ ≤  

We fix x and let p tend to infinity, then we get,  

( ) ( )( ) ( )21 .
n

mx g x f xα α ε+ ∂ − ∂ ≤  

Therefore  

( ) ( )( ) ( ) ( )( )
0

2 21 1 .
n n

mx g x x f xα α ε+ ∂ ≤ + ∂ +  

So gα∂  is rapidly decreasing and verified,  

( )0 , .k n mm m p g f ε≥ ⇒ − ≤  

This then proves that the Cauchy sequence ( )mf  is convergent in ( )dS   
and therefore ( )dS   is a Frechet space.  

Proposition 4.5.  
1) The space ( )dS   is a subspace of the following topological spaces 

( )( ),p dL dx , ( )( ),p d
locL dx  and ( )k dC  . Moreover, the injection of 

( )dS   into each of the preceding spaces is continued.  
2) Let K be a compact of d . The canonical injection of ( )d

KD   into 

( )dS   is continuous.  

4.2. Continuous Linear Forms and Dual Space (See [7]) 

Proposition 4.6. Let E be a Frechet space. Then its dual E' is complete for the 
strong topology bτ .  

Definition 4.7. Let E be a Frechet space. The strong bidual E" of E is the 
strong dual of the strong dual E' of E. We say that E is reflexive if the canonical 
injection of E into E" is an isomorphism of E onto E".  

Theorem 4.8. Let E be a Frechet space. For E" to be reflexive, it suffices that 
every weakly closed and bounded set in E be weakly compact.  

In particular, if the bounded firm sets of a Frechet space E are compact, then E 
is reflexive. In this case, we say that E is a Montel space. So the only norm vector 
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spaces that are Montel spaces are the finite dimensional spaces.  
Theorem 4.9. Let K be a compact of d . In ( )d

KD  , any closed and 
bounded subset is a compact set. So ( )d

KD   is a Montel space.  
The most notable example of a Frechet space is the space ( )dS  .  
Proposition 4.10. The space ( )dS   is a reflexive Frechet space.  
Definition 4.11. We call tempered distribution the linear forms belonging to 

( )dS ′   the dual of ( )dS  .  
Let T be a linear form on ( )dS  . Then T is a tempered distribution if there 

exists 0C >  and a pair of positive integers ( ),k n  such that for all 

( )df S∈  , we have  

( ) ( ) ( ) ( )( )2
,

 
, = sup sup 1 .

d

n

k n
k x

T f T f Cp f x f xα

α ≤ ∈

 = ≤ + ∂  
 

Since ( )dS   is metrisable, a linear form T is a tempered distribution if it is 
sequentially continuous. So T is continuous if for any sequence 0nf →  in 

( )dS  , the sequence  

( ) , 0.n nT f T f= →  

Let g be a measurable function on d  such that for all ( )df S∈  , the 
function fg  belongs to ( )1 dL  . We denote by gT  the linear form on ( )dS  , 
defined by  

( ) ( ) ( ), d .dg gT f T f g x f x x= = ∫  

We then have,  
Proposition 4.12. If [ ]1,p∈ +∞ , then the map gg T→  is a continuous in-

jection of ( )( ),p d
pL   in ( )dS ′   endowed with its weak topology.  

5. Inductive Limit Spaces of Frechet Spaces (See [7])  

Definition 5.1. Let E be a vector space over  . We suppose that there exists 
a strictly increasing sequence ( )n n

E
∈  of vector subspaces of E satisfying  

 For all n∈ , nE  is a Frechet space.  
 For all n∈ , the restriction of the topology of 1nE +  to its subspace nE  

coincides with the initial topology of nE .  
 0 nn

E E
≥

=


.  
Under these conditions, we endow E with a topology τ  as follows 
Let EΩ⊂ . We say that Ω is an open set of E, if and only if, for all n∈ , 

nEΩ∩  is an open set of nE . We thus define a topology on E, called inductive 
limit of Frechet spaces and we denote the space .L F   

Proposition 5.2. Let 0 nn
E E

≥
=


 be an inductive limiting space of Frechet 
spaces. So we have,  

1) E is a separate topological vector space.  
2) For a set A E⊂  to be bounded, it is necessary and sufficient that there 

exists an integer n such that nA E⊂  and that A is bounded in nE .  
3) A sequence ( ) 0m m

x
≥

 is convergent in E, if and only if there exists an in-
teger n such that ( ) 0m m

x
≥

 is a convergent sequence in nE .  
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4) E is complete but it is not metrisable.  
Example 5.3. Let Ω be an open set of d  and { }k∈ ∪ ∞ . 
The space ( )k

cC Ω  is the set of functions :f Ω→  which are of class kC  
and have compact support. 

We consider ( ) 0n n
K

≥
 an increasing sequence of compact sets such that  

 0n∀ ≥ , 1n nK K +⊂   and 0 nn
K

≥
Ω =


. 

The spaces ( )
n

k
KC Ω  are Frechet spaces and we have,  

( ) ( )0
.

n

k k
c Kn

C C
≥

Ω = Ω


 

We thus provide ( )k
cC Ω  with an inductive limit space structure of Frechet 

spaces which does not depend on the choice of the sequence of compact sets 
( )nK . When k = ∞ , we denote ( )D Ω  The space ( )cC∞ Ω .  

5.1. Continuous Linear Forms and Dual Space 

Theorem 5.4. Let 0 nn
E E

≥
=


 be a space .L F .  
1) Let T be a linear form on E. Then T is continuous, if and only if the restric-

tion of T to nE  is continuous for all n∈ .  
2) Let T be a linear form on E. Then T is continuous, if and only if it is se-

quentially continuous.  
Proposition 5.5. Let E be a space .L F . Then its dual E’ is complete for the 

strong topology bτ .  
Definition 5.6. Let E be a space .L F . The strong bidual E" of E is the strong 

dual of the strong dual E' of E. We say that E is reflexive if the canonical injec-
tion of E into E" is an isomorphism of E onto E".  

Theorem 5.7. If E is a space .L F , for E to be reflexive, it is necessary and suf-
ficient that every weakly closed and bounded set in E be weakly compact. 

We deduce that, if 0 nn
E E

≥
=


 is a space .L F  such that, for all n∈ , 

nE  is reflexive, then E is reflexive.  

5.2. The Space of Distributions ( )′D Ω  See [8]  

Definition 5.8. Let Ω be an open set of  . A distribution T on Ω is a conti-
nuous linear form on ( )D Ω . We note ( )D′ Ω  the dual of ( )D Ω . 

Let T be a linear form on ( )D Ω . Then T is a distribution if and only if, for 
any compact K the sequence of compacts satisfying the property (1)  

Therefore, for any compact K ⊂Ω , there exists 0C >  and an integer 
0n ≥  such that, for any ( )Kf D∈ Ω , we have,  

( )
 
sup .n

k
p f C fα

α ∞≤
≤ ∂  

Let g be a measurable function on Ω such that for all ( )f D∈ Ω , the function 
fg  belongs to ( )1L Ω . We denote by gT  the linear form on ( )D Ω  defined 

by,  

( ) ( ) ( ), d .g gT f T f g x f x x
Ω

= = ∫  
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Then we have,  
Proposition 5.9.  
1) If [ ]1,p∈ +∞ , then the map gg T→  is a continuous injection of  

( )( ),p
loc pL Ω  daNS ( )D′ Ω  endowed with its weak topology.  

2) ( ) ( )d dS D′ ′⊂   and this injection is continuous.  
Definition 5.10. Let ( )T D′∈ Ω .  
1) Let F be a farm of Ω). We say that the support of T is included in F if for all 

( )f D∈ Ω  the condition ( ) Øsupport f F∩ =  implies , 0T f range〈 = . 
2) We say that T has compact support if its support is included in a compact. 

We denote by ( )ξ ′ Ω  the space of distributions ( )T D′∈ Ω  which have com-
pact support. 

3) We say that T is of finite order if there exists an integer 0k ≥  such that 
for every compact K ⊂Ω , there exists a constant 0C >  such that, for every 

( 0Kf D∈ Ω , we have,  

( ) sup .n
k

p f C fα

α ∞≤
≤ ∂  

If T is of finite order, we call order of T the smallest integer k which satisfies 
the preceding inequality. We denote ( )kD′ Ω  the subspace of distributions of 
order less than or equal to k. 

If T is not of finite order, we say that it is of infinite order.  
Example 5.11. Let Ω be an open set of d  and a∈Ω .  

 Let dα ∈ , then the map ( ) ( )( ),af f f aα ασ→ = ∂  is a distribution with 
support { }a . Moreover, ( )

a
ασ  is of finite order equal to α .  

 Let ( )T D′∈   be defined by  
( ) ( ) ( )

0 0
, , ,n n

n
n n

T f f f nσ
≥ ≥

= =∑ ∑  

Then, T is a distribution of infinite order and inclusive support  .  

6. Conclusions 

This work examines the topology of classical functional spaces, such as standard 
spaces, metrizable spaces, and those that cannot be metrizable. It presents the 
fundamental topological properties of topological vector spaces, as well as the 
space ( )nS   of functions of class C∞  on n  and its rapidly decreasing par-
tial derivatives. It also defines a topological structure on an increasing union of 
Frechet spaces, called the inductive limit of Frechet spaces, and studies the space 
( )D Ω  of functions of class C∞  with compact supports on Ω. 
Let ( )T D′∈ Ω , let ( )T D′∈ Ω  be a distribution with support included in a 

compact K. Let 1K  be a compact satisfying 1 1K K K⊂ ⊂ ⊂Ω  and ( )Dϕ∈ Ω  
such that ( ) 1xϕ =  for all 1x K∈ . Then, for all ( )f D∈ Ω , we have,  

, , ,T f T fϕ=  

this is what gives that any distribution with compact support is of finite order. 
Let k∈  and Ω be an open set of d . Then the dual of ( )k

cC Ω  is ( )kD′ Ω  

https://doi.org/10.4236/jamp.2024.123048


M. A. Elamin 
 

 

DOI: 10.4236/jamp.2024.123048 804 Journal of Applied Mathematics and Physics 
 

the space of distributions of order less than or equal to k. 
Let { }k∈ ∪ ∞  and an open set Ω an open set of d . Then the dual of 
( )kC Ω  is ( ) ( )kD ξ′ ′Ω ∩ Ω , the space of distributions of order less than or 

equal to k and has compact support. Finally, for E the space of continuous and 
rapidly decreasing functions : df →  . The space E endowed with the family 
of semi-norms (see [9] [10])  

( ) ( )21
n

np f x f
∞

= +  

is a Frechet space. Its dual E’ is equal to ( ) ( )0d dS D′ ′∩  , the space of tem-
pered distributions of order 0. We say that these distributions are temperate 
measures. 
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