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Abstract 
In this paper, a model averaging method is proposed for varying-coefficient 
models with response missing at random by establishing a weight selection 
criterion based on cross-validation. Under certain regularity conditions, it is 
proved that the proposed method is asymptotically optimal in the sense of 
achieving the minimum squared error.  
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1. Introduction 

In the past two decades, there have been more and more studies on model aver-
aging and model selection. Model selection is to select a final model before esti-
mation, but due to the uncertainty of the model, there will be a deviation caused 
by the selection of wrong model. Model averaging is to estimate a large number 
of candidate models, and then give greater weight to the sub-models with better 
prediction results, that is, to select the model after estimation, and the candidate 
model does not require the inclusion of the real model, which can effectively 
overcome the shortcomings of the model selection method. Therefore, model 
averaging is increasingly used in various fields. 

Most of the model averaging methods have been devoted to the frequency 
model averaging, and mainly in parametric models. For example, Hansen (2007) 
[1], Zhang et al. (2008) [2], Wan et al. (2010) [3] proposed the Mallows-type 
model averaging (MMA) method. To further improve the method, Zhang et al. 
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(2016) [4] proposed a weight selection criterion based on the Kullback-Leibler 
loss with penalty term for generalized linear models and generalized linear 
mixed-effects models. Using nonparametric kernel smoothing method to esti-
mate nonparametric functions, Li et al. (2018) [5], Zhang and Wang (2019) [6] 
extended the Mallows-type model averaging method to semiparametric models. 
Recently, Xia (2021) [7] extended the Mallows-type model averaging method to 
varying-coefficient models using B-spline to estimate the nonparametric func-
tions. However, the above mentioned literatures focus on the case where the data 
is completely observed. In statistical studies such as economics, market research 
and medical research, missing data is a common phenomenon. According to the 
different missing mechanisms, it can be divided into three types, namely Missing 
completely at random (MCAR), Missing at random (MAR) and Missing not ant 
random (MNAR). Little attention has been paid to model averaging with miss-
ing data. One of the reasons is that the complexity of missing data makes it very 
challenging to extend existing methods with complete data to missing data. The 
study of model averaging with missing data is still a relatively new topic and 
needs further development. 

In this paper, we focus on model averaging for varying-coefficient models 
with response missing at random (MAR), which has been widely studied in the 
field of missing data. As far as we know, there are few literatures on the model 
averaging with missing response. For example, Sun et al. (2014) [8] developed a 
model average estimation approach for linear regression models with response 
missing at random under a local misspecification framework, called smoothed 
focused vector information criteria (SFVIC). Zeng et al. (2018) [9] extended the 
SFVIC to varying-coefficient partially linear models with response missing at 
random by employing the profile least-squares estimation process and inverse 
probability weighted method to estimate regression coefficients of the models 
under the framework of local misspecification. However, these researches are 
limited to the local misspecification framework, and the model averaging with-
out local misspecification framework is relatively small. For example, based on 
the weighted delete-one cross-validation (WDCV) criterion, Xie et al. (2021) [10] 
proposed a two-step model averaging procedure for high-dimensional linear re-
gression models with missing response without local misspecification framework, 
and under certain conditions, they proved the WDCV criterion asymptotically 
achieved the lowest possible prediction loss. But their criterion required the co-
variates used in different candidate models cannot overlap. Based on the Mal-
lows-type model averaging method, Wei et al. (2021) [11] established the HRCp 
criterion of linear models with missing response, which improved the short-
comings of MMA in estimating the error covariance matrix. Wei and Wang 
(2021) [12] developed a linear models averaging procedure with response miss-
ing at random by establishing a cross-validation-based weight choice criterion, 
and proved its asymptotic optimality. The three literatures mentioned above are 
limited to parametric linear models. 
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Inspired by Xia (2021) [7], Wei and Wang (2021) [12], and Wei et al. (2021) 
[11], in this paper we shall extend the Jackknife model averaging (JMA) method 
(e.g. Hansen and Racine (2012) [13] and Zhang et al. (2013) [14]) to vary-
ing-coefficient models with response missing at random and heteroscedasticity 
error. The varying-coefficient model is a common type of non-parametric model. 
It has no fixed regression function and is more flexible in form. It can further fit 
complex data and is more widely used in various fields. Following Xia (2021) [7], 
we use B-spline to estimate the nonparametric varying-coefficient functions, and 
use the inverse probability weighted (IPW) method to deal with the missing data. 
In order to avoid the “curse of dimensionality”, we assume a parametric model 
for propensity score function. Compared with previous articles, our method has 
the following advantages. Firstly, we use B-spline to estimate the varying-coeffi- 
cient functions, which results in less computational burden compared with the 
local kernel function method. Secondly, we choose the weight vector based on 
JMA method. Compared with the MMA method, our method does not need to 
estimate the covariance matrix of the error and is more suitable for the hete-
roscedasticity models, which makes it easier to deal with real data. In the 
theoretical proof, we do not need to consider the relationship between the es-
timated error covariance matrix and the real error covariance matrix, which 
makes our theoretical proof easier. Finally, our method can deal with three 
cases for candidate models (Nested case, Marginal case and Full case), not just 
the case where the candidate models are nested. Under certain conditions, our 
proposal is asymptotically optimal in the sense of achieving the lowest possible 
squared error, which shows that our method is feasible. The finite sample per-
formance of our proposal is studied by numerical simulations and compared 
with some related methods. The simulation results display that our proposal is 
feasible. 

The rest of this paper is organized as follows. Section 2 and Section 3 describe 
the method of model averaging estimator and weight selection respectively. 
Some conditions and theoretical result for asymptotic optimality are given in 
Section 4. The proofs of the main results are given in Section 5.  

2. Model Framework and Model Averaging Estimation  
Method 

We consider the following varying-coefficient model: 

 
( )1

, 1,2, , ,
i i i

p
i ij j ij

Y
i n

X U

µ ε

µ β
=

= + = = ∑
  (1) 

where iY  is response variable, the index variable iU  is a scalar and iε  is a 
random error with ( )| , 0i i iE Uε =X  and ( ) 2| ,i i i iVar Uε σ=X . We assume 

( ) ( ) ( )T
=1| , p

i i i i ij j i i ijE Y U X U Uµ β β= = =∑X X , where ( )T
1, ,i i ipX X= X  is a 

p-dimensional covariate, ( ) ( ) ( )( )T
1 , ,i i p iU U Uβ β β=   corresponds to the 

vector of the unknown coefficient functions. 
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Suppose that iX  and iU  are completely observable, and iY  may be miss-
ing, where 1iδ =  if iY  is observed, 0iδ =  otherwise. In this paper, we assume 
that iY  is missing at random (MAR), that is  

 ( ) ( ) ( )1| , , 1| , : , .i i i i i i i i iP Y U P U Uδ δ π= = = =X X X  (2) 

Let ( ){ } 1
, , , 1,2, ,i i i i iZ U Y i nπ π δ

−
= = X , using model (1) and MAR assump-

tion, we can obtain  

 ( )
, ,

,
, 1,2, , ,

| ,
i i i

i i i i

Z
i n

E Z U
π π

π

µ ε
µ

= + = =


X  (3) 

where ( ), | , 0i i iE Uπε =X , ( ) 2
, ,| ,i i i iVar Uπ πε σ=X ,  

( ){ } ( ){ }1 12 2 2
, , 1 ,i i i i i i iU Uπσ π µ π σ

− − = − +  
X X . 

We consider a series of approximate models. In particular, we use nM  can-
didate model { }1, ,

nMM M  to approximate the real data generating process of 
Y. The mth candidate model mM  contains mk  covariates, that is, m mk = M  
is the cardinality of mM . The total number of all possible candidate models is 

2 p
nM = , which contains an empty model that excludes all covariates. From 

model (3), under the mth model, we have  

 
( ) ( )

( ), ,
1

.
m

m m

k

i ij j i i
j

Z X Uπ πβ ε
=

= +∑  (4) 

The purpose of this paper is to construct an asymptotically optimal model av-
erage estimator of the conditional mean ( )T

1 2, , , nµ µ µ µ=   with missing re-
sponse under MAR assumption. 

Note that { }, , ,i i iZ Uπ X  is fully observed, if the selection probability function 
( ),i iX Uπ  is known, the estimator of 

( )
( )

mj uβ  can be obtained by using 
B-spline to approximate the coefficient function for { }, , ,i i iZ Uπ X . Specifically, 
we first approximate each 

( )
( )

mjβ ⋅  with a function in a polynomial spline space. 
Without losing generality, we assume that U has a compact set [ ]0,1=U . Let 
( ) ( ) ( )( )T

1 , ,
nLu B u B u= B  is a B-spline function basis of order r, where 

1n nL J r= + + , nJ  is the number of interior knots and increases with the in-
crease of sample size n. According to the B-spline theory in De Boor (2001) [15], 
there exists a parameter vector ( )j mγ  satisfying  

( )
( ) ( ) ( )

T ,
mj j mu uβ γ≈ B  

where ( ) ( )j m uβ  is the jth component of ( ) ( )m uβ . So the mth model can be 
re-expressed as  

( )
( ) ( ) ( ) ( )

T
, , ,

1 1
,

m m

m

k k

i ij i i ij m i m j m
j j

Z X Uπ π πγ ε γ ε
= =

= + ≈ +∑ ∑B W  

where ( ) ( ) ( ) ( )( )TT T T
1 2, , ,

mi i i i ik ii m X U X U X U= W B B B , 1,2, ,i n= 
 is a 

m nk L  dimensional column vector,
 

( ) ( ) ( )( )T

1 , ,
ni i L iU B U B U= B . 

Therefore, ( ) ( )j m uβ  can be obtained by solving the following least squares 
optimization problem  
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( )

( ) ( )

2

,
1 1

min .
m

j m

kn

i i m j m
i j

Zπγ
γ

= =

 
− 

 
∑ ∑W  (5) 

Let ( )2

T

,1, , ,
n

Z Z Z Zπ π π π=  , ( ) ( )( )TT , mm j m jγ γ= ∈M  is a vector of length 

m nk L , then the solution of (5) is given by  

( ) ( ) ( ) ( )
1T Tˆ ,m m m m Zπγ
−

 =  W W W
  

 

where ( ) ( ) ( )( )T

1 , ,m m n m= W W W  is a m nn k L× -dimensional matrix. Thus, the 

estimator of ( ) ( )m uβ  is ( ) ( ) ( ) ( )( )Tˆ ˆ , mm j mu u jβ β= ∈M  with  

( ) ( ) ( ) ( )
Tˆ ˆj m j mu uβ γ= B . 

For the mth candidate model, the estimator of µ  is then obtained as  

 ( ) ( ) ( ) ( ) ( ) ( )
1T Tˆ ,m m m m m mZ Zπ ππµ
−

 = = W W W W P  (6) 

where ( ) ( ) ( ) ( ) ( )
1T T

m m m m m

−
 =  P W W W W . From (6), we know that ( )ˆ mπµ  is linearly 

related to Zπ , we can define the model average estimator of µ  as the 
weighted average of ( )ˆ mπµ , that is  

 ( ) ( ) ( ) ( )
1 1

ˆ ˆ ,
n nM M

m mm m
m m

Z Zπ π ππµ ω ω µ ω ω
= =

= = =∑ ∑ P P  (7) 

where ( ) ( )1
nM

m mmω ω
=

=∑P P , ( )T

1, ,
nMω ω ω=   is the weight vector, which sa-

tisfies  

[ ]
1

0,1 : 1 .
n

n
M

M
n m

m
ω ω

=

 
= ∈ = 
 

∑H
  

 

3. Weight Selection 

According to Hansen and Racine (2012) [13], we give the details for the jack-
knife selection (also known as leave-one-out cross validation) of ω  as follows. 

The jackknife estimator of the mth model is denoted by  

( ) ( ) ( ) ( )( )T1 2, , , n
m m m mπ π π πµ µ µ µ=   

 ,  

where ( ) ( ) ( )
( )

( )
( )

( )
( ) ( )1T Ti i i ii i

m m m m m Zππµ
−− − − − =  W W W W , and ( )

( )i
m
−W  and ( )iZπ

−  are de-
fined as matrices ( )mW  and column vectors Zπ  with the ith row deleted. After 
some calculations, we can derive the following relationship:  

( ) ( ) ( )( ) ,n nm m m= − +P D P I I

  
 

where ( )mD  is an n n×  diagonal matrix and the ith diagonal element is 

( )( ) 1

,1 m iiP
−

−  with ( ),m iiP  the i-th diagonal element of ( )mP , then  

( ) ( )Zπ πµ ω ω= P , ( ) ( )1
nM

m mmω ω
=

=∑P P  . Therefore, we obtain the following 
JMA criterion for selecting the weight vector ω : 

 ( ) ( ) 2
.CV Zπ π πω µ ω= − 
  

 (8) 

In fact, ( ),i iX Uπ  in (8) is unknown and need to be modeled. Following Wei 
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and Wang (2021) [12], we assume that ( ), ;Uπ αX  is a parametric model of 
( ),Uπ X , where ( );π α⋅  is a known function and can be correctly specified 

while α  is an unknown parameter vector. Denote ˆnα  as the maximum like-
lihood estimate (MLE) of α , ( ) ( )ˆˆ , , ; nU Uπ π α=X X . Replacing ( ),Uπ X  in 

( )CVπ ω  with ( )ˆ ,Uπ X , we can get the following criterion:  

 ( ) ( ) 2
ˆ ˆ ˆ .CV Zπ π πω µ ω= −   (9) 

Then the optimal weight vector ˆˆπω  is defined as  

 ( )ˆ ˆˆ arg min .
n

CVπ π
ω

ω ω
∈

=
H

 (10) 

Thus, the model average estimator of µ  is ( )ˆ ˆˆˆπ πµ ω , and named as the va-
rying-coefficient jackknife model average estimator (VC-JMA). 

4. Asymptotically Optimality 

In this section, we investigate the asymptotic optimality of the proposed estima-
tor ( )ˆ ˆˆˆπ πµ ω . We first give some necessary symbols. Define  

 ( ) ( ) ( ) ( ){ }2ˆ , | , ,L R E L Uπ π π πω µ µ ω ω ω= − = X  (11) 

as the loss function and risk function of ( )ˆπµ ω , respectively.  

( )2 2
,1 ,diag , ,e nπ π πσ σΩ =  . Let ( )inf

n
Rπ πξ ω

∈
=

w H
, 0

mω  be a nM -dimensional 
unit vector whose the mth element is one and the other elements are zeros and 

( ) ( ) ( )( )T

1 2, , ,u Mn
=X X X X . 

Next, we give some conditions which are required for proving the asymptotic 
optimality of ( )ˆ ˆˆˆπ πµ ω . All the limiting processes discussed here and throughout 
the paper are with respect to n →∞ .  

(C1) The MLE ˆnα  of α  is n  consistent and satisfies the regularity con-
ditions of asymptotic normality. ( ), ;Uπ αX  is bounded away from 0 and twice 
continuously diferentiable with respect to α . For all α ’s in a neighborhood of  

0α , 
( ) ( )1

, ;
max 1i i

i n p

U
O

π α
α≤ ≤

∂
=

∂
X

, where 0α  is the true value of ˆnα .  

(C2) { }max e eC
π

λ Ω ≤ , ( )
1

, p mm iip C k n−≤ , a.s., where eC  and pC  are con-
stant.  

(C3) 
a.s.1 0ur πξ

− → , where ur  is the rank of uX .  

(C4) ( )( ) a.s.2 0

1
0

nM GG
n m

m
M Rπ πξ ω−

=

→∑ , ( )1 1n Oµ µΤ − = , ( )4
, | ,G
i i i vE U Cπε ≤ ≤ ∞X , 

a.s., where G is an integer satisfying 1 G≤ < ∞ .  
(C5) Functions ( ) , 1, ,j u j pβ =   belong to a class of functions B , whose 

rth detivatives ( ) ( )r
j uβ s exist and are Lipschitz of order 0β .  

(C6) The density Uf  of U is bounded away from 0 and infinity on its sup-
port. 

Remark 1 As Zhang et al. (2013) [14] pointed out, condition (C2) is com-
monly used in the study of asymptotic optimality of cross-validation methods. 
The condition (C3) is based on Zhang et al. (2013) [14]’s condition (22). For a 
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detailed explanation of the condition, see Zhang et al. (2013) [14]. Conditions 
(C4) is commonly used in model averaging literature, see for example Wan et al. 
(2010) [3], Zhang et al. (2013) [14] and Zhu et al. (2019) [16].  

Remark 2 Conditions (C5) and (C6) are two common assumptions in ap-
proximating nonparametric coefficient functions with B-spline basis functions, 
which can be seen in Fan et al. (2014) [17]. 

With these conditions, the following theorem states the asymptotic optimality 
of ( )ˆ ˆˆˆπ πµ ω .  

Theorem 1 Suppose that conditions (C1) - (C6) hold, then  

 
( )

( )
pˆ ˆ

ˆ

ˆ
1,

inf
n

L
L

π π

πω

ω
ω

∈

→
H

 (12) 

where ( ) ( ) 2
ˆ ˆˆLπ πω µ µ ω= − . 

Theorem 1 implies that our proposed estimator ( )ˆ ˆˆˆπ πµ ω  is asymptotically 
optimal because the selected weight vector ˆˆπω  yields a squared error that is 
asymptotically identical to that of the infeasible optimal weight vector. 

5. Theorem Proof 

Before proving Theorem 1, we first introduce some symbols used in the proof 
process. We use c to represent a universal positive constant, which can take dif-
ferent values in different situations. For any matrix A, we define { }max Aλ  as 
the maximum singular value of A. Let ( )inf

n
Rπ ω πξ ω∈= 

H . According to the de-
finitions of ( )Lπ ω  and ( )Rπ ω  in (11), we define the loss function and risk 
function of ( )πµ ω  in (8) by  

( ) ( ) ( ) ( ){ }2
, | , ,L R E L Uπ π π πω µ µ ω ω ω= − = X  

  

respectively, and then obtain  

( ) ( ) ( ) ( )
2 T ,eR tr

ππ ω ω µ ω ω = + Ω A P P    

where ( )1 ω= −A P  . Let ( )mQ  be an n n×  diagonal matrix and the ith di-
agonal element is ( ) ( )( ) 1

, ,1m ii m iiP P
−

− . Then according to the definition of ( )mD  
given in Section 2.2, we obtain  

( ) ( ) ( ) ,mm m m= −P P Q A  

where ( ) ( )nm m= −A I P . 
Next, give the four Lemmas needed to prove Theorem 1. 
Lemma 1 Let  

( ) ( )( )* arg min ,
n

L aπ π
ω

ω ω ω
∈

= +

H

 

if, as n →∞ ,  

( )
( )

( )
( )

p p
sup 0, sup 1 0,

n n

a L
R R
π π

ω ωπ π

ω ω
ω ω∈ ∈

→ − →


 H H
 

and there exists a constant c such that  
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( )inf 0,
n
R cπω

ω
∈

≥ >

H
 

almost surely, then  

( )
( )

*
p

1.
inf

n

L

L
π

ω π

ω

ω∈

→




H

 

The proof of Lemma 1 refers to Zhang et al. (2013) [14]. 
Lemma 2 If (C4) is satisfied, we have  

 
( )
( ) ( )sup 1 1 .

n
p

L
o

R
π

ω π

ω
ω∈

− =


H
 (13) 

Proof of Lemma 2: Note that  

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( )

22 T

2 T TT2 .

e

e

L R tr

tr

π

π

π π π

π π

ω ω µ µ ω ω µ ω ω

ω ε ω ω µ ω ω ε

− = − − − Ω

= − Ω −

A P P

P P P A P

   



   

 

Therefore, to prove (13), it suffices to prove that  

 
( ) ( ) ( ){ }

( ) ( )
2 T

sup 1 ,
n

e

p

tr
o

R
ππ

ω π

ω ε ω ω

ω∈

− Ω
=

P P P  

H
 (14) 

 
( ) ( )

( ) ( )
TT

sup 1 .
n

po
R

π

ω π

µ ω ω ε

ω∈
=

A P 

H
 (15) 

By Zhang et al. (2013) [14], under the condition (C4), we have  

( )( ) a.s.2 0

1
0.

nM GG
n m

m
M Rπ πξ ω−

=

→∑   

We use conditions (C4), Chebyshev inequality and Theorem 2 of Whittle 
(1960) [18] to prove (14) and (15), respectively, as follows: 

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ) ( ){ }

2 T

T T T

1 1

T T

1 1

T TT 0 0 0 0
1 1 1 1

sup | ,

sup | ,

max max | ,

|

n

n n

n

n n

e

M M

t m et t t m
t m

et t t mt M m M

e

P tr R U

P tr U

P tr U

P tr

π

π

π

π

π π
ω

π π π
ω

π π

π π π

ω ε ω ω ω δ

ωω ε ε δξ

ε δξ

ε ω ω ε ω ω δξ

∈

∈ = =

≤ ≤ ≤ ≤

 
− Ω > 

 
 

≤ − Ω > 
 

≤ − Ω >

= − Ω >

∑∑

   

   

   

   

P P P X

P P P P X

P P P P X

P P P P

H

H

{ }
( ) ( ) ( ) ( ){ }{ }T TT 0 0 0 0

1 2 1 2

,

| ,e

U

tr U
ππ π πε ω ω ε ω ω δξ





∪ − Ω >    

X

P P P P X
 

( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ) ( ){ }{ }

T TT 0 0 0 0
1 1

T TT 0 0 0 0
2 1 2 1

T TT 0 0 0 0
2 2 2 2

| ,

| ,

| ,

n nM e M

e

e

tr U

tr U

tr U

π

π

π

π π π

π π π

π π π

ε ω ω ε ω ω δξ

ε ω ω ε ω ω δξ

ε ω ω ε ω ω δξ

∪ ∪ − Ω >

∪ − Ω >

∪ − Ω >

   



   

   

P P P P X

P P P P X

P P P P X
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( ) ( ) ( ) ( ){ }{ }
( ) ( ) ( ) ( ){ }

T TT 0 0 0 0
2 2

T TT 0 0 0 0

| ,

| ,

n n

n n n n

M e M

M M M e M

tr U

tr U

π

π

π π π

π π π
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(14) is proven. The proof process of (15) is similar to that of (14), and hence 
the proof of the Lemma 2. 

Lemma 3 If (C1) - (C4) are satisfied, then  
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Proof of Lemma 3: By Lemma 1 of Wei and Wang (2021) [12] and 
Cauchy-Schwarz inequality, we have  
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Therefore, to prove (16), it suffices to show that  
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Note that  

( )
( )

( ) ( ){ } ( ) ( )
( )

( ) ( ){ }
( )

( ) ( )
( )

2 2 T

2 2
T

2
1

2 .

e

e

trL
R R

tr

R R

π

π

π ππ

π π

π π

π π

ω ε ω µ ω ω εω
ω ω

ω ε ω µ ω ω ε
ω ω

− Ω −
− =

− Ω
≤ +

P P A P

P P A P
 

Therefore, to prove (17), it suffices to show that  
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The proof steps of (19) and (20) are similar to those of (14) and (15), respec-
tively. The detailed process is omitted here, so it is established under (C4) condi-
tion, i.e. (17) is proven, and next prove (18). 

According to (C1) and Cauchy-Schwarz inequality, we have  
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According to (C3) and (C4), to prove (18), it suffices to prove that  
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By (C2) - (C4) and Markov inequality, for any 0δ∀ > , we have 
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This together with the dominated convergence theorem indicates  
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We perform Taylor expansion of ( ){ } 1ˆ, ;i i nUπ α
−

X  around the true value 0α  
and then obtain  
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where the last inequality is due to (C1) and Cauchy-Schwarz inequality, and 

, inα X  is a linear combination between ˆnα  and 0α . Since ˆnα  is MLE, by (C1) 
we have ( )0ˆ 1n pn Oα α⋅ − = . Because of the consistency of ˆnα  and (C1), we  
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. These results imply (22), this com-

pletes the proof of (18) and hence the proof of the Lemma 3. 
Lemma 4 If (C2) - (C4) are satisfied, then  
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Proof of Lemma 4: After some careful calculations, we have  
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By Lemma 1, we know that, to prove (23) it suffices to prove (13) and  
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Since (13) has been proved, the following only need to prove (24). By 
Cauchy-Schwarz inequality, we have  
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So to prove (24), it suffices to verify  
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The proofs of (25), (26) and (27) are similar to (14), and hold under the con-
dition (C4). 
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By Zhang et al. (2013) [14], under (C2) - (C4), we have  
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which together with (18) implies (28), and next prove (29). 
By Lemma 1 of Wei and Wang (2021) [12], we have  
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By Zhang et al. (2013) [14], we know that, under (C2), 
a.s. 0p → . This together 

with (31) as well as (28) implies (29), and (25) - (29) together prove (24). This 
completes the proof of the Lemma 4. 

Proof of Theorem 1: Firstly, we note that  
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Therefore, to prove Theorem 1, it suffices to prove that  
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According to Zhang et al. (2013) [14], we know that (32) holds under (C2) - 
(C4). Then according to Lemma 2, Lemma 3 and Lemma 4, we know that (33) - 
(35) hold, so the Theorem 1 is proved. 

6. Conclusions 

In this paper, we extend the JMA method to the nonparametric varying-coefficient 
models with response missing at random. Firstly, we use the inverse probability 
weighted method to deal with the missing data, then use B-spline to estimate the 
nonparametric functions, and finally use jackknife method to select weight ω . 
Under certain conditions, the asymptotic optimality of our method is proved. 

In this paper, we only consider the varying-coefficient models. Undoubtedly, 
it is meaningful to extend our ideas to more complex models, such as partially 
linear models and semiparametric varying-coefficient models. However, this is a 
very challenging research. Second, for this artical, we assume that the parametric 
model of the selection probability function is correctly specified, and further re-
search is needed to develop a model averaging method that is robust against the 
misspecification of the selection probability function. These will be interesting 
future research directions. 
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