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Abstract 
This study examines the multicriteria scheduling problem on a single ma-
chine to minimize three criteria: the maximum cost function, denoted by 
maximum late work (Vmax), maximum tardy job, denoted by (Tmax), and 
maximum earliness (Emax). We propose several algorithms based on types of 
objectives function to be optimized when dealing with simultaneous minimi-
zation problems with and without weight and hierarchical minimization 
problems. The proposed Algorithm (3) is to find the set of efficient solutions 
for 1//F (Vmax, Tmax, Emax) and 1//(Vmax + Tmax + Emax). The Local Search Heu-
ristic Methods (Descent Method (DM), Simulated Annealing (SA), Genetic 
Algorithm (GA), and the Tree Type Heuristics Method (TTHM) are applied 
to solve all suggested problems. Finally, the experimental results of Algorithm 
(3) are compared with the results of the Branch and Bound (BAB) method for 
optimal and Pareto optimal solutions for smaller instance sizes and compared 
to the Local Search Heuristic Methods for large instance sizes. These results 
ensure the efficiency of Algorithm (3) in a reasonable time. 
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1. Introduction 

The multicriteria scheduling problem has gotten much attention lately [1]. The 
fundamentals of multicriteria are as follows. On a single machine, there are n 
jobs to be processed. Each job has a processing time (pi) and due date (di) at 
which it should be finished. When a task is finished ahead of schedule or after, 
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penalties are assessed. Therefore, the problem is a multicriteria scheduling prob-
lem. Let Ω be a schedule, V(Ω), T(Ω), and E(Ω) be functions of late work, tardi-
ness, and earliness, respectively. The problem is to find a schedule Ω to optimize 
V(Ω), T(Ω), and E(Ω) or a composite objective function of V(Ω), T(Ω), and 
E(Ω). In the literature [2], there are mainly three classes of approaches that are 
applicable to the multicriteria scheduling problem. C1: In the hierarchical ap-
proach, one of the criteria (more important) is regarded as a constraint (primary) 
criterion that must be satisfied, and the other one is considered as a (secondary) 
criterion to optimize. This means optimizing the primary criterion while break-
ing ties in favor of the schedule that has minimum secondary criterion [3]. C2: 
Minimizing a weighted sum of the bicriteria (objectives) and converting the bi-
criteria to a single criterion problem, several bicriteria scheduling problems stu-
died belong to this class [4] [5]. C3: One typically generates all efficient (Pareto 
optimal) schedules and selects the one that yields the best composite objective 
function value of two criteria [6]. For the bicriteria that concern the simultane-
ous minimization of (ΣCi, fmax) for 1//F (ΣCi, fmax) problem in C3, which is solved 
by Hoogeveen and Vand de Velde [4] in a polynomial time, Vanwassenhove and 
Gelder [7] solved the 1//F (ΣCi, Tmax) problem. 

This paper will extend the bicriteria 1//(Vmax, Emax) [6] to multicriteria prob-
lem 1//(Vmax, Tmax, Emax), which is an NP-hard problem, to get past these limita-
tions, we can apply heuristic approaches. We suggest algorithm (3) to find op-
timal solutions, and we will study the problem in classes C1, C2, and C3. The 
rest of the paper is organized as follows: 

Section (2), gives notations, basic concepts, and mathematical forms. In sec-
tions (3) and (4), we formulate the multicriteria problem according to the classes 
of the approaches, we propose algorithms for each problem and their particular 
cases, and we study the Branch and Bounded Method for 1//(Vmax + Tmax + Emax). 
In section (5), we suggested Local Search Heuristic methods to find approximate 
solutions, and the experimental results are given in section (6). 

2. Notation, Basic Concepts and Mathematical Forms 
2.1. Notation and Basic Concepts 

The following notation will be used in this paper: 
n = number of jobs. 
pi = processing time of job i. 
di = due date of job i. 
Ci = The completion time, the time at which the processing of job j is com-

pleted s.t. 

1
i

i ijC p
=

= ∑  
Ei = the earliness of the job i. 
Ti = the tardiness of the job i. 
Vi = the late work penalty for job i. 
Emax = Max{Ei}, the maximum early work. 
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Tmax = Max{Ti}, the maximum Tardy work. 
Vmax = Max{Vi}, the maximum late work. 
fmax = Max{fi}, the maximum function. 
LB = lower bound. 
UB = upper bound. 
In this paper, we shall use the following sequencing rules and concepts: 
MST: Jobs are sequenced in nondecreasing order of (si = di − pi), this rule is 

well known to minimize Emax for 1//Emax problem [8]. 
EDD: Jobs are sequenced in nondecreasing order of (di), this rule is well 

known to minimize Tmax for 1//Tmax problem [9]. 
Definition (1): The term” optimize” in a multiobjective decision making 

problem refers to a solution around which there is no way of improving any ob-
jective without worsening at least one other objective [10]. 

Definition (2):  
A feasible schedule σ is Pareto optimal, or non-dominated (efficient), with 

respect to the performance criteria f and g if there is no feasible schedule σ such 
that both f(σ) ≤ f(σ) and g(σ) ≤ g(σ), where at least one of the inequalities is 
strict [7]. 

Lawler algorithm (LA): [11] 
Step (1): let { }1, ,N n= � , Ω = (∅ ) and M be the set of all jobs with no suc-

cessors. 
Step (2): let j∗  such that ( ) ( ){ }mini ifj p fj p∗ Σ = Σ , j M∈  
Set { }N N j∗= −  and sequence the job j∗  in the last position of Ω. 
Modify M to represent the new set of scheduled jobs. 
Step (3): If N = ∅  stop, otherwise go to step (2). 

maxE∗  = Minimum Emax by MST rule. 

maxT ∗  = Minimum Tmax by EDD rule. 

maxV ∗  = Minimum Vmax by LA. 

2.2. The Mathematical Forms and Their Algorithms 
2.2.1. Hierarchical Problems 
We present the mathematical forms and the algorithms for generating solutions 
when one of three criteria (Vmax, Tmax, Emax) is more important than the others. 
These hierarchical problems are called secondary criteria problems, where the 
secondary criteria refer to the less important ones. The formulation for multicri-
teria problems is similar to that for the single criteria problems, which require 
that the optimal value of the primary objective is not violated. 

Let us first consider the formulations for multicriteria hierarchical problems, 
say 

1//Lex (γ1, γ2, γ3). There are three parts of the formulations 
• Primary objective function (γ1) 

Subject to: Secondary objective function (γ2) 
• Secondary objective function (γ2) 

Subject to: Primary objective function (γ1) 
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• Secondary objective function (γ3) 
Subject to: Primary objective function (γ1) 
Hence the algorithm for solving the multicriteria problem needs two steps: 
Step (1): We optimize γ1, followed by 
Step (2): The optimization of γ2, and γ3 subject to the primary objective value 

γ1. For example, if Vmax is more important than Tmax and Emax, then the 1//Lex 
(Vmax, Tmax, Emax) problem section (3.1) can be written as Min(Emax) 

s.t. Vmax = ∆, where ∆ = Vmax(LA) 
( ) ( )( )max max

*
ax

*
mL, A , MSTT T TT T≤ ∈  

2.2.2. Simultaneous Problems 
Many algorithms can solve multicriteria scheduling problems to find efficient 
solutions or at least approximations of them [12]. The running time for the al-
gorithm often increases with the increase of the instance size. Any algorithm 
process aims to find an optimal solution for each instance that minimizes the 
objective function. This usual meaning of the optimum makes no sense in the 
multicriteria case because it does not exist, in most cases, as a solution optimiz-
ing all objectives simultaneously. Hence, we search for feasible solutions yielding 
the best compromise among objectives constituting a so-called efficient solution 
set. These efficient solutions can only be improved in one objective by decreas-
ing their performance in at least one of the others. This efficient solution set is 
challenging to find. Therefore, approximating that set in a reasonable time could 
be preferable. 

3. Problem Formulation and Analysis 

The problem of scheduling a set { }1, ,N n= �  of n jobs on a single machine to 
minimize multicriteria may be stated as follows. Each job i N∈  is to be 
processed on a single machine that can handle only one job at a time, job i has a 
processing time pi and due date di. All jobs are available for processing at a time 
zero. 

If a schedule ( )1, ,nΩ = �  is given, then a completion time 1
i

i ijC p
=

= ∑  
for each job i can be computed and consequently an earliness Ei = max{di − Ci, 
0}, Emax = max{Ei} for each i and max

wE  = max{wiEi}, where wi is the important of 
the job i with respect to other jobs. The tardiness Ti = max{Ci − di, 0}, Tmax = 
max{Ti} for each i. The late work Vi(Ω) for the job i N∈  which is the amount 
of processing performed on job i after its due date di is easy to compute, 
• If Vi = 0, then job i is early with i iC d≤  
• If 0 < Vi < pi, then job i is partially early 
• If Vi = pi, then job i is late with i i iC d p≥ +  

This means that 

0 if , 1, ,
if , 1, ,
if , 1, ,

i i

i i i i i i i

i i i i

C d i n
V C d d C d p i n

p C d p i n

≤ =
= − < < + =
 > + =

�
�

�
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Hence max
wV  = max{wiVi}, wi is the important of job i with respect to other 

jobs. 
Our object is to find a schedule that minimizes bicriteria for the following 

problems: 
1) 1//Lex (Vmax, Tmax, Emax) problem (P1) ∈  C1 
2) 1//Lex ( max

wV , Tmax, Emax) problem (P2) ∈  C1 
3) 1//F (Vmax, Tmax, Emax) problem (P3) ∈  C3 
4) 1//F ( max

wE , Tmax, Emax) problem (P4) ∈  C3 
5) 1//(Vmax + Tmax + Emax) problem (P5) ∈  C2 

3.1. [1//Lex (Vmax, Tmax, Emax) Problem (P1)] 

This problem can be written as: 
( )maxMin E  

s.t. maxV = ∆ , where ( )max LAV∆ =  
( ) ( )( )max max

*
ax

*
mL, A , MSTT T TT T≤ ∈  

Algorithm (1) for problem (P1): 
Step (0): Using Lawler algorithm (LA) to find optimal Vmax, and set ∆ = Vmax 

(LA). 
Step (1): Set { }1, ,N n= � , it p= Σ , i N∀ ∈ . 
Step (2): Solve 1/Vi≤ ∆/Vmax problem to determine job j to be the job com-

pleted at time t, such that: 1) Vj≤ ∆ 
2) j iS S≥ , ,j i N∀ ∈  and Vi ≤ ∆. 
Step (3): Schedule j in the interval [t − pj, t] 
Step (4): Set N = N − {j}, t = t − pj 
Step (5): If t > 0, then go to step (2) 
Step (6): Stop. 
Example (1): Consider the problem (P1) with the following data: 
pi = (2, 3, 5, 7), di = (11, 7, 18, 9) and i = 1, 2, 3, 4 
Lawler algorithm (LA) gives the sequence (2, 4, 1, 3), with Vmax = 1, Tmax = 1 & 

Emax = 4. Set ∆ = 1, we get the sequence (2, 4, 1, 3) gives Vmax = 1, Tmax = 1 & Emax 
= 4. This sequence is optimal since the optimal sequence (2, 4, 1, 3) with Vmax = 1, 
Tmax = 1 & Emax = 4 is obtained by the complete enumeration method (CEM). 

3.2. [1//Lex ( wVmax , Tmax, Emax) Problem (P2)] 

This problem can be written as: 
( )maxMin E  

s.t. max
wV = ∆ , where ( )max LAwV∆ =  

( ) ( )( )max max
*

ax
*

mL, A , MSTT T TT T≤ ∈  
Algorithm (2) for problem (P2): 
Step (0): Using Lawler algorithm (LA) to find max

wV  and set ( )max LAwV∆ = . 
Step (1): Set { }1, ,N n= � , it p= Σ , i N∀ ∈  
Step (2): Solve max1 w w

iV V= ∆  problem where w
i i iV WV=  to determine job j 

to be the job completed at time t, such that: 1) WjVj ≤ ∆ 
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2) j iS S≥ , ,j i N∀ ∈  and WiVi ≤ ∆ 
Step (3): Schedule j in the interval [t − pj, t] 
Step (4): Set N = N − {j}, t = t − pj 
Step (5): If t > 0, then go to step (2) 
Step (6): Stop. 
Example (2): Consider the problem (P2) with the following data: pi = (4, 6, 2, 

5), di = (20, 9, 4, 7), Wi = (4, 6, 2, 5), and i = 1, 2, 3, 4 Lawler algorithm (LA) 
gives the sequence (4, 2, 3, 1) With max

wV  = 12, Tmax = 9, and Emax = 3, ( max
wV , Tmax, 

Emax)= (12, 9, 3), Set ∆ = 12, we get the sequence (4, 2, 3, 1) gives max
wV  = 12, Tmax 

= 9, and Emax = 3, ( max
wV , Tmax, Emax)= (12, 9, 3) is optimal. 

3.3. [1//F (Vmax, Tmax, Emax) Problem (P3)] 

Multicriteria scheduling refers to the scheduling problem in which advantages of 
a particular schedule are evaluated using more than one performance criterion. 
Several scheduling problems considering the simultaneous minimization of var-
ious forms of sum completion time, earliness and tardiness costs have been stu-
died in the literature [13], also solves 1//F (fmax, gmax) and solves the general 
problem 1//F ( 1

max max, , kf f� ), k is finite integer number and each one of these 
functions is assumed to be non-decreasing in the job completion time. Now 
consider the multicriteria problem 1//F (Vmax, Tmax, Emax) in which Emax is not de-
creasing in job completion time. This problem belongs to C3 and is written as: 

{ }max max maxMin , ,V T E  
s.t. { }Min ,i i iV p T= , 1, ,i n= �  

ii iE Cd≥ − , 1, ,i n= �  
0iE ≥ , 1, ,i n= �  

ii iT dC≥ − , 1, ,i n= �  
0iT ≥ , 1, ,i n= �  

The following algorithm (3) is used to solve the problem (P3) 
Algorithm (3) for the problem (P3): 
Step (0): Determine the point ( maxV ∗ , Tmax, Emax), (Vmax, maxT ∗ , Emax), and (Vmax, 

Tmax, maxE∗ ) by solving 1//Vmax by Lawler algorithm (LA), 1//Tmax by EDD and 
1//Emax by MST rule. Let SE be the set of efficient (Pareto) solutions, set SE = 
{( maxV ∗ , Tmax, Emax), (Vmax, maxT ∗ , Emax), and (Vmax, Tmax, maxE∗ )} if each point is not 
dominated by the other. Set SUM = min { maxV ∗  + Tmax + Emax, Vmax + maxT ∗  + Emax, 
Vmax + Tmax + maxE∗ }. 

Step (1): Set ∆ = Vmax (MST). 
Step (2): Solve 1/Vi ≤ ∆/Vmax problem by using LA (break tie to schedule the 

job j last with maximum sj = dj − pj; let ( max
LV , max

LT , max
LE ) denote the outcome. 

Add ( max
LV , max

LT , max
LE ) to the set of Pareto optimal points (SE), unless it is 

dominated by the previously obtained Pareto optimal points. If SUM is greater 
than max max max

L L LV T E+ + , then set SUM = max max max
L L LV T E+ + . Let ∆ = max

LV  − 1, if 
∆ > 0 repeat step (2), otherwise go to step (3). 

Step (3): The Pareto optimal set SE has been obtained and SUM which is the 
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minimum of values for the Pareto points in the set SE. 
Step (4): Stop. 
Example (3): Consider the problem (P3) with the following data: pi = (1, 4, 8, 

5), di = (20, 7, 11, 9) and i = 1, 2, 3, 4 MST gives the sequence (2, 3, 4, 1) with 

maxE∗  = 3, Tmax = 8 & Vmax = 5; (Vmax, Tmax, maxE∗ ) = (5, 8, 3). EDD gives the se-
quence (2, 4, 3, 1) with Emax = 3, maxT ∗  = 6 & Vmax = 6; (Vmax, maxT ∗ , Emax) = (6, 6, 
3). Lawler algorithm gives the sequence (4, 3, 2, 1) with Emax = 4, Tmax = 10 & 

maxV ∗  = 4; ( maxV ∗ , Tmax, Emax) = (4, 10, 4). Set SE = {(5, 8, 3), (6, 6, 3), (4, 10, 4)} & 
SUM = 15, set ∆ = 5, we get the sequence (3, 2, 4, 1) which Emax = 3, Tmax = 8 & 
Vmax = 5; (Vmax, Tmax, Emax) = (5, 8, 3), then the set SE remains the same, let ∆ = 
5-1=4, we get the sequence (3, 4, 2, 1) gives Emax = 3, Tmax = 10 & Vmax = 4; (Vmax, 
Tmax, Emax) = (4, 10, 3), then the set SE = {(5, 8, 3), (6, 6, 3), (4, 10, 3)}. Let ∆ = 4 − 
1 = 3, There is no Vj ≤ ∆, then we stop. The Set of efficient solutions is SE = {(5, 
8, 3), (6, 6, 3), (4, 10, 3)} & SUM = 15. 

Note that algorithm (3) does not find all the efficient solutions, but it finds 
most of them as shown in the following example. 

Example (4): Consider the problem (P3) with the following data: pi = (7, 14, 3, 
1), di = (16, 20, 8, 2) and i = 1, 2, 3, 4 The algorithm (4) gives SE = {(7, 9, 4), (3, 
17, 8), (5, 5, 5)}, but the exact set of efficient solutions which is obtained by 
complete enumeration method is SE = {(7, 9, 4), (3, 17, 8), (5, 5, 5), (4, 23, 6)}. 

Note: We can use the BAB method to find the set of all efficient solutions. 

3.4. [1//F ( wEmax , Tmax, Vmax) Problem (P4)] 

This problem is denoted by: 

{ }max mmax axMin , ,w T VE  
s.t. { }min ,i i iV p T= , 1, ,i n= �  

( )i i i i iW E W d C≥ − , 1, ,i n= �  
0i iW E ≥ , 1, ,i n= �  

i i iT C d≥ − , 1, ,i n= �  
0iT ≥ , 1, ,i n= �  

The following algorithm (4) is used to solve the problem (P4) 
Algorithm (4) for problem (P4): 
Step (0): Determine the point ( max

wE , Tmax, maxV ∗ ), ( max
wE , maxT ∗ , Vmax), and 

( max
wE ∗ , Tmax, Vmax) by solving 1//Vmax by Lawler algorithm (LA), 1//Tmax by EDD, 

and 1// max
wE  by WMST rule. Let SE be the set of efficient (Pareto) solutions, set 

SE = {( max
wE , Tmax, maxV ∗ ), ( max

wE , maxT ∗ , Vmax), ( max
wE ∗ , Tmax, maxV ∗ )}. 

Step (1): Set ∆ = Vmax (WMST) 
Step (2): Solve 1/Vi ≤ ∆/Vmax problem by using Lawler algorithm (break tie to 

schedule the job j last with maximum SjWj = (dj − pj)Wj; let ( ( )
max max,w L LE V ) denote 

the outcome. Add ( )
max max,w L LE V

 to the set of Pareto optimal Points (SE), unless it 
is dominated by the previously obtained Pareto optimal points. Let ∆ = max

LV  – 
1, if ∆ > 0 repeat step (2), otherwise go to step (3). 

( ( )
max max,w L LE V ) to the set of Pareto optimal Points (SE), unless it is dominated by 
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the previously obtained Pareto optimal points. 
Let ∆ = max

LV  – 1, if ∆ > 0 repeat step (2), otherwise go to step (3). 
Step (3): The Pareto optimal set SE has been obtained with values for the Pa-

reto points. 
Step (4): Stop. 
Note Since the 1// max

wE  problem cannot always be solved to optimality by the 
WMST {SiWi = (di – pi)Wi} rule, hence the algorithm (4) does not give the set of 
all efficient solutions [9]. 

Example (5): Consider the problem (P4) with the following data: 
pi = (7, 3, 2, 7), di = (15, 9, 4, 16), Wi = (6, 3, 12, 1) and i = 1, 2, 3, 4. The 

WMST gives the sequence (4, 2, 3, 1) with max
wE  = 9, Tmax = 8 & Vmax = 4, ( max

wE , 

maxT ∗ , Vmax) = (9, 8, 4), EDD gives the sequence (3, 2, 1, 4) with max
wE  = 24, Tmax 

= 3 & Vmax = 3, ( max
wE ∗ , Tmax, Vmax) = (24, 3, 3), and Lawler algorithm (LA) gives 

the sequence (2, 1, 4, 3) with max
wE  = 30, Tmax = 15 & maxV ∗  = 2, ( max

wE , Tmax, 

maxV ∗ ) = (30, 15, 2). 
Then SE = {(9, 8, 4), (24, 3, 3), (30, 15, 2)}. 
Set ∆ = Vmax(WMST) = 4, we get the sequence (3, 4, 1, 2) gives max

wE  = 24, 
Tmax = 10 & Vmax = 3, ( max

wE , Tmax, Vmax) = (24, 10, 3). Then SE remains the same 
SE = {(9, 8, 4), (30, 15, 2), (24, 3, 3)} 

Set ∆ = 2, we get the sequence (4, 2, 1, 3) gives max
wE  = 9, Tmax = 15 & Vmax = 2, 

( max
wE , Tmax, Vmax) = (9, 15, 2). Then SE = {(9, 8, 4), (9, 15, 2), (24, 3, 3)}. 

Set ∆ = 1, There is no Vj ≤ ∆, then we stop. The set of efficient solutions is SE 
= {(9, 8, 4), (9, 15, 2), (24, 3, 3)}. 

4. [1//(Vmax + Tmax + Emax) Problem (p5)] 

The aim for the problem (P5) is to find processing order σ of the jobs on a single 
machine to minimize the sum of maximum late work, maximum tardiness, and 
maximum earliness (i.e. to minimize Vmax(σ) + Tmax(σ) + Emax(σ), Sσ ∈  (where 
S is the set of all feasible solutions)). It is clear that the problem (P5) is a special 
case of the problem (P4). 

In this section we decompose the 1//Vmax + Tmax + Emax problem into two sub-
problems with a simpler structure. For this problem let: 

( ) ( ) ( ){ }max max maxmin SM V T Eσ σ σ σ∈= + + . 

The problem (P5) can be decomposed into three subproblems (SP1), (SP2) and 
(SP3). 

( ){ }{ }

( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

, 1, ,

, 1, ,

min max

s.t.

0 if

, 1, ,

if

if

i i

i i i i i i

i i

i

i i

i

C d i n

C d p C d p i n

p C d

M

n

V

V

p i

σ σ

σ σ σ σ σ

σ

σ σ

σ σ σ

σ
=








≤ =

− ≤ ≤ =

≥ =

= +  +  

�

�

�

      SP1 
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( ){ }{ }

( ) ( ) ( )

( )

2 min max

s.t.
, 1, ,

0, 1, ,

i

i i i

i

M T

T C d i n

T i n

σ

σ σ σ

σ

=




= − = 


≥ = 

�

�

                    SP2 

( ){ }{ }

( ) ( ) ( )

( )

3 min max

s.t.
, 1, ,

0, 1, ,

i

i i i

i

M E

E d C i n

E i n

σ

σ σ σ

σ

=




= − = 


≥ = 

�

�

                    SP3 

4.1. Derivation of Lower Bound (LB) for Problem (P5) 

The lower bound (LB) is based on decomposing problem (P5) into three sub-
problems (SP1), (SP2) and (SP3). Then calculate M1 to be the minimum value for 
(SP1), M2 to be the minimum value for (SP2), and M3 to be the minimum value 
for (SP3), then applying the following theorem: 

Theorem (1): [5] 
M1 + M2 + M3 ≤ M where M1, M2, M3, and M are the minimum objective 

function values of (SP1), (SP2), (SP3), and (P5) respectively. 
To get a lower bound LB for the problem (P5): 

• For the subproblem (SP1), we compute M1 as a lower bound by sequencing 
the jobs using Lawler’s algorithm (LA) to find the minimum maximum late 
work Vmax. 

• For the subproblem (SP2), we compute M2 as a lower bound by sequencing 
the jobs using EDD order (i.e., sequencing the jobs in non-decreasing order 
of di) to find the minimum maximum tardiness Tmax. 

• For the subproblem (SP3), we compute M3 to be a lower bound by sequencing 
the jobs by MST order (i.e., sequencing the jobs in non-decreasing order of si 
= di - pi) to find the minimum maximum early job Emax. 

then applying theorem (1) to obtain: 

1 2 3LB M M M= + +  

4.2. Heuristic Method to Calculate Upper Bound (UB) for the 
Problem (p5) 

• A simple heuristic is obtained by sequencing the jobs using Lawler’s algo-
rithm (LA) to find maxV ∗ , Tmax, and Emax, then UB1 = maxV ∗ (LA) + Tmax(LA) + 
Emax(LA). 

• UB2 is obtained by ordering the jobs in EDD order, that is, sequencing the 
jobs i, ( 1, ,i n= � ) in non-decreasing order of di to find Vmax, maxT ∗ , and Emax, 
then UB2 = Vmax(EDD) + maxT ∗ (EDD) + Emax(EDD). 

• UB3 is obtained by ordering the jobs in MST order, that is, sequencing the 
jobs i, ( 1, ,i n= � ) in non-decreasing order of si = di − pi to find Vmax, Tmax, 
and maxE∗ , then UB3 = Vmax(MST) + Tmax(MST) + maxE∗ (MST). Then UB = 
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min{UB1, UB2, UB3}. 

4.3. Branch and Bound (BAB) Method 

Our BAB method is based on the forward sequencing branching rule for which 
nodes at level k of the search tree correspond to the initial partial sequence in 
which jobs are sequenced in first k positions [6]. 

The LB at any node is the cost of scheduling jobs (this cost depends on the 
objective function) and the cost of unsequenced jobs (this cost depends on the 
derived lower bound (LB)). At any level of the BAB method, if a node has LB ≥ 
UB, then this node is dominated. 

If the branching ends at a complete sequence of jobs, then this sequence is 
evaluated, and if its value is less than the current (UB), this (UB) is reset to take 
that value. The procedure is then repeated until all nodes have been considered 
using backtracking. The backtracking procedure is the BAB method's movement 
from the lowest to the upper level. The (UB) at the end of this procedure is the 
optimum for our scheduling problem (P5). Hence, we get at least one optimal 
solution using the BAB method. The BAB method is improved by using efficient 
(LB), good (UB), and dominance rules. If it can be shown that an optimal solu-
tion can always be generated without branching from a particular node of the 
search tree, then that node is dominated and can be eliminated. Dominance 
rules usually specify whether a node can be eliminated before its (LB) is calcu-
lated. Dominance rules are beneficial when a node that has a (LB) that is less 
than the optimal solution can be eliminated. 

Example (6): Consider the problem (P5) with the following data: 
pi = (2, 5, 7, 4), di = (6, 21, 10, 9) and i = 1, 2, 3, 4 
Lawler’s algorithm gives a sequence (4, 3, 1, 2) where maxV ∗  = 2, Tmax = 12 & 

Emax = 5, then UB1 = maxV ∗ (LA) + Tmax(LA) + Emax(LA) = 2 + 12 + 5 = 19, and  
 

 
Figure 1. Branch and Bound (BAB) Method. 
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EDD rule gives a sequence (1, 4, 3, 2), where Vmax(EDD) = 3, maxT ∗ (EDD) = 3 & 
Emax(EDD) = 4, then UB2 = Vmax(EDD) + maxT ∗ (EDD) + Emax(EDD) = 3 + 3 + 4 = 
10, and MST rule gives a sequence (3, 1, 4, 2), where Vmax(MST) = 4, Tmax(MST) 
= 4 & maxE∗ (MST) = 3, then UB2 = Vmax(MST) + Tmax(MST) + maxE∗ (MST) = 4 + 
4 + 3 = 11 

Hence the minimum upper bound is UB = min {UB1, UB2, UB3} = 10 
LB1 = maxV ∗ (LA) = 2, LB2 = maxT ∗ (EDD) = 3 & LB3 = maxE∗ (MST) = 3 
ILB = LB1 + LB2 = 2 + 3 + 3 = 8 
We now give the BAB tree algorithm to find an optimal solution for (P5) in 

Figure 1. 

5. Local Search Heuristic 

In this section, several local search methods are implemented on the problem of 
scheduling n jobs on a single machine to minimize the sum of the maximum late 
work, maximum tardiness, and maximum earliness, i.e., to minimize (Vmax + 
Tmax + Emax) for the problem (p5). 

The local search provides approach high-quality solutions to NP-hard prob-
lems of realistic size in a reasonable time, and it’s been widely used recently. 
Since it’s simpler to construct algorithms using these techniques and get rea-
sonable approximation results, several researchers employ them. The local 
search methods start with an initial solution and then continually try to add bet-
ter solutions by searching neighborhoods. We proposed several local search me-
thods and compared the results of these methods with the results of Algorithm 
(3) for 1//(Vmax + Tmax + Emax). 

Definition: [14] 
A pair (S, f) illustrates a combinatorial optimization problem, where the solu-

tion set S is the set of all feasible solutions, and the cost function f is a mapping 
:f S R→ . The problem is to find a globally optimal (minimal) solution, i.e., an 

s S∗ ∈ , such that ( ) ( )f s f s∗ ≤  for all s S∈ . 
Definition: [15] 
A neighborhood function N ∗  is a mapping ( ):N S P S∗ →  which specifies 

for each s S∈  a subset ( )N s∗  of S neighbors of s. 
Glass and Potts (1995) [15] gave four possible neighborhoods below; each is 

illustrated by considering a typical neighbor of the sequence (1, 2, 3, 4, 5, 6, 7, 8) 
in a problem where there are eight jobs labeled 1, ∙∙∙, 8. 

(a) Transpose: Swap two adjacent jobs. Thus (1, 2, 4, 3, 5, 6, 7, 8) is a robhgien. 
(b) Insert: Remove a job from one position in the sequence and insert it at 

another position (either before or after the original position). Thus, (1, 5, 2, 3, 4, 
6, 7, 8) and (1, 2, 3, 4, 6, 7, 5, 8) are both neighbors. 

(c) Swap: Swap two jobs that may not be adjacent. Thus, (1, 6, 3, 4, 5, 2, 7, 8) is 
a neighbor. 

(d) Block Insert: Move a subsequence of jobs from one position in the se-
quence and insert it at another position. Thus, (1, 4, 5, 2, 3, 6, 7, 8) is a neighbor. 
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Definition: [2] 
Let (S, f) be an instance of a combinatorial optimization problem, and let N ∗  

be a neighborhood function. A solution s S∗ ∈  is called a local optimal (mi-
nimal) solution with respect to N ∗  if ( ) ( )f s f s∗ ≤  for all ( )s N s∗ ∗∈ . The 
neighborhood function N ∗  is called exact if every local minimum with respect 
to N ∗  is also a global minimum. 

5.1. Descent Method (DM) 

This method is a simple form of a local search method [16]. It can be executed as 
follows: 

1) Initialization: 
In this step, a feasible solution ( ) ( )( )1 , , nσ σ σ= � , obtained from the MST 

rule is chosen to be the initial current solution for descent method, with objec-
tive function value Z. 

2) Neighborhood Generation: 
In this step, a feasible neighbor ( ) ( )( )1 , , nσ σ σ′ ′ ′= �  of the current solution 

is generated by randomly choosing two jobs from σ, (not necessarily adjacent), 
transposing their positions, and computing the function value denoted by Z'. 

3) Acceptance Test: 
Now consider the test of whether to accept the move from σ to σ' or not, as 

follows: 
• If Z Z′ < : then σ' replace σ as the current solution, and we set Z Z′ = , and 

then return to step (2). 
• If Z Z′ ≥ : then σ is the current solution and return to step (2). 

4) Termination condition: 
After a number of iterations, the algorithm is stops at a near optimal-solution. 

5.2. The Simulated Annealing (SA) Method 

In this method, improving and neutral moves are always accepted. While dete-
riorating actions are accepted according to a given probability acceptance func-
tion. 

The following steps describe the SA method [17]: 
1) Initialization: 
Is the same as initialization in DM and with its objective function value Z. 
2) A feasible neighborhood of σ is generated by the same technique described 

in DM to get σ' and Z'. 
3) Acceptance Test: 
In this step we calculate the difference value between the current initial solu-

tion Z and the new value Z', Z Z′∆ = −  then we have: 
• If ∆ ≤ 0, then Z' is accepted as a new current solution, and set Z Z′ = , and 

go to step (2). 
• If ∆ > 0, then Z' is accepted with P(∆) = exp(−∆/t), which is the probability of 

accepting a move, where t is known as temperature. The temperature t starts 
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at a relatively high value and then gradually decreases slowly as the algorithm 
progresses. We chose (40˚) as an initial temperature value for the (SA). Let m 
be the number of iterations, for each iteration j, 1 j m≤ ≤  a temperature tj is 
drive from [16] as: 

( )1 11j j jBt t t− −+ ×= , 2, ,j m= �  

where 1 11t tB m− ×= , t1 = 40, m = is the number of iterations. 
4) The algorithm is stopped after a number of iterations at the near-optimal 

solution. 

5.3. Genetic Algorithm (GA) 

A genetic algorithm is a general search and optimization method that works on a 
population of feasible solutions (individuals) to a given problem. The following 
steps have described the structure of GA [18]: 

1) Initialization: 
The initial population can be constructed by using heuristic methods. In this 

paper, we generated the initial population starting with (m = 30) two of them by 
using MST rule and Lawler algorithm, and the remaining ones are generated 
randomly. 

2) New population: 
A new population is created by repeating the following substeps until the new 

population is completed. 
a) Selection: 
Selecting the individuals according to fitness value will usually form the next 

generation’s parents. 
b) Crossover: 
Homogeneous mixture crossover (HMX) [16] is defined in the following: 
The mixture of the two parents uniformly by making a set of (m) genes, the 

odd position from the first parent and the even position from the second parent. 
Then separate genes without repetition of the gene. If the gene (k) does not exist 
in the child, then keep it and put (0) in (m). otherwise, we keep gene k in the 
second child and put (1) in (m) until the genes are exhausted. For example 

Parent                    Mixture 
Parent (1)    1 3 2 5 4 9 6 8 7 → 1 4 3 5 2 9 5 6 4 7 9 3 6 1 8 2 7 8 
Parent (2)    4 5 9 6 7 3 1 2 8  0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 
Exchanging   →   1 4 3 5 2 9 6 7 8  Child (1) 

5 4 9 3 6 1 2 7 8  Child (2) 
c) Mutation: 
The mutation is a genetic operator used to maintain genetic diversity from 

one generation of a population of chromosomes (solutions) to the next. 
Pair-wise (swap) mutation is applied on each pair of parent solutions to generate 
two new solutions (children). For example: 

1 3 2 5 4 9 6 8 7 swap    →    1 3 6 5 4 9 2 8 7 
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d) Termination Condition: 
The algorithm is terminated after a number of iterations. 

5.4. The Tree Type Heuristics Method (TTHM) 

The branch and bounded (BAB) method can be used to obtain the upper bound 
on the optimal value of the objective function if some of the possible optimal 
partial schedules have not been explored. The tree-type heuristic method [16] 
uses a (BAB) method without using a backtracking procedure. In the primary 
step of this method, the lower bound (LB) is evaluated at all nodes in each level 
of the search tree, then some of the nodes within each level of the search tree are 
chosen from which to branch. Usually, one node is selected with each level and 
stops at the first complete sequence of the jobs to be the solution. 

6. Experimental Results 

6.1. Computational Results 

Algorithm (3), BAB, and all local search algorithms Decent Method (DM), Si-
mulation Annealing (SA), Genetic Algorithm, and Tree Type heuristics method, 
are coded in MATLAB 9.12 (R2022a) and implemented on 11th Gen Intel(R) 
Core (TM) i7-1185G7 @ 3.00GHz 3.00 GHz, with RAM 32.0 GB personal com-
puter. 

6.2. Test Results for All Algorithms 

Table 1 displays the outcomes of using the algorithm (3) to get a set of efficient 
solutions and minimum sum of Vmax, Tmax, and Emax for the problem (P3) on 
samples of different jobs with five experiments for each. The results of efficient 
solutions compare with those obtained from the BAB method for n < 10, and the 
complete enumeration method (CEM), which generates all solutions for n < 7. 

Table 2 displays the minimum sum of Vmax, Tmax, and Emax using Local Search 
Heuristic methods on the same data in Table 1 and compares the results with 
the SUM obtained from Algorithm (3), and BAB. 

Table 3 displays the minimum sum of Vmax, Tmax, and Emax obtained by Local 
Search Heuristic methods, and the SUM from Algorithm (3) n ≥ 10. 

 
Table 1. Displays the outcomes of using the algorithm (3) to get a set of efficient solu-
tions and minimum sum of Vmax, Tmax, and Emax for the problem (P3). 

n EX Algorithm 3 CEM SUM BAB 

3 

1 
(11, 12, 3), (8, 13, 3),  

(7, 16, 3) 
(11, 12, 3), (8, 13, 3),  

(7, 16, 3) 
24 24 

2 (4, 5, 2) (4, 5, 2) 11 11 

3 (3, 13, 2), (5, 5, 2) (3, 13, 2), (5, 5, 2) 12 12 

4 (4, 6, 1) (4, 6, 1) 11 11 

5 (6, 6, 3) (6, 6, 3) 15 15 
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Continued  

4 

1 (2, 19, 4), (3, 3, 4) (2, 19, 4), (3, 3, 4) 10 10 

2 (8, 9, 0) (8, 9, 0) 17 17 

3 (4, 6, 0), (3, 9, 1) (4, 6, 0), (3, 9, 1) 10 10 

4 (5, 15, 1), (6, 6, 4) (5, 15, 1), (8, 11, 3), (6, 6, 1) 16 13 

5 (5, 13, 1) (5, 13, 1) 19 19 

5 

1 (4, 19, 1), (5, 9, 0) (4, 19, 1), (5, 9, 0) 14 14 

2 (10, 18, 5), (6, 19, 1) (10, 18, 1), (6, 19, 1) 26 26 

3 
(6, 22, 3), (9, 14, 0),  
(10, 13, 0), (8, 22, 1) 

(6, 21, 3), (9, 14, 0),  
(10, 13, 0), (8, 21, 1) 

23 23 

4 (7, 19, 1) (7, 19, 1) 27 27 

5 (4, 9, 5) (4, 9, 5) 18 18 

6 

1 (5, 19, 3), (10, 16, 3) (5, 19, 3), (10, 16, 3) 27 27 

2 (5, 16, 3), (7, 9, 2) (5, 16, 3), (7, 9, 2) 18 18 

3 (11, 25, 0), (10, 25, 3) (11, 25, 0), (10, 25, 3) 36 36 

4 (7, 9, 8), (3, 12, 2) (7, 9, 2), (3, 12, 2) 17 17 

5 (4, 13, 11), (5, 5, 8) (4, 13, 11), (5, 5, 8) 18 18 

7 

1 (6, 25, 3)  34 34 

2 (2, 28, 6), (6, 6, 2), (3, 12, 2)  14 14 

3 (10, 15, 2), (7, 16, 2)  25 24 

4 (8, 48, 3), (1, 40, 8)  49 49 

5 
(3, 29, 4), (7, 10, 2), (5, 17, 2), 

(3, 21, 5) 
 19 19 

8 

1 (7, 7, 13)  27 27 

2 (11, 46, 2), (10, 54, 1)  59 58 

3 (10, 27, 0), (9, 33, 0), (8, 33, 1)  37 37 

4 (10, 38, 1), (11, 35, 1), (9, 38, 3)  47 46 

5 (4, 14, 9), (8, 9, 15)  27 26 

9 

1 
(2, 41, 12), (6, 8, 10), (6, 6, 12), 
(5, 14, 10), (4, 16, 1) (3, 40, 13) 

 24 22 

2 (0, 0, 23)  23 23 

3 (7, 24, 1)  32 32 

4 (7, 28, 3), (8, 27, 5)  38 37 

5 (7, 17, 3)  27 27 

10 

1 (8, 26, 0), (11, 25, 0), (6, 35, 0)  34 33 

2 
(10, 28, 3), (11, 25, 6),  
(9, 31, 3), (7, 31, 11) 

 41 38 

3 
(5, 8, 6), (6, 7, 8), (4, 16, 6),  

(3, 45, 9) 
 19 19 

4 (10, 39, 0), (9, 46, 0), (8, 46, 3)  49 48 

5 (11, 30, 3), (9, 31, 2)  42 41 
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Table 2. Displays the minimum sum of Vmax, Tmax, and Emax using Local Search Heuristic 
methods on the same data in Table 1 and compares the results with the sum obtained 
from Algorithm (3), and BAB. 

n EX optimal DM SM GA TTHM Algorithm 3 BAB 

3 

1 24 24 24 24 26 24 24 

2 11 11 11 11 11 11 11 

3 12 12 12 12 18 12 12 

4 11 11 11 11 11 11 11 

5 15 15 15 15 15 15 15 

  No of opt. 5 5 5 3 5 5 

Av. time in Sec. 0.1875 0.0399 0.1800 0.0053 0.0163 0.0241 

4 

1 10 10 10 10 25 10 10 

2 17 17 17 17 22 17 17 

3 10 10 10 10 10 10 10 

4 13 13 13 13 21 16 13 

5 19 19 19 19 19 19 19 

  No of opt. 5 5 5 2 4 5 

Av. time in Sec. 0.1933 0.0407 0.1839 0.0058 0.0176 0.0317 

5 

1 14 14 14 14 14 14 14 

2 26 29 26 26 26 26 26 

3 23 23 23 23 30 23 23 

4 27 27 27 27 28 27 27 

5 18 18 18 18 19 18 18 

  No of opt. 4 5 5 2 5 5 

Av. time in Sec. 0.1930 0.0438 0.1821 0.0057 0.0950 0.0441 

6 

1 27 29 27 27 27 27 27 

2 18 18 18 18 24 18 18 

3 36 36 36 36 36 36 36 

4 17 17 17 17 17 17 17 

5 18 18 18 18 18 18 18 

  No of opt. 4 5 5 4 5 5 

Av. time in Sec. 0.1908 0.0480 0.1824 0.0053 0.0258 0.0688 
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Continued  

7 

1 34 34 34 34 34 34 34 

2 14 14 14 14 34 14 14 

3 24 25 24 24 25 25 24 

4 49 49 49 49 50 49 49 

5 19 19 19 19 31 19 19 

  No of opt. 4 5 5 1 4 5 

Av. time in Sec. 0.1968 0.0509 0.1911 0.0059 0.0277 0.3385 

8 

1 27 27 27 27 27 27 27 

2 58 58 58 58 65 59 58 

3 37 38 37 37 42 37 37 

4 46 46 46 46 49 47 46 

5 26 26 26 26 27 27 26 

  No of opt. 4 5 5 1 2 5 

Av. time in Sec. 0.1965 0.0607 0.1973 0.0057 0.0688 2.6539 

9 

1 22 22 22 22 30 24 22 

2 23 23 23 23 23 23 23 

3 32 32 32 32 32 32 32 

4 37 37 37 37 38 38 37 

5 27 27 27 27 27 27 27 

  No of opt. 5 5 5 3 3 5 

Av. time in Sec. 0.2035 0.06218 0.2018 0.0064 0.0273 7.8249 

10 

1 33 34 33 33 41 34 33 

2 38 38 38 38 43 41 38 

3 19 19 19 19 26 19 19 

4 48 48 48 48 55 49 48 

5 41 42 41 41 42 42 41 

  No of opt. 3 5 5 0 1 5 

Av. time in Sec. 0.1977 0.0671 0.1954 0.0055 0.0238 2654.8582 

https://doi.org/10.4236/jamp.2024.122043


K. Alshaikhli, A. Alshaikhli 
 

 

DOI: 10.4236/jamp.2024.122043 678 Journal of Applied Mathematics and Physics 
 

Table 3. displays the minimum sum of Vmax, Tmax, and Emax obtained by Local Search 
Heuristic methods, and the sum from Algorithm (3) n ≥ 10. 

n EX optimal DM SM GA TTHM Algorithm 3 BAB 

100 

1 759 764 774 774 1573 759 x 

2 610 610 624 614 4327 624 x 

3 863 863 876 863 1000 872 x 

4 596 596 596 596 2834 596 x 

5 874 894 895 894 1868 874 x 

  No of opt. 3 1 2 0 3  

Av. time in Sec. 0.3011 0.4940 0.2915 0.0597 0.0249  

500 

1 2889 2903 2903 2902 11,154 2889 x 

2 1566 1572 1572 1572 2262 1566 x 

3 1612 1617 1617 1612 4503 1617 x 

4 1979 1979 1989 1979 8486 1988 x 

5 1138 1139 1139 1139 3977 1138 x 

  No of opt. 1 0 2 0 3  

Av. time in Sec. 0.6981 2.8196 0.6891 2.4845 0.0810  

1000 

1 2001 2001 2001 2001 2813 2001 x 

2 2640 2648 2648 2648 29,837 2640 x 

3 1811 1811 1811 1811 1894 1811 x 

4 2678 2732 2732 2732 10,057 2678 x 

5 4013 4015 4015 4013 12,992 4013 x 

  No of opt. 2 2 3 0 5  

Av. time in Sec. 1.2873 6.9351 1.2615 19.0697 0.17836  

1500 

1 2372 2376 2376 2376 34,793 2372 x 

2 2734 2746 2746 2746 3885 2734 x 

3 2624 2651 2651 2651 36,126 2624 x 

4 3175 3202 3202 3202 13,788 3175 x 

5 2143 2164 2164 2164 23,346 2143 x 

  No of opt. 0 0 0 0 5  

Av. time in Sec. 1.8198 13.5740 1.8171 51.8916 0.3083  
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Continued  

2000 1 3518 3532 3531 3531 3531 3518 x 

 2 3601 3601 3602 3602 12,034 3602 x 

 3 2456 2468 2468 2468 8609 2456 x 

 4 2541 2567 2567 2567 20,922 2541 x 

 5 2720 2747 2747 2747 5000 2720 x 

  No of opt. 1 0 0 0 4  

Av. time in Sec. 2.2309 20.0777 2.4222 115.0507 0.4138  

2500 1 3741 3755 3755 3755 70,285 3741 x 

 2 4151 4189 4189 4189 89,556 4151 x 

 3 3453 3455 3455 3455 32,784 3453 x 

 4 3387 3387 3387 3387 57,419 3387 x 

 5 3362 3398 3398 3398 7220 3362 x 

  No of opt. 1 1 1 0 5  

Av. time in Sec. 2.9920 30.9195 2.9153 245.7569 0.5907  

3000 1 3374 3381 3381 3381 113,080 3374 x 

 2 3891 3925 3925 3925 82,982 3891 x 

 3 2760 2765 2765 2765 12,794 2760 x 

 4 5084 5086 5086 5086 22,620 5084 x 

 5 4106 4107 4107 4107 28,783 4106 x 

  No of opt. 0 0 0 0 5  

Av. time in Sec. 3.4263 40.9182 3.4889 393.2098 0.7786  

3500 1 5327 5361 5361 5361 17,022 5327 x 

 2 4774 4780 4780 4780 21,512 4774 x 

 3 3025 3025 3025 3025 4200 3025 x 

 4 3053 3053 3053 3053 64,133 3053 x 

 5 2853 2872 2872 2872 31,780 2853 x 

  No of opt. 2 2 2 0 5  

Av. time in Sec. 4.9491 55.2326 4.9758 847.2746 1.2653  
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Continued  

4000 1 6124 6147 6147 6147 6147 6124 x 

 2 4196 4202 4202 4202 106,519 4196 x 

 3 4453 4499 4499 4499 5350 4453 x 

 4 4693 4694 4694 4694 107,738 4693 x 

 5 7584 7589 7589 7589 59,895 7584 x 

  No of opt. 0 0 0 0 5  

Av. time in Sec. 5.4975 68.4537 5.5505 1201.5244 1.5200  

4500 

1 4758 4760 4760 4760 39,727 4758 x 

2 4867 4874 4874 4874 5933 4867 x 

3 3921 3929 3929 3929 36,110 3921 x 

4 5577 5579 5579 5579 77,961 5577 x 

5 4416 4418 4418 4418 51,170 4416 x 

  No of opt. 0 0 0 0 5  

Av. time in Sec. 5.8256 81.7492 8.8406 1691.8303 2.2209  

5000 

1 7452 7452 7452 7452 27,028 7452 x 

2 6479 6479 6479 6479 81,149 6479 x 

3 4704 4704 4704 4704 35,999 4704 x 

4 8576 8612 8612 8612 94,709 8576 x 

5 7834 7834 7834 7834 159,234 7834 x 

  No of opt. 4 4 4 0 5  

Av. time in Sec. 6.3790 96.7463 6.8763 2351.9938 2.5285  

 
From our Computational results using random data we conclude that: 
1) The number of efficient solutions (points) of an algorithm (3) is less than 

the number of jobs n. 
2) Algorithm (3) can find most of efficient points and this clear from the re-

sults of Table 1 from the 50 test problems for n = 3, 4, ∙∙∙, 10 only for: 
• n = 4, the experiment (4) gives SUM = 16, and the exact SUM = 14 which is 

obtained by (com) and BAB method, n = 7 experiment (3) gives SUM = 25 
and the exact SUM = 24 which is obtained by BAB method. 

• n = 8 experiment (2) gives SUM = 59 and the exact SUM = 58 which is ob-
tained by BAB method. 

• n = 8 experiment (4) gives SUM = 47 and the exact SUM = 46 which is ob-
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tained by BAB method. 
• n = 8 experiment (5) gives SUM = 27 and the exact SUM = 26 which is ob-

tained by BAB method. 
• n = 9 experiment (1) gives SUM = 24 and the exact SUM = 22 which is ob-

tained by BAB method. 
• n = 9 experiment (4) gives SUM = 38 and the exact SUM = 37 which is ob-

tained by BAB method. 
• n = 10 experiment (1) gives SUM = 34 and the exact SUM = 33 which is ob-

tained by BAB method. 
• n = 10 experiment (2) gives SUM = 41 and the exact SUM = 38 which is ob-

tained by BAB method. 
• n = 10 experiment (4) gives SUM = 49 and the exact SUM = 48 which is ob-

tained by BAB method. 
• n = 10 experiment (5) gives SUM = 42 and the exact SUM = 41 which is ob-

tained by BAB method. 
3) The algorithm (3) can be used for solving problems of the form 1//F (Vmax, 

Tmax, Emax). 
4) Table 2 compares DM, SA, GA, TTHM, Algorithm (3), and BAB. We 

found that the Local Search Heuristic methods give more efficient solutions than 
algorithm (3) for n ≤ 10. 

5) Table 3 for n ≥ 10, Algorithm (3) gives more efficient solutions than Local 
Search Heuristic methods when n → ∞. 

6) The average time (in seconds) for five experiments when n = 5000 is 2.5285 
for an algorithm (3), DM is 6.3790, GA is 6.8763. SA is 96.7463, and TTHM is 
2351.9938. 

7) Since problem (P5) is a particular case of problem (P3), hence algorithm (3) 
can be used to find near-optimal solutions without using the BAB method and in 
a reasonable time for large n. 

8) Local Search Heuristic approaches (DM, SA, and GA) are effective means 
of obtaining efficiency in a fair amount of time. Table 3 demonstrates the effec-
tiveness of these approaches and shows a small variation in the results when 
compared to algorithm (3). 
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