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Abstract 
In this paper, we treat the spread of COVID-19 using a delayed stochastic 
SVIRS (Susceptible, Infected, Recovered, Susceptible) epidemic model with a 
general incidence rate and differential susceptibility. We start with a determi-
nistic model, then add random perturbations on the contact rate using white 
noise to obtain a stochastic model. We first show that the delayed stochastic 
differential equation that describes the model has a unique global positive so-
lution for any positive initial value. Under the condition R0 ≤ 1, we prove the 
almost sure asymptotic stability of the disease-free equilibrium of the model. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, 
SARS-CoV-2. The first known case was identified in the city of Wuhan, China in 
December 2019. The disease has spread around the world, leading to the 
COVID-19 pandemic. The World Health Organization (WHO) declared the 
outbreak a public health emergency of international concern on January 30, 
2020, and a pandemic on March 11, 2020. As of June 25, 2022, the pandemic has 
caused over 543 million cases and 6.32 million confirmed deaths, making it one 
of the deadliest in history. 

In an attempt to control the COVID-19 pandemic and its consequences, many 
countries resorted to public health measures such as isolation, containment, and 
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barrier measures that had disastrous long-term economic consequences [1] [2] 
[3]. Thus, vaccination has remained the most appropriate means of controlling a 
pandemic, particularly COVID-19 [4] [5] [6]. Since the first COVID-19 vaccines 
became available in 2021, several countries have implemented vaccination cam-
paigns focusing on high-risk groups such as the elderly at high risk of exposure 
[7] [8]. Since, studies have shown that the severity of the disease increases with 
age and that the risk of developing symptoms increases by 4% per year in adults 
between 30 and 60 years of age (see [9]). Studies on the efficacy of COVID-19 
vaccination suggest primarily increased protection against severe cases rather 
than protection against infection. Thus, a vaccinated person may well be infected 
with COVID-19 but will only develop a severe form with a very low probability 
(see e.g. [7]). What’s more, in difficult economic environments such as those in 
developing countries, vaccines may not be accessible to everyone. It is therefore 
highly appropriate to implement vaccination strategies targeting high-risk 
groups, such as the elderly. 

Mathematical modeling has played an important role in controlling an epi-
demic in a population [10] [11] [12]. At the beginning of the COVID-19 pan-
demic, authors proposed mathematical models to study the spread of SARS-CoV-2 
in some regions of the world [13] [14] [15] [16]. In [17], it is reported that indi-
viduals infected with Sars-cov2 usually develop symptoms on average 5 - 6 days 
after infection. The median time to symptom onset for SARS-CoV-2 is estimated 
to be 3 days, the shortest 1 day and the longest 24 days [18]. In view of [19], a 
person infected with Sars-cov2 has an average of 5.5 (95% CI: 5.1 - 5.9) days of 
latency period, which corresponds to the time between infection and when it 
becomes infectious. Thus, the average incubation period is a good approxima-
tion of the average latency period, with a difference of about one to two days. In 
the literature, many authors have used delay stochastic differential equations to 
model the dynamics of the spread of an infectious disease with a latency or in-
cubation period (see e.g. [20] [21] [22]). In [23], the authors used a stochastic 
delayed model to study a deconfinement strategy in Morocco. In [24], a stochas-
tic epidemic SIRC (Susceptible-Infectious-Recovered-Cross immune) model with 
delay was proposed to analyze the effect of cross-immunity in the spread of 
COVID-19. In [25], the authors studied the effectiveness of quarantine using a 
stochastic delayed SIAQR (Susceptible-Infectiouse-Asymptomatic-Qu- aran-
tine-Recovered) model. In [26] [27], the authors used stochastic SEIRV and 
SIRV models that account for vaccination in the transmission of COVID-19 to 
study its spread. 

In deterministic framework, epidemics are commonly studied by using de-
terministic compartmental models where the population is divided into several 
classes, namely susceptible, infected, and recovered groups. For example in [28], 
a delayed SIRS epidemic model is proposed, the authors use a nonlinear and 
functional incidence rate ( ) ( ) ( )( )

0
d

h
S t g I tβ τ τ τ−∫   where ( )S t  is the 

number of susceptible at time t, ( )I t τ−  the number of infected individual at 
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time t τ− , g a probability density on [ ]0,h  and   a function from +  to 
+  and satisfying certain assumptions. This class of incidence rate is used to 

model the spread of a disease in which the transmission of infection occurs 
through vectors that have an incubation time τ  to become infectious [29] [30]. 
This incidence rate stipulates that the susceptible at time t can only be infected 
by infectious people who have been infected at time t τ− , [ ]0,hτ ∈ . Then, 
other authors have considered this type of incidence rate as a generalization of 
the standard bilinear incidence rate and which can be used to model diseases 
that are not vector-borne (see e.g. [31] [32] [33]). In the stochastic framework, 
some authors have used this type of incidence rate with a random perturbation 
modeled by Brownian motion. In particular, in [26] [27] the authors use a de-
layed stochastic model with this class of incidence rate to study the spread of 
COVID-19. 

In the transmission process of some infectious diseases, the susceptibility to 
infection differs between groups of people, for example, age groups, immuno-
logical status, or fragile subgroups such as pregnant women for malaria. In the 
deterministic framework, many researchers have considered an epidemic model 
in which the susceptibility varies from individual to individual [34] [35] [36] 
[37]. In the reality of the spread of the COVID-19 disease, the susceptibility to 
infection of individuals and the burden depends on the age group. In [38], the 
authors compiled several serological studies from around the world and deduced 
the following observations: young adults under the age of 35 had the highest se-
roprevalence of almost any age group; infection rates in people over the age of 55 
were significantly lower than in people aged 18 - 54; the highest infection rates in 
New York State were in people aged 45 - 54. They also note that the age group 
for which the seroprevalence estimate is highest varies according to location. An 
analysis of the number of COVID-19 cases in Mali as of June 5, 2022 [39] con-
firms the same trend. In Mali, the age group under 34 years represented up to 
44.7% of confirmed cases, the age group 35 - 54 years represented 36.1% of con-
firmed cases while the age group Age 55 and over represented 19.2% of con-
firmed cases. Likewise in Mali, the risk of hospitalization or death following in-
fection by SARS-CoV-2 increases significantly with age. Recently, many studies 
on COVID-19 transmission have emphasized the heterogeneity in the number of 
cases and the severity across age groups [9] [40] [41]. 

In the current literature, to our knowledge, there is no stochastic delayed SIRS 
model with vaccination that takes into account this differential susceptibility as-
pect for COVID-19. This work therefore allows the development of a new sto-
chastic delayed SIRS with vaccination subgroup epidemic model taking into ac-
count not only the differential susceptibility but also a general transmission rate 
for the spread of COVID-19 and which can be used by public health authorities 
to adopt control strategies for COVID-19 and any other similar epidemic. In this 
work, we first propose a deterministic model describing the spread of COVID-19 
under the hypothesis of differential susceptibility according to age groups and 
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recourse to vaccination of the oldest subgroup. More precisely, we assume that 
the population is subdivided into age classes (1 - 35, 36 - 54 and >54). In order to 
take into account the effect of random variations in the environment on the 
contact process, we add a random disturbance in the contact rate of the deter-
ministic model. We thus obtain a stochastic epidemic model described by a sto-
chastic differential equation with delay. To ensure that the model is well-posed, 
we first prove the existence and uniqueness of a positive global solution. Based 
on the Lyapunov technique combined with stochastic analysis, we establish 
disease extinction below the threshold 0 1R < , where 0R  is the basic repro-
duction number of the deterministic model. Finally, numerical simulations are 
carried out to illustrate the theoretical results in a practical context. 

The remainder of this work is structured as follows. In Section 2 we describe 
the model and Section 3 presents some definitions and notation. In Section 4 we 
study the consistency of the model, i.e. the well-posedness. In Section 5 we ana-
lyze the almost stability of the disease-free-equilibrium state of the model and in 
Section 6 we illustrate our theoretical results with numerical simulations. Finally, 
in section 7 we conclude and present some perspectives. 

2. Model Formulation 

In this work, we propose a stochastic SVIRS (susceptible-vaccinated-infectious- 
retired-susceptible) epidemic model with delay and different types of susceptible 
individuals in which the incidence rate is  

( ) ( ) ( )( )
0

d
h

S t g I tβ τ τ τ−∫  . 

2.1. Deterministic Model  
4As mentioned above, the severity and the transmission of COVID-19 to a sus-
ceptible individual by an infectious individual depends on several factors, for in-
stance, the behaviour of susceptible individuals and the age groups. In the pre-
vious section, we explained that vaccination does not protect against SARS-CoV-2 
infection but does protect against severe forms of the disease [7] [8]. It is there-
fore entirely appropriate to implement vaccination strategies targeting high-risk 
groups such as the elderly. On the other hand, studies carried out in [9] [38] 
show us that the severity and probability of catching COVID-19 depends on the 
age group. In some cases, such as Mali, the variability in susceptibility according 
to age group (1 - 35, 36 - 54 and >54) was relevant. To take into account some of 
these specificities, we then assume that the entire population ( )N t  at time t is 
divided into six compartments, namely susceptible individuals ( )1S t , ( )2S t , 

( )3S t , vaccinated individuals ( )V t , infected individuals ( )I t  and recovered 
individuals ( )R t . 

2.1.1. Model Assumption 
1) The population is subdivided into three age groups represented by the 

compartments S1, S2, S3 and defined as follows:  
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S1: the sub-population of susceptibles who are 35 years old or younger;  
S2: the sub-population of susceptibles over 35 and under 55 years old;  
S3: the sub-population of susceptibles 55 years or older.  
2) Only the susceptible sub-population aged 55 or older are vaccinated and 

denoted by V. Moreover, the vaccinated individuals develop immunity related to 
the vaccination and move into the R compartment of recovered individuals.  

3) Births occur only in the susceptible class S1 at the rate Λ, since the new-
borns are less than one year old.  

4) The functions   and g satisfy the following assumptions A1-A3: 
(A1)   is Lipschitz continuous on [ )0,+∞  and satisfies ( )0 x x< ≤ , 

0x∀ ≥ .  
(A2)   is monotone increasing on [ )0,+∞ , with ( )0 0=   
(A3) g is a probability density function with support [ ]0,h .  

2.2.2. Parameter Description and the Model Chart Flow 
In this model, the births occur only in the susceptible class S1 at the rate Λ. The 
parameters 1µ , 2µ , 3µ , 4µ , Iµ  and Rµ  are respectively the mortality rates 
in the sub-populations S1, S2 and S3 of susceptible individuals and those in the 
compartments V, I and R. 1β , 2β , 3β , 4β  are the contact coefficients (dis-
ease transmission rate). γ  is the rate of recovery of infectious and the incuba-
tion period τ  of the disease is assumed to be distributed in [ ]0,h . The trans-
fer rate from compartment S1 to compartment S2 and from compartment S2 to 
compartment S3 are 1θ  and 2θ , respectively. 3θ  is the vaccination rate of 
those in compartment S3, i.e., those who are older than 55 years. The parameter 

4θ  is the rate at which the vaccinated individuals develop immunity related to 
the vaccination. 1

3
i ipη η
=

=∑  is the rate of loss of immunity of the recovered 
individuals while , 1,2,3ip iη =  are the transfer rates from the compartment of 
recovered individuals to the compartments of susceptible individuals S1, S2, and 
S3 respectively. The model is described by the following flowchart. 

2.2. Stochastic Model  

Throughout this work, we let { }( )0
, , ,t t

P
>

Ω    be a complete probability 
space with a filtration { } 0t t>

  satisfying the usual conditions (i.e., 0  contains 
all P-null sets of   and :t s ts t+ >

= =∩   ) and we let ( ){ } 0t
W t

≥
 be a scalar 

Brownian motion defined on the probability space. To obtain the stochasticity of 
the model, we integrate random fluctuations in the form of white noise to reveal 
the effect of random environmental perturbations on the parameters. Previously, 
we assume that 1,2,3,4i =  each contact rate iβ�  is given as a random variable 
with average value iβ  plus some random fluctuation term iε  with a mean ze-
ro. So, in the small time interval [ ], dt t t+ , each infected individual makes 

d d di i it t tβ β ε= +�  potentially infectious contact with susceptible individuals. 
Based on the same argument as in [42], we fund that ( )2d ~ 0, di it N tε   or 

( )d ~ di it W tε  , where ( ) ( ) ( )d dW t W t t W t= + −  is the increment of a stan-
dard scalar Brownian motion ( )( ) 0t

W t
≥

 that follows ( )0,dN t . It follows that, 
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( ) ( )d : d di i it t t W tβ β= +�   where i  is the noise intensity with 0i ≥ . 
Naturally, the increase in the number of infectious individuals occurs with 

certain spatial dispersion of these infectious individuals that increase the level of 
the variability (variance) of the contact process due to the change of environ-
ment. To include this in the model, we assume that the noise intensity i  at 
time t, depends on infectious population size ( )I t . Therefore, by replacing 

di tβ  in the deterministic model described by the flow chart (see Figure 1) with
( ) ( )d d di i it t I t W tβ β σ= +�  and by setting 4V S= , we obtain the following de-

layed stochastic differential equation describing the model, 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

1 1 1 1 1 1 1

1 1

2 1 1 2 2 2 2 2 2

2 2

3 2 2 3 3 3 3 3 3

3 3

3 3 4 4 4

d d

d ,

d d

d ,

d d

d ,

d

S t S t H I t S t p R t t

I t S t H I t W t

S t S t S t H I t S t p R t t

I t S t H I t W t

S t S t S t H I t S t p R t t

I t S t H I t W t

V t S t V t H I t V t

β θ µ η

σ

θ β θ µ η

σ

θ β µ θ η

σ

θ β µ θ

 = Λ − − ⋅ − + + 
− − ⋅

 = − − ⋅ − + + 
− − ⋅

 = − − ⋅ − + + 
− − ⋅

= − − ⋅ − +

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

4

4

1

4

1

4

d

d ,

d d

d ,

d d

k k I
k

k k
k

R

t

I t V t H I t W t

I t S t H I t I t t

I t S t H I t W t

R t I t V t R t t

σ

β µ γ

σ

γ θ µ η

=

=














   


− − ⋅


  = − ⋅ − +   
 + − ⋅


= + − +   

∑

∑

  (1) 

with initial condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) [ ] ( )

1 1 2 2 3 3 4 5

6
6 1 2 3 4 5 6 0,0

, , , , ,

, , , , , , and ,h

S S S V I

R

θ ϕ θ θ ϕ θ θ ϕ θ θ ϕ θ θ ϕ θ

θ ϕ θ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ +−

 = = = = =


= = ∈ ∩ � 
 

 

 
Figure 1. The chart flow of model describing the transfer rule between the model com-
partments. 

where the set [ ] ( )6
0,0h +− ∩   will be defined in the next section and the func-
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tional ( )H ⋅  is given by  

( )( ) ( ) ( )( )
0

d .
h

H I t g I tτ τ τ− ⋅ = −∫   

3. Definition and Notation  

Let ( ){ }1 1, , : 0, , 0n n
n nx x x x+ = ∈ ≥ ≥� �   and a real 0h > , we define 

[ ] ( ),0
n

h−  , [ ) ( ),
n

hx +− +∞∈   and [ ) ( ),
n

h− +∞   respectively as the spaces of con-
tinuous functions from [ ],0h−  to n , from [ ],0h−  to n

+  and from [ ),h− +∞  
to n , endowed with the supremum norm. For any [ ) ( ),

n
hx − +∞∈  , tx  denotes 

the segment process of x  given by ( ) ( )tx x tθ θ= + , [ ],0hθ ∈ − , 0t ≥ . For 
any vector nv∈ , we denote by ( )2

1 2

1: i
n

iv v
=

= ∑  the Euclidean norm and for 
any [ ] ( ),0

n
hx −∈  , we denote by [ ] ( ),0: sup hx xθ θ∈ −=  the supremum norm. 

Consider the general n-dimensional stochastic functional differential equation  

( ) ( ) ( ) ( ) [ ] ( )0 0,0d , d , d , n
t t hX t D X t t F X t W t X ϕ −= + = ∈ ∩        (2) 

where [ ] ( ) [ ),0: 0,n n
hD − × ∞ →  , [ ] ( ) [ ),0: 0,n n m

hF ×
− × ∞ →   and  

( ){ } 0t
W t

≥
 is an m-dimensional Brownian motion { }( )0

, , ,t t
P

≥
Ω   . Moreover, 

[ ] ( ) 0,0
n

h− ∩   denote the set of [ ] ( ),0
n

h−  -valued random variables that are 

0 -measurable. 
Let [ )( )2,1 0, ;nC +× ∞   denote the family of all continuous non-negative 

functions ( ),V x t  defined on [ )0,n × ∞  such that they are continuously 
twice differentiable in x and once in t. For any ( ) [ )( )2,1, 0, ;nV x t C +∈ × ∞  , 
we define the function [ ] ( ),0: n

hV +− × →     by 

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )T

, , , ,

1 , ,
2

t t x t

t xx t

V X t V X t t V X t t b X t

trace X t V X t X tσ σ

= +

 +  


           (3) 

where t
VV
t

∂
=
∂

, 
1

, ,x
n

V VV
x x

 ∂ ∂
=  ∂ ∂ 

� , ( ) ( )2

1 ,

xx
i j i j n

V x
V x

x x
≤ ≤

 ∂
=   ∂ ∂ 

. 

In what follows, we consider the stochastic system (1) which is of the form (2) 
with dimension 6n = . We always assume that the initial value  

( ) [ ] ( )6
1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩   which is the set of [ ] ( )6

,0h +−  -valued 
random variables and is 0 -measurable.  

4. Existence of Unique Global Positive Solution  

In general, we are interested in positive solutions since our study concerns 
processes describing the size of population compartments. The drift and diffu-
sion coefficients of the system (1) are locally Lipschitz continuous under the as-
sumptions A1-A3, for any given initial value. Then system (1) has a unique local 
solution ( )X t  [ ), eh τ− , where the explosion time eτ  (see Mao [43]) is de-
fined by  

[ ]
( )

0,
sup 0;sup .e

t
t X sτ
 

= ≥ < ∞ 
 

 

In order to guarantee that the unique local solution is global, it is necessary to 
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establish its non-explosion in a finite time. The following result assures us of the 
existence and uniqueness of the global positive solution.  

Theorem 1. Let’s assume that A1-A3 is valid. Then, for any initial value 
( ) [ ] ( )6

1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩  , the model (1) has a unique positive 
solution on [ )0, et τ∈ ,  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 6
1 2 3, , , , , a.s.X t S t S t S t V t I t R t += ∈  

Proof. As mentioned above, under assumptions A1-A3, model (1) has a unique 
local solution ( )X t  on [ ), eh τ− , for any initial value  

( ) [ ] ( )6
1 2 3 4 5 0,0, , , , hϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩  . Let us define the following stopping 

time as in [44]  

[ ) ( ){ }1
inf , : 0 .S et h S tτ τ= ∈ − ≤  

In a similar way, we define 
2 3
, , , ,S S V I Rτ τ τ τ τ  groups S2, S3, V, I and R respec-

tively. 
We can see from (1) that ( )1S t  satisfies the linear stochastic differential eq-

uation. Thus, by (Mao [43], Chap.3.) one has  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) )1

1 1 1 1 1 1 1

1 1

d ( ) d

d , 0, ,

t

t S

S t S t H I S t R t t

I t S t H I W t t

β θ µ η

σ τ

= Λ − − + +  
− ∈

 

where ( )( ) 0t
R t

≥
 is considered as { } 0t t≥

 -adapted and almost surely locally 
bounded process. 

We have  

( ) ( ) ( ) ( )
( ) )1 1

1

1
1 1 0

0 d , 0, ,
t

S S
S

R u
S t Z t S u t

Z u
η

τ
 Λ +

= + ∈   
 

∫  

where  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1

2
1 1 10

0

1

1

1exp d
2

d

0 a.s.

t
S s s

t
s

Z t t H I I t H I s

I s H I W s

θ µ β σ

σ

  = − + − −   
− 

>

∫

∫  

Therefore, we deduce that 
1S Rτ τ≥  almost surely. 

For the second group of susceptible, we have  

( ) ( ) ( ) ( ) ( )
( ) )2 2

2

1 2 2
2 2 0

0 d , 0, ,
t

S S
S

S u R u
S t Z t S u t

Z u
θ η

τ
 +

= + ∈   
 

∫  

where  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2

2
2 2 20

0

2

2

1exp d
2

d

0 a.s.

t
S s s

t
s

Z t t H I I t H I s

I s H I W s

θ µ β σ

σ

  = − + − −   
− 

>

∫

∫  

It follows that 
2S Rτ τ≥  a.s. 
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For the third group of susceptible, we have  

( ) ( ) ( ) ( ) ( )
( ) )2 3

3

2 2 3
3 3 0

0 d , 0, ,
t

S S
S

S t R t
S t Z t S u t

Z u
θ η

τ
 +

= + ∈   
 

∫  

where  

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

3

2
3 3 30

0

3

3

1exp d
2

d

0 a.s.

t
S s s

t
s

Z t t H I I s H I s

I s H I W s

µ θ β σ

σ

  = − + − −   
− 

>

∫

∫  

So, we get 
3S Rτ τ≥  a.s. In the same way as before, we have V Rτ τ≥  a.s. 

The recovered population ( )R t  satisfies the linear stochastic differential eq-
uation 

( ) ( ) ( ) ( ) ( )4d d ,RR t I t V t R t tγ θ µ η= + − +    

where ( )( ) 0t
I t

≥
 is an ( ){ } 0t

t
≥

 -adapted and almost surely locally bounded 
process.  

( ) ( ) ( ) ( ) ( )
( ) [ )4

0
0 d , 0,

t
R R

R

I u V u
R t Z t R u t

Z u
γ θ

τ
 +

= + ∈  
 

∫  

where  

( ) ( )exp 0 . .R RZ t t a sµ η= − + >    

Since V Rτ τ≥ , thus ( )R t  become negative after only ( )I t  is negative. That 
is { }1 2 3

min , , , ,I S S S V Rτ τ τ τ τ τ≤  almost surely. 
For the infected group, we have  

( ) ( ) ( ) ( ) ( )
( ) [ )1

4

0
0 d , 0,kt t k k

I e
I

H I S t
I t Z t I u t

Z u
β

τ=
 
 = + ∈
 
 

∑
∫  

and 

( ) ( ) ( )( ) ( )( ) ( )2
0

2
0

1exp , d , d
2

0 a.s.

t t
I I s sZ t t K I S s s K I S s W sµ γ σ σ = − + + +  

>

∫ ∫
 

with ( )( ) ( ) ( )4
1,t t k kkK I S t H I S tσ
=

= ∑ .  
We propose to show in the following step that { }1 2 3

min , , , ,e S R S S Iτ τ τ τ τ τ≤  
almost surely by establishing that e Iτ τ≤  almost surely. To do this, we proceed 
by contradiction.  

Suppose that there exists a Borel set B of Ω with ( ) 0P B >  and for all Bω∈  
we have ( ) ( )I eτ ω τ ω≤ . By definition of Iτ  

( ) [ ) ( )0, 0, and 0.I II u u Iτ τ> ∀ ∈ =  

In view of assumption (A2) and the fact that { }1 2 3
min , , ,I S S S Vτ τ τ τ τ≤  a.s., for 

all Bω∈  and for all ( ))0, Iu τ ω∈ , it follows that 
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( )( ) ( ), 0 and , 0, 1,2,3,4u kH I S u kω ω⋅ > > =  

Therefore  

( )
( )

( )( ) ( ) ( )( ) ( )
( )

4
1

0

0 lim ,

, ,
, 0, d 0,

,

It

t u k kk
I I

I

I t

H I S u
Z I u

Z u

τ ω
ω

ω β ω
τ ω ω ω

ω

→

=

=

 ⋅
 = + >
 
 

∑
∫

 

which leads to a contradiction. Necessary, we must have e Iτ τ≤  almost surely.  
□ 

Let us put  

( ) 6
1 2 3 4 5 6 1 2 3 4 5 6

1

0

, , , , , |

and

u u u u u u u u u u u uε

εε

ε
µ+

>

 Λ
Γ = ∈ + + + + + < + 

 
Γ = Γ

�

∩
 

The following result gives us the boundness of any local solution of the model (1) 
and achieves the proof of existence and uniqueness of global positive solution.  

Corollary 1. Assume that A1-A3 hold. Then, the system (1) has a unique glob-
al positive solution ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3, , , , ,X t S t S t S t V t I t R t=  for any initial 
value ( ) [ ] ( )6

1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩  . Moreover, there exists a 
( ) 0T T ε= >  for any sufficiently small 0ε >  such that for all t T>  this solu-

tion remains in εΓ  with probability 1. In particular, if [ ]( ),0hϕ − ⊂ Γ  this so-
lution lies in Γ almost surly.  

Proof. By Theorem 1, for any initial value  
( ) [ ] ( )6

1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩  , the model (1) has a unique positive 
solution [ )0, et τ∈ . To prove that this solution is global, it suffices to prove that 
it is bounded. We have ( ) ( ) ( ) ( ) ( ) ( ){ } ( )1 2 3max , , , , ,S t S t S t V t I t R t N t≤  a.s. on 
[ )0, eτ , where ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3N t S t S t S t V t I t R t= + + + + + . Therefore  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ )

1 1 2 2 3 3 4

2 1 1 3 1 3 4 1 3

4 1 1 1 1

1

d d

d ,

d , 0,

I R

I R

e

N t S t S t S t V t I t R t t

S t S t S t

V t I t R t N t t

N t t t

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ τ

= Λ − − − − − −  
= Λ − − − − − −
− − − − − − − 
≤ Λ − ∈  

 

because naturally { }1 2 3 4min , , , ,I Rµ µ µ µ µ µ≤ . 
We denote by ( )N t  the solution of the following differential equation  

( ) ( )1d dN t N t tµ= Λ −   , with the same initial value ( ) ( )0 0N N= . 

Therefore, by the comparison theorem [45], we have  

( ) ( ) ( ) [ )1

1 1

0 e on 0, a.s.tN t N t N µ

µ µ
− Λ Λ

≤ = − + < ∞ ∞ 
 

 

For any 0ε > , there exists ( ) 0T T ε= >  such that for all t T>   

( )
1

N t
µ
Λ

<  

□ 
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5. Stability Analysis and Asymptotic Behavior  

This section deals with the stability analysis of the stochastic epidemic model (1). 
A simple analysis established that this model has a unique disease 
free-equilibrium ( )0 0 0 0 0 0

1 2 3 4, , , ,0,E s s s s r=  where 0 0
4v s= , which is given by:  

0 0 0 0 0 0 0
1 2 4 1 3 3 2 3 3

1 1 1 2 1 2 3 4
0 0 0

1

, , , ,

0 and

s s s s s v s

i r v

α α α
µ θ ηη α α α α

α

Λ
= = = =

+ −

= =
 

where  

34 2
1 2 3

1 2 3 4 4 3 3 3 1 2

1
4

2 2 2 1 2 3

, ,

and .

R

θθ θ
α α α

µ η η η µ θ µ θ η α α
θ

α
µ θ η α α α

= = =
+ + + + + −

=
+ −

 

By using a change of variable, we first reduce the analysis of the stability of the 
equilibrium point 0E  to the study of the stability of the trivial equilibrium 
point zero of another system. We first establish that the solution of the system 
obtained by change of variable remains in suitable subset 6 . Then, by using a 
Lyapunov functional technique and a local martingale convergence result, we 
deduce the almost sure stability of the disease-free equilibrium 0E  of the model 
(1) under the condition 0 1R ≤ . In the following, we consider the class of initial 
conditions ( ) [ ] ( )6

1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩   such that [ ]( ),0hϕ − ⊂ Γ . 
Let’s put 

0 0 0 0 0
1 1 1 2 2 2 3 3 3 4 5 6, , , , , .y S s y S s y S s y V v y I y R r= − = − = − = − = = −    (4) 

Then, by virtue of Itô’s formula, we get the following system 

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( )

0
1 1 1 1 1 1 1 5 1 6

0
5 1 1 5

0
2 1 1 1 2 2 2 2 2 5 2 6

0
5 2 2 5

0
3 2 2 3 3 3 3 3 3 5 3 6

0
4 3 3 5

d d

d ,

d d

d ,

d d

y t y t y t s H y t p y t t

y t y t s H y t W t

y t y t y t y t s H y t p y t t

y t y t s H y t W t

y t y t y t y t s H y t p y t t

y t y t s H y t

µ θ β η

σ

θ µ θ β η

σ

θ µ θ β η

σ

 = − + − + − ⋅ + 

− + − ⋅

 = − + − + − ⋅ + 

− + − ⋅

 = − + − + − ⋅ + 

− + −( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

0
4 3 3 4 4 4 4 4 4 5 3 3

0
4 3 3 5

4
0

5 5 5
1

4
0

5 5
1

6 5 4 4 3 6

d ,

d d

d ,

d d

d ,

d d ,

k k k I
k

k k
k

W t

y t y t y t y t s H y t p y t t

y t y t s H y t W t

y t y t s H y t y t t

y t y t s H y t W t

y t y t y t y t t

θ µ θ β η

σ

β µ γ

σ

γ µ µ η

=

=












 ⋅

  = − + − + − ⋅ + 
 − + − ⋅
   = + − ⋅ − +   

 + + − ⋅



 = + − +  

∑

∑

(5) 

with initial condition  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) [ ] ( )

1 1 2 2 3 3 4 4 5 5

0 6
1 2 3 4 5 0,0

, , , , ,

, , , , and ,h

y y y y y

E

θ ψ θ θ ψ θ θ ψ θ θ ψ θ θ ψ θ

ψ ψ ψ ψ ψ ψ ψ +−

 = = = = =


= + ∈ ∩ � 
 

where  

( )( ) ( ) ( )( )
05 5 d .
h

H y t g y tτ τ τ− ⋅ = −∫   

It is easy to see that the stability analysis of the disease-free equilibrium 0E  
of the model (1) can be obtained from the stability analysis of the trivial solution 

( )0 0,0,0,0,0,0yE =  of the model (5). Before studying the stability analysis of the 
trivial solution of the model (5), we need some information about the sign of the 
components of its solution. 

Theorem 2. Either ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3, , , , ,S t S t S t V t I t R t  the solution of the 
system (1) with initial condition ( ) [ ] ( )6

1 2 3 4 5 0,0, , , , hϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩  . Sup-
pose that  

( ) ( ) ( ) ( ) ( )
[ ]

0 0 0 0 0
1 2 3 4 6 1 2 3 4

for a

,

,0 ll

s s s s r

h

ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ

θ

+ + + + < + + + +

∈ −
      (6) 

and  

( )
( )

0
0 21 4 0

2min , where .k

k
k

s s
s

β
µσ≤ ≤

Λ
≥ =                (7) 

Then, we have  

( ) ( ) ( ) ( ) ( )0 0 0 0 0
1 1 2 2 3 3, , , and a.s., for all 0.S t s S t s S t s V t v R t r t< < < < < ≥  

Proof. To arrive at the result, reformulate the equilibrium states 0
1s , 0

2s , 0
3s , 

0v . A simple analysis gives us  
00 0 0 0 0

0 0 0 0 3 31 1 1 1 2 2 2
1 2 3

1 1 2 2 3 3 4 4

, , , .sr s r s rs s s v θη θ η θ η
µ θ µ θ µ θ µ θ
Λ + + +

= = = =
+ + + +

 

Based on the proof of the Theorem 1 and the Corollary 1, we get  

( ) ( ) ( ) ( )
( )2

1

1
1 1 0

0 d , 0
t

S
S

R u
S t Z t S u t

Z u
η Λ +

= + ≥  
 

∫  

where 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1

2

2

01 1 2 2

0

1exp d
2

d ,

t
S s s

t
s

Z t t H I I t H I s

I s H I W s

θ µ β σ

σ

  = − + − −   

− 


∫

∫
 

Let ( ) ( ) ( ) ( )2 d
t

su
Y s I s H I W sσ= ∫ , the quadratic variation  

( ) ( ) ( )( )22
2 d

t
su

Y s I s H I sσ= ∫  of ( )Y s  is locally bounded by Corollary 1. So, 
by the strong law of large numbers for local martingales (see e.g. [43]) we have  
( ) 0

Y t
t

→  when t →∞ . Therefore, there exists 0 0T >  large enough, such 

that for all 0t T>  such that  
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( ) ( ) ( ) ( )( )
0

2
2

1 10 and d 0.
2

t
s k sT

Y s
H I I t H I s

t t
β σ ≈ − ≈ 
 ∫  

It follows for all 0t T>  that 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

0

0

0

2
1 1 1 10

2
1 1 10

2
1

2
1 1 1

1exp d
2

1 1exp d
2

1 1 d
2

1exp d ,
2

k

t
S s s

T
s k s

u
s k sT

t
s k sT

Z u t H I I t H I s Y t

t H I I t H I s
t

Y t
H I I t H I s

t t

t H I I t H I s

θ µ β σ

θ µ β σ

β σ

θ µ β σ

  = − + − − −    
   = − + − −  

 
 − − −  

  
  ≈ − + − −    

∫

∫

∫

∫

 

On the other hand, it is easy to see that  

( )

2
21 1

21 4 0
1

21 0 implies min .
2k k

x x x
s

σ β
β

µ σ≤ ≤

Λ 
− ≥ ≥ 

 
           (8) 

In view of Corollary (1) and assumptions A1-A2, we have 

( ) ( )( )0 0and , 0.I t s I t s t≤ ≤ ∀ ≥                  (9) 

Therefore 

( ) ( ) ( )( ) ( ) ( ) ( )00 0 0d d
h h

tH I g I t K s g sτ τ τ τ τ= − ≤ ≤∫ ∫        (10) 

By combining (8), (9) and (10), we deduce that 

( ) ( ) ( )( ) ( )
( )

2 1
2 2 0 21 4 0

1

21 0, 0 implies min
2t t k

H I I t H I t s
s

β
β σ

σ≤ ≤
− ≥ ∀ ≥ ≥  

Consequently, under the condition (7), for all 0,t u T> , we get 

( ) ( ) ( ) ( ) ( )( )

( )

1 0

2
1 1 1 1

1 1

1exp d
2

exp ,

t
S s sT

Z t t H I I t H I s

t

θ µ β σ

θ µ

  ≈ − + − −    
≤ − +  

∫     (11) 

And  

( )
( ) ( )( ) ( ) ( ) ( )( )

( )( )

1

1

2
2

1exp d
2

exp ,

tS
k k s k su

S

k k

Z t
t u H I I t H I s

Z u

t u

θ µ β σ

θ µ

  ≈ − + − − −    

 ≤ − + − 

∫   (12) 

Now, let put ( ) *limsupt R t r→∞ = . So, there exists two positive reals ε  and 
T ε  such ( ) *sup

t T
R t rε ε

>
= + . Therefore, for all t T ε> , we have  

( ) ( ) ( ) ( )
( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )
( )

1
1

1 1 1

1
1

1
1 1 0

* 1
1 1

1
0

0 d

0 d

d .

t
S

S

t
S S ST

T
S

S

R t
S t Z t S u

Z u

Z t S r Z t Z u u

R t
Z t u

Z u

ε

ε

η

η ε

η

−

 Λ +
= +  

 

≤ + Λ + +

Λ +
+

∫

∫

∫
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Let us put { }0
0 max ,u T T ε= , it is straightforward to see that  

( )
( )

0

1

1
00

d
u

S

R t
u x

Z u
ηΛ +

= < ∞∫ . Based on (11) and (12), we get for all 0t u>   

( ) ( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( )

1 1 10

1 1 1 1

1 1

1 1

* 1
1 1 0 1

*
1 0 1 0

**
11

1 0
1 1 1 1

0 d

0 e e d

e
0 e .

t
S S Su

tt t u

t
t

S t Z t S x r Z t Z u u

S x r u

rr
S x

θ µ θ µ

θ µ
θ µ

η ε

η ε

η εη ε

θ µ θ µ

−

− + − + −

− +

− +

≤ + + Λ + +

≈ + + Λ + +

Λ + +Λ + +
= + + −

+ +

∫

∫  

As  

( )( ) ( ) ( )
( )1 1

1 1 1 1 1 1

0 0
1 1 1 1

1 ee d e e d .
t

t tt u t uu u
θ µ

θ µ θ µ θ µ

θ µ θ µ

− +
− + − − + += = −

+ +∫ ∫  

Letting 0ε → , given the fact that the population may be without infectious 
( 0I = ), we deduce that  

( )
*

*1
1 1

1 1

limsup a.s..
t

rS t sη
θ µ→∞

Λ +
= =

+
                  (13) 

Taking this result into account and repeating the same reasoning on the follow-
ing expressions  

( ) ( ) ( ) ( ) ( )
( )2

2

1 2 2
2 2 0

0 d , 0
t

S
S

S u R u
S t Z t S u t

Z u
θ η +

= + ≥  
 

∫  

where 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

2

2
2 2 2 20

20

1exp d
2

d ,

t
S s s

t
s

Z t t H I I t H I s

H I W s

θ µ β σ

σ

  = − + − −   
− 

∫

∫
 

( ) ( ) ( ) ( ) ( )
( )2

3

2 2 3
3 3 0

0 d , 0
t

S
S

S t R t
S t Z t S u t

Z u
θ η +

= + ≥  
 

∫  

where 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

3

2
3 3 3 30

0

1exp d
2

d ,

t
S s s

t
s

Z t t H I I s H I s

H I W s

µ θ β σ

σ

  = − + − −   
− 

∫

∫
 

and  

( ) ( ) ( ) ( )2 3
0

0 d , 0
( )

t
V

V

S t
V t Z t V u t

Z u
θ 

= + ≥ 
 

∫  

where 

( ) ( ) ( ) ( ) ( )( )

( ) ( )

2
4 4 4 40

0

1exp d
2

d ,

t
V s s

t
s

Z t t H I I s H I s

H I W s

µ θ β σ

σ

  = − + − −   
− 

∫

∫
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respectively, we deduce almost surly, that  

( ) ( )

( )

* * * *
* *1 1 1 2 2 2

2 2 3 3
2 2 3 3

*
*3 3

4 4

limsup , limsup ,

limsup .

t t

t

s r s rS t s S t s

sV t v

θ η θ η
µ θ µ θ

θ
µ θ

→∞ →∞

→∞

+ +
= = = =

+ +

= =
+

    (14) 

Let us put 0
1 1 1y S s= − , 0

2 2 2y S s= − , 0
3 3 3y S s= − , 0

4y V v= − , 5y I=  et 
0

6y R r= − , therefore  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0

1 2 3 4 5 6 1 2 3Y t y t y t y t y t y t y t N t s s s v r= + + + + + = − − − − − . 
In view of (5), we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )
{ } ( ) { }

1 1 2 2 3 3 4 4 5 6

1 2 3 4 1 2 3 4min , , , , , , where min , , , , , .
I R

I R I R

dY t y t y t y t y t y t y t

Y t

µ µ µ µ µ µ

µ µ µ µ µ µ µ µ µ µ µ µ µ

= − − − − − −

≤ − − = −
 

Under the condition (6), it follows that  
( ) ( ) 0 0 0 0 0

1 2 30 0 0Y N s s s v r= − − − − − ≤  
Therefore 

( ) ( ) { }1 2 3 4max , , , , ,0 e 0,I R tY t Y µ µ µ µ µ µ− −≤ ≤  

so we get  

( ) 0 0 0 0 0
1 2 3 .N t s s s v r≤ + + + +  

Consequently, for all 0t ≥ ,  

( ) ( ) ( ) ( ) ( )* 0 * 0 * 0 * 0 0
1 1 2 2 3 3 a.s.s s s s s s v v R t r− + − + − + − + ≤        (15) 

On the other hand, 

( )* 0 * 0
1 1 1s s K r r− = − , ( )* 0 * 0

2 2 2s s K r r− = − , ( )* 0 * 0
3 3 3s s K r r− = − , 

( )* 0 * 0
4v v K r r− = − , 

where  

1 1K k= , 2 1 2 3K k k k= + , 3 1 2 4 3 4 5K k k k k k k= + +  and 

( )4 6 1 2 4 3 4 5K k k k k k k k= + + , 

with  

1
1

1 1

k η
µ θ

=
+

, 1
2

2 2

k θ
µ θ

=
+

, 2
3

2 2

k η
µ θ

=
+

, 2
4

3 3

k θ
µ θ

=
+

,  

3
5

3 3

k η
µ θ

=
+

, 3
6

4 4

k θ
µ θ

=
+

. 

Therefore, based on (15), we have almost surly  
( )( ) ( )* 0 0

1 2 3 4K K K K r r R t r+ + + − + ≤  for all 0t ≥ . 
Let us assume * 0r r> , that is ( )( )* 0

1 2 3 4 0K K K K r r e+ + + − = > . It follows 
that ( ) 0e R t r+ ≤ , for all 0t ≥ . 

In particular * 0e r r+ ≤  that leads to a contradiction, necessarily we must 
have * 0r r< . By (13) and (14), finally obtain almost surly 
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( ) ( )
0 0 0

0 01 1 1 2
2 1 2 2

1 1 2 2

limsup , limsup ,
t t

r s rS t s S t sη θ η
µ θ µ θ→∞ →∞

Λ + +
= = = =

+ +
 

( ) ( )
00 0

0 03 32 2 2
3 3

3 3 4 4

limsup , limsup .
t t

ss rS t s V t vθθ η
µ θ µ θ→∞ →∞

+
= = = =

+ +
 

□ 
The following corollary which is necessary to establish our stability result is a 

consequence of the previous result of Theorem (2). 
Corollary 2. Assume that the assumptions A1-A2 and the condition (6) in 

Theorem (2) are satisfied. Then, the system (5) has a unique global solution  
( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 5 6, , , , ,y t y t y t y t y t y t y t=  for any initial value  
( )1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  such that [ ] ( )0 6

0,0hEψ +−+ ∈ ∩  . Moreover, for 
any [ ]0,hθ ∈  such that for 1,2,3,4i = ,  

( ) ( ) ( )0 0
5 60, 0 and 0 a.s.,i is rψ θ ψ θ ψ θ− ≤ ≤ ≥ − ≤ ≤  

we have  

for all 0t ≥ , ( ) 0iy t <  a.s. 1,2,3,4,6i = . 

Proof. Let us put 0
1 1 1sϕ ψ= + , 0

2 1 1sϕ ψ= + , 0
3 1 1sϕ ψ= + , 0

4 1 1sϕ ψ= + , 
0

5 1 1sϕ ψ= + , 0
6 1 1sϕ ψ= + . It’s easy to see that the system (1) with initial condi-

tion ( ) [ ] ( )6
1 2 3 4 5 6 0,0, , , , , hϕ ϕ ϕ ϕ ϕ ϕ ϕ +−= ∈ ∩   is equivalent to the system (5) 

with the initial condition ( )1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  such that  

[ ] ( )0 6
0,0hEψ +−+ ∈ ∩  . Therefore, in view of the Corollary 1, the system (5) 

has a unique solution global solution. Moreover, the condition, [ ]0,hθ ∈ , for 
1,2,3,4i = ,  

( ) ( ) ( )0 0
5 60, 0 and 0 a.s.,i is rψ θ ψ θ ψ θ− ≤ ≤ ≥ − ≤ ≤  

imply that ( ) 00 i isϕ θ≤ ≤ , ( )5 0ϕ θ ≥  and ( ) 0
60 rϕ θ≤ ≤  a.s. That is  

( ) ( ) ( ) ( ) ( ) ( )
[ ]

0 0 0 0 0
1 2 3 4 5 6 1 2 3 4 a.

for 

s.,

,a l 0l

s s s s r

h

ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ θ

θ

+ + + + + < + + + +

∈ −
 

In view of the Theorem 2, the solution  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 0
1 1 2 2 3 3 4 4 5 6, , , , ,y t E y t s y t s y t s y t s y t y t r+ = + + + + +  

of the system (1) is such that  

( ) ( ) ( ) ( )
( )

0 0 0 0 0 0 0 0
1 1 1 2 2 2 3 3 3 4 4

0 0
6 6

, , , and

a.s., for all 0.

y t s s y t s s y t s s y t s v

y t s r t

+ < + < + < + <

+ < ≥
 

Therefore for all 0t ≥ , ( ) 0iy t <  a.s. 1,2,3,4,6i = .                    □ 
Now, we establish a stability result for the trivial solution ( )0 0,0,0,0,0,0yE =  

of the model (5) by combining a stochastic Lyapunov technique and martingale 
convergence theory (see [42] [46]).  

Theorem 3. Let’s assume that 
4 0

1
0 1k kk

I

s
R

β
µ γ

== <
+

∑ , then the disease-free equi-  

librium ( )0 0,0,0,0,0,0yE =  of model (5) is globally asymptotically stable al-
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most surely for any initial condition ( )1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  such that 

[ ] ( )0 6
0,0hEψ +−+ ∈ ∩  .  

The proof of this Theorem requires the useful non-negative semimartingale 
convergence result ([43] Theorem 1.3.9, p.14).  

Lemma 4. Let A1 and A2 be two continuous adapted increasing processes on 
0t ≥  with ( ) ( )1 20 0 0A A= =  a.s. Let M be a real-valued continuous local mar-

tingale with ( )0 0M =  a.s. Let Z be a non-negative measurable random variable 
such that ( )Z < ∞ . Define  

( ) ( ) ( ) ( )1 2 for 0.X t Z A t A t M t t= + − + ≥  

If X is non-negative, then  

( ){ } ( ){ } ( ){ }1 2lim lim lim a.s.,
t t t

A t X t A t
→∞ →∞ →∞

< ∞ ⊂ < ∞ ∩ < ∞  

where E F⊂  a.s., means ( ) 0cP E F∩ = . 
In particular, if ( )1limt A t→∞ < ∞  a.s., then  

( )2lim ( ) , lim ( ) and lim a.s
t t t

X t A t M t
→∞ →∞ →∞

< ∞ < ∞ < ∞  

That is, all of the processes X, A2, and M converge to finite random variables. 
Proof of Theorem 3. We will first establish separately the almost sure 

asymptotic stability of the trivial solution of the component 5y  of the system 
(5), then we deduce that the trivial solution 0

yE  of the system (5) is asymptoti-
cally stable almost surly. 

For any ( ) 5
1 2 3 4 5 6, , , , ,x x x x x x ∈ , let us define ( )5 1 2 3 4 5 6 5, , , , ,Pr x x x x x x x= . 

So the component 5y  of the system (5) is described by the following equation  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
0

5 5 5
1

4
0

5 5
1

d , d

, d ,

k k k I
k

k k k
k

y t y s H y t y t t

y t y s H y t W t

β µ γ

σ

=

=

 = + − +  

+ +

∑

∑
        (16) 

with initial condition 5 5Pr ψ ψ=�  for any ( )1 2 3 4 5 6, , , , ,ψ ψ ψ ψ ψ ψ ψ=  such 
that [ ] ( )0 6

0,0hEψ +−+ ∈ ∩  . 
Let us consider the Lyapunov functional  

( ) ( )5 0V Prϕ ϕ= �  

where ( ) ( )5 5 4Pr y tψ ψ θ θ= = +� , [ ],0hθ ∈ − . 
In view of (3) and Corollary (2), we get that  

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

4
0

2 5 40
1

4
0

5 40
1

( ) d

d .

h
k k k I

k

h
k k I

k

V y s g y t y t

s g y t y t

ϕ β τ τ τ µ γ

β τ τ τ µ γ

=

=

= + − − +

≤ − − +

∑ ∫

∑ ∫

 


 

In view of Theorems 3 in [47], if 4 0
1 k k Ik sβ µ γ
=

< +∑ , we obtain that  

( )( )4
1lim lnt y t p
t→∞ < − , where p is a positive constant. That is, if 0 1R ≤  there 

exists two positive constants p1 and p2 such that  

( ) ( )4 1 2exp for any 0.y t p p t t< − ≥                 (17) 
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In this step we will prove that ( )lim 0t Y t→∞ = , where  
( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 6Y t y t y t y t y t y t= − − − − − . From Corollary 2, it is clear that 
( ) 0Y t ≥  almost surly. 
Let put ( ) ( ) ( )( ) ( )( ) ( )4 0

5 510
d

t
k kkt y v y v s H y v W vσ

=
= + − ⋅∑∫ . According to 

Corollary 1, the quantity ( ) ( )( ) ( )( )4 0
5 51 k kky v y v s H y v

=
+ − ⋅∑  is bounded for 

all 0v ≥ , consequently ( )t  is a local martingale. 
From the four first equations of the model (5) and the fact that 

{ }1 2 3 4min , , , ,I Rµ µ µ µ µ µ≤ , we obtain  

( ) ( ) ( ) ( ) ( )
4

0
5 10 0

1
0 , d d .

t t
k k

k
Y t Y s H y v v Y v v tβ µ

=

≤ + − +∑ ∫ ∫   

In view of Corollary 1, Hölder inequality and (17), we obtain  

( ) ( ) ( )

[ ]
( )

( )

4 4
0 0

4 50 0
1 1

4
0

50 ,1

4
0 2 2

1 0
1

lim , d lim d d

lim sup d

e lim e d .

t t s
k k k k s ht tk k

t
k kt u s h sk

tp h p s
k k tk

s H y s s s g s u y u u s

h s y u s

hp s s

β β

β

β

−→∞ →∞= =

→∞ ∈ −=

−

→∞=

≤ −

≤

≤ < ∞

∑ ∑∫ ∫ ∫

∑ ∫

∑ ∫

 

Therefore, by virtue of Lemma 4, we get  

( ) ( )
0

lim and lim d . .
t

t t
Y t Y s s a s

→∞ →∞
< ∞ < ∞∫  

In accordance with Theorems 2, ( )Y t  is positive for all 0t ≥ . Therefore, we 
get  

( ) ( )
0 0

lim d d .
t

t
Y s s Y s s

∞

→∞
= < ∞∫ ∫                  (18) 

Assume that ( )Y t  does not converge almost surely to 0. Then there is a set 

1Ω ⊂Ω  with ( )1 0P Ω >  such that for all 1ω∈Ω ,  

( ) ( )liminf , 0.t Y t ω τ ω→∞ = >  

Then, there exists a 0T >  such that ( ) ( )1,
2

Y t ω τ ω>  for all t T≥ . It follows 

that  

( ) ( ) ( )

( )
0 0

lim , d , d , d

, d .

t T

Tt

T

Y s s Y s s Y s s

Y s s

ω ω ω

ω

∞

→∞

∞

= +

≥ = ∞

∫ ∫ ∫

∫
 

Therefore, 1 2Ω ⊂Ω , where ( ){ }2 , , d
T

Y s sω ω
∞

Ω = = ∞∫ . Hence ( )2 0P Ω > , 
which contradicts (18). So, we have  

( )lim 0 a.s.
t

Y t
→∞

=  

Finally, we have proved that, when t →∞ ,  
( ) ( ) ( ) ( ) ( )( ) ( )1 2 3 4 5, , , , 0,0,0,0,0y t y t y t y t y t →  a.s.                     □ 

Following the result of Theorem 3 and the change of variable (4), we deduce 
the following corollary which gives us the almost sure stability of the disease-free 
equilibrium 0E  of the model (1) under the condition 0 1R < .  
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Corollary 3. If 
4 0

1
0 1k kk

I

s
R

β
µ γ

== <
+

∑ , then the disease-free equilibrium  

( )0 0 0 0 0 0
1 2 3 3, , , ,0,E s s s s r=  of model (1) is stable almost surly for any initial condi-

tion ( ) [ ]( )5
1 2 3 4 5 6, , , , , ,0b hϕ ϕ ϕ ϕ ϕ ϕ ϕ= ∈ − .  

6. Numerical Simulation and Commentary  

In this section, we give an illustration of the stability result and the effect of noise 
intensity in the model by numerical simulation. We use the Euler-Maruyama 
method (see e.g [48]) to simulate the sample paths of the model (1) with 
( ) ( )1G x x x= +  (i.e. ( ) 1G x ≤ ) for all [ )0,x∈ ∞  and ( ) 1f s h=  for all 
[ ]0,s h∈ , null otherwise. Ten sample paths of the stochastic model (1) under the 

condition 0 1R <  given in Figure 2, we effectively observe the stability of the 
disease-free equilibrium 0E . In Figure 3, we represent a sample path of model 
(1) with 0 1R > , in this case, the disease persists in the population ( ( ) 0I t > , 

0t∀ ≥ ). We therefore see that these numerical simulations (Figure 2 and Figure 
3) agree well with the analytical results of theorem 3. Finally, in Figure 4, we il-
lustrate model (1) under the condition 0 1R >  and with higher noise intensity 
compared to the case of Figure 2. Thus, we observe that the increase in noise 
intensity increases the intensity of fluctuations in the model with larger extreme 
values. 
 

 
Figure 2. Ten (3) sample paths of the stochastic SVIRS epidemic models (1) with 
( ) ( )1G x x x= + . The initial values are: ( )1 80S θ = , ( )2 15S θ = , ( )3 1S θ = , ( ) 1V θ = , 

( ) 4I θ = , ( ) 0R θ =  for [ ]5,0θ ∈ − . The values of the parameters are given by: 5h = , 

30Λ = , 1 3 2 0.2µ µ µ= = = , 1 0.08θ = , 2 0.18θ = , 3 0.6θ = , 4 0.85θ = , 1 0.006β = , 

2 0.005β = , 3 0.0045β = , 4 0.035β = , 0.8γ = , 0.1σ = , 1 2 3 0.01η η η= = = . The conditions 

0 0.7940 1R = <  of the theorem 3 is checked. We observe then that the disease-free 
equilibrium E0 is asymptotically stable almost surly. 
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Figure 3. Sample paths of the stochastic SVIRS epidemic models (1) with ( ) ( )1G x x x= + . 

The initial values are: ( )1 101S θ = , ( )2 20S θ = , ( )3 3S θ = , ( ) 2V θ = , ( ) 1I θ = , ( ) 8R θ =  

for [ ]5,0θ ∈ − . The values of the parameters are given by: 5h = , 30Λ = , 1 3 2 0.2µ µ µ= = = , 

1 0.08θ = , 2 0.18θ = , 3 0.6θ = , 4 0.85θ = , 1 0.04β = , 2 0.037β = , 3 0.035β = , 4 0.035β = , 
0.0035γ = , 0.0035σ = , 1 2 3 0.01η η η= = = . In this case 0 18.5002R = .  

 

 

Figure 4. Sample paths of the stochastic SVIRS epidemic models (1) with ( ) ( )1G x x x= + . 

The initial values are: ( )1 101S θ = , ( )2 20S θ = , ( )3 3S θ = , ( ) 2V θ = , ( ) 1I θ = , ( ) 8R θ =  

for [ ]5,0θ ∈ − . The values of the parameters are given by: 5h = , 30Λ = , 1 3 2 0.2µ µ µ= = = , 

1 0.16θ = , 2 0.1θ = , 3 0.2θ = , 4 0.3θ = , 1 0.04β = , 2 0.037β = , 3 0.035β = , 4 0.035β = , 
0.1γ = , 0.0098σ = , 1 2 3 0.01η η η= = = . In this case 0 18.1255R = .  
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7. Conclusion and Perspective  

We considered a stochastic epidemic SIRS model represented by a delayed sto-
chastic differential equation to describe the spread of COVID-19 in a population 
where susceptibility to the disease varies across age groups and where a fraction 
of people over 55 years of age are vaccinated. First, we established the consisten-
cy of the model, i.e. the existence and uniqueness of the global and positive solu-
tion (see Corollary 1). Then, we have established the almost sure asymptotic sta-
bility of the 0E  disease-free equilibrium of the model when 0 1R <  (see Theo-
rem 3). The work performed in this paper could be improved by taking into ac-
count time-related parameters, which would allow taking into account seasonal 
effects or times of the year favoring large gatherings, where contact rates can in-
crease. We can also imagine the possibility of using delay-dependent contact 
rates. This is relevant in certain situations where supporting measures are re-
quired, such as Contact tracing of an infected person can reduce the number of 
infectious contacts over time, so an increase in the length of the latency period 
can reduce the contact rate. Finally, given the large amount of data on 
COVID-19 globally, we can improve this work by adding parameter estimation 
methods to adapt the model to reality. 
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