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Abstract 
This paper explores the existence of heteroclinic cycles and corresponding 
chaotic dynamics in a class of 3-dimensional two-zone piecewise affine sys-
tems. Moreover, the heteroclinic cycles connect two saddle foci and intersect 
the switching manifold at two points and the switching manifold is composed 
of two perpendicular planes. 
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1. Introduction 

Since the introduction of the Lorenz system as a highly simplified model for at-
mospheric convection in [1], extensive research has been conducted on chaos 
phenomena. The development of chaos generators has significant potential for 
various engineering applications. Hybrid systems have recently garnered consi-
derable attention due to their critical role in circuit design, control theory, com-
puter science, and biological molecular networks [2] [3] [4] [5] [6]. However, 
establishing the existence of singular cycles in general dynamical systems is 
challenging, as analytical calculations of invariant manifolds and solutions are 
not feasible [7] [8] [9] [10]. 

Thankfully, it is possible to analytically determine the invariant manifolds and 
solutions of linear systems. This allows for the mathematical construction of 
piecewise affine systems with singular cycles, which can be utilized in chaotic 
generator design [11] [12]. Nevertheless, investigating the presence of singular 
cycles in general piecewise linear systems is not straightforward, as it involves 
detecting return times and potential intersections of singular cycles with switch-
ing planes, which is a complex task [6] [13] [14]. For instance, in [15], the pri-
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mary focus was on creating double-scroll chaotic generators by exploring the ex-
istence of heteroclinic cycles connecting two saddle-focus points and the asso-
ciated chaotic dynamics in a specific class of 3-dimensional piecewise affine sys-
tems with a switching plane. Additionally, in [6], the authors examined the exis-
tence of homoclinic orbits to saddle-focus and the resulting chaotic dynamics in 
3-dimensional continuous piecewise linear systems in normal forms, with three 
parameters and a switching plane. Similarly, references [16] [17] investigated the 
existence of homoclinic orbits to saddle-focus and the corresponding chaotic 
dynamics in a specific class of 3-dimensional piecewise affine systems with a 
switching plane. Reference [18] delved into the existence of heteroclinic cycles 
that intersect two or three regions in a particular class of 3-dimensional 
three-zone piecewise affine systems with two switching planes. In reference [19], 
the authors investigated multiple categories of planar piecewise Hamiltonian 
systems that feature three zones separated by two parallel straight lines. Refer-
ence [20] focuses on the study of external bifurcations of heterodimensional 
cycles in a 3-dimensional vector field. These cycles connect three saddle points 
and exhibit an orbit flip, forming a shape resembling the symbol “∞ ”. In refer-
ences [21] [22] [23], the authors offered sufficient conditions for the coexistence 
of two singular cycles and the related chaotic dynamics in 3-dimensional 
two-zone piecewise linear systems with two parallel switching planes. Further-
more, they discovered that the coexistence of singular cycles could lead to a wid-
er range of chaotic dynamics. 

This paper is organized as follows. Section 2 gives some preliminaries of the 
3-dimensional piecewise affine systems. Section 3 states the main results of this 
paper. Section 4 presents the proof of Theorem 1. Section 5 presents the proof of 
Theorem 2.  

2. Statement of the Problem  

Consider the 3-dimensional piecewise affine systems 

, ,

, ,

+

−

+ ∈Σ= 
+ ∈Σ

�
Ax a x

x
Bx b x

                       (1) 

where ( ) 3, ,x y z= ∈x  , ,a b  are constant vectors in 3 , ,A B  are constant 
matrices in 3 3× . The eigenvalues of A  are 1 1α β± , 1λ  with 1β , 1 0λ > , 

1 0α < , and the eigenvalues of B  are 2 2α β± , 2λ  with 2β , 2 0λ > , 2 0α < . 
Moreover, there exist invertible matrices P and Q such that 

1 1
1 2, ,PJ P QJ Q− −= =A B                       (2) 

where matrices P and Q are given by 

( ) ( )1 2 3 1 2 3, ,P Qζ ζ ζ ξ ξ ξ= =  

with iζ  and iξ  ( 1,2,3i = ) being the generalized eigenvector of matrices A  
and B . In addition, we have 
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1 1 2 2

1 1 1 2 2 2

1 2

0 0
0 , 0 .

0 0 0 0
J J

α β α β
β α β α

λ λ

− −   
   = =   
   
   

             (3) 

Let 

( ){ }, , | 0, 0 ,x y z y z+Σ = > >  

( ){ } ( ){ }, , | 0 , , | 0, 0 .x y z y x y z y z−Σ = < ∪ > <  

Denote the switching manifold of the system (1) by Σ  with 1 2Σ = Σ ∪Σ , where 

( ){ } ( ){ }1 2, , | 0, 0 , , , | 0, 0 .x y z y z x y z y zΣ = = ≥ Σ = > =  

Notice that 1−= −p A a  is an equilibrium point of the subsystem 

,= +x Ax a�                           (4) 

and 1−= −q B b  is an equilibrium point of the subsystem 

.= +x Bx b�                           (5) 

Moreover, assume that +∈Σp  and −∈Σq  with ( )p p px y z=p


,  
( )q q qx y z=q


. 

From the representations of A  and B  in (3), the stable manifolds ( )sW p , 
( )sW q  and unstable manifolds ( )uW p , ( )uW q  are expressed as 

( ) { }1 1 2 2 1 2| , ,sW k k k kζ ζ= + + ∈p p R                (6) 

( ) { }3 3 3| ,uW k kζ= + ∈p p R                    (7) 

( ) { }1 1 2 2 1 2| , ,sW l l l lξ ξ= + + ∈q q R                 (8) 

( ) { }3 3 3| .uW l lξ= + ∈q q R                     (9) 

Suppose that 32 0ζ ≠ , 33 0ξ ≠ , and 

( ) ( )1 3 2 3
32 33

, .q pu uy z
W Wξ ζ

ξ ζ
   

∩Σ = − ∩Σ = −   
   

q q p p  

Denote the solution of the system (4) with the initial condition ( )1 0 00,ϕ =x x  
by ( )1 0,tϕ x , and denote the solution of the system (5) with the initial condition 

( )2 0 00,ϕ =y y  by ( )2 0,tϕ y . Then we have 

( ) ( ) ( ) ( )1 0 0 2 0 0, e , , e .t tt tϕ ϕ= − + = − +A Bx x p p y y q q         (10) 

3. Main Results 

In view of the method in [15] [17], this section provides some theorems on the ex-
istence of heteroclinic cycles and homoclinic orbits of systems (1). For conveni-
ence, divide the region −Σ  into three parts 1 2 3, ,S S S  as shown in Figure 1. 

In this article, we will only consider the case where the equilibrium point q  
is located in the 2S  region. Similar methods can be used to discuss other situa-
tions. 

Let 

( ) ( )1 2 3 1 2 3, , 1,2,3.i i i i i i i i iζ ζ ζ ζ ξ ξ ξ ξ= = =            (11) 
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Theorem 1. If and only if System (1) exists constant real numbers 0ik  and 

0il , 1,2i =  such that the following conditions hold, then there exists a heteroc-
linic cycle connecting p  and q  that intersects 1Σ  transversally at 11p  and 
intersects 2Σ  transversally at 02p , as shown in Figure 2. 

1) 

02 10 1 20 2 3
33

,pz
l lξ ξ ζ

ζ
= + + = −p q p                  (12) 

11 3 10 1 20 2
32

,qy
k kξ ζ ζ

ξ
= − = + +p q p                  (13) 

2) 

1 1 2 1 2 2 10, , 0,p p qy z zα β δ ρ α β σ− + > > − − + <             (14) 

 

 
Figure 1. Graph of the switching manifold, 1 2 3S S S−Σ = ∪ ∪ . 

 

 
Figure 2. Graph of the heteroclinic cycle. 
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3) 

1 0 2 212 2 2 22 2
2 2 11 2

2 2 2 2 2 2
1 1 1 1 2 2

e ee
, , ,

t tt
p q

p p q

y z
y z z

α ααβ δ β σβ ρ ρ

α β α β α β

+ − ++
< < >

+ + +
    (15) 

where 

1 2
0

1 1

2
2 2 2

2 2 1

1 arccot arccot 2 ,

1 arctan arcsin ,

p

q

q

t
y

z
t

z

α δ
β β

α
β β σ

   
= − − − +          

     

π

π= − + +   +    

           (16) 

and if 2 2
1 2 0ρ ρ+ ≠ , 

1 1
22 2

1 1 1 2

1 1
1 2 1 1 1 2

1 1 2

1 1
2 1 1 1 2

1 1 2

1 arctan arcsin , 0,

1 arctan arctan , 0, 0,

1 arctan arctan 2 , 0, 0,

t

β ρ
ρ

β α ρ ρ

β ρ
ρ α ρ β ρ

β α ρ

β ρ
ρ α ρ β ρ

β α ρ

     − − + ≥    +   
 

 
 π
 
 

 
π 

 

   = − − < + ≤     
     


    − − + < + >       



 (17) 

2 22 10 12 20 1 13 10 23 20, ,k k k kδ ζ ζ ρ ζ ζ= − = +               (18) 

2 23 10 13 20 1 23 10 13 20, .k k l lρ ζ ζ σ ξ ξ= − = −               (19) 

Theorem 2. If system (1) satisfies the conditions of Theorem 1 and the eigen-
values of the matrices ,A B  satisfy 

1 2 1 2 0,λ λ α α− >  

then system (1) has infinite numbers of chaotic invariant sets. 

4. The Proof of Theorem 1 
If system (1) has a heteroclinic cycle connecting equilibrium points q  and p  

that cross Σ  transversely at two points, then one point is 11 3
32

py
ξ

ξ
= −p q  and 

the other one is 02 3
33

pz
ζ

ζ
= −p p . 

Consider the definition of heteroclinic cycles, system (1) has a heteroclinic 
cycle connecting q  and p  which crosses 1Σ  transversally at 11p  and 
crosses 2Σ  transversally 02p  if and only if the following conditions hold: 

1) The positive orbit of 11p  satisfies ( ){ }1 11, | 0t tϕ +> ⊂ Σp . 
2) The negative orbit of 11p  satisfies ( ){ }2 11, | 0t tϕ −< ⊂ Σp . 
3) The positive orbit of 02p  satisfies ( ){ }2 02, | 0t tϕ −> ⊂ Σp . 
4) The negative orbit of 02p  satisfies ( ){ }2 02, | 0t tϕ +< ⊂ Σp . 
5) Transversal condition: 

( )( )( )( )11 110 1 0 0 1 0 0,+ + =Ap a Bp b  
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( )( )( )( )02 020 0 1 0 0 1 0.+ + >Ap a Bp b  

Since ( )02
uW∈p p  and ( )11

uW∈p q , then the negative orbit of 02p  is a 
straight line connecting 02p  and p , the negative orbit of 11p  is a straight line 
connecting 11p  and q . Hence, 

( ){ } ( ){ }1 02 2 11, | 0 , , | 0 .t t t tϕ ϕ+ −< ⊂ Σ < ⊂ Σp p  

We will prove that the positive orbit of 11p  satisfies ( ){ }1 11, | 0t tϕ +> ⊂ Σp  
which is equivalent to 

( ) ( ) ( ) ( )1 11 1 11010 , 0, 0 01 , 0.t tϕ ϕ> >p p               (20) 

If 2 2
1 2 0ρ ρ+ = , then we have ( ) ( )1 110 01 , 0pt zϕ = >p . And if 2 2

1 2 0ρ ρ+ ≠ , 
the inequalities in (20) are equivalent to 

( ) ( )1 2 2
1 2 1 1e sin , 0,t

p pF t y t y tα δ θ β= + + > − >            (21) 

and 

( ) ( )1 2 2
2 1 2 2 1e sin , 0,t

pF t t z tα ρ ρ θ β= + + > − >            (22) 

where 

2
1 12 2 2 2

2 2

sin 0, cos ,p

p p

y

y y

δ
θ θ

δ δ

−
= < =

+ +
             (23) 

1 2
2 22 2 2 2

1 2 1 2

sin , cos ,ρ ρ
θ θ

ρ ρ ρ ρ
= =

+ +
              (24) 

2 22 10 12 20 1 13 10 23 20 2 23 10 13 20, , .k k k k k kδ ζ ζ ρ ζ ζ ρ ζ ζ= − = + = −       (25) 

Consider the expressions of ( )1F t  and ( )2F t , notice that 1 0α < , 1 0β > , 
so the functions ( )1F t , ( )2F t  are the periodic oscillation attenuation func-
tions and ( )1F t , ( )2 0F t →  as t →+∞ . To prove (21) and (22), we only need 
to consider the first local minimal points of the corresponding functions ( )1F t   

and ( )2F t  in 
1

20,
β

 π
 
 

. 

From (21)-(22), we have 

( ) ( ) ( )1 2 2
1 2 1 1 1 1e sin cost

pF t y t tα δ α θ β β θ β′ = + + + +            (26) 

( ) ( ) ( ) ( )1 2 2 2 2
1 2 1 1 1 1 1 1 1 1e sin 2 cost

pF t y t tα δ α β θ β α β θ β ′′ = + − + + +     (27) 

( ) ( ) ( )1 2 2
2 1 2 1 2 1 1 2 1e sin cos ,tF t t tα ρ ρ α θ β β θ β′ = + + + +          (28) 

( ) ( ) ( ) ( )1 2 2 2 2
2 1 2 1 1 2 1 1 1 2 1e sin 2 cos ,tF t t tα ρ ρ α β θ β α β θ β ′′ = + − + + +     (29) 

( ) ( )1 1 1 2 2 1 1 1 20 , 0 .pF y Fα β δ α ρ β ρ′ ′= − + = +              (30) 

In the sequel, we will prove that ( ) ( )1 11010 , 0tϕ >p  holds if and only if the 
second inequalities in (14) and the first inequality in (15) hold. 

From (26), the local minimal points satisfy 
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( ) ( ) 1
1 1 1

1

0 cot .F t t α
θ β

β
′ = ⇔ + = −                  (31) 

If 0t  satisfies Equation (31), then it satisfies 

( ) ( )1 1
1 1 0 1 1 02 2 2 2

1 1 1 1

sin 0, cos 0,t tβ αθ β θ β
α β α β

−
+ = < + = <

+ +
     (32) 

or 

( ) ( )1 1
1 1 0 1 1 02 2 2 2

1 1 1 1

sin 0, cos 0.t tβ αθ β θ β
α β α β

−
+ = > + = >

+ +
     (33) 

We can verify that and 

( ) ( )1 0 2 2 2 2
1 0 2 1 1 1e 0,t

pF t yα δ β α β′′ = − + + <  

for 0t  satisfying Equation (33), so the 0t  satisfying Equation (33) is not local 
minimal points. And 

( ) ( )1 0 2 2 2 2
1 0 2 1 1e 0,t

pF t yα δ β α β′′ = + + >  

for 0t  satisfying Equation (32), so ( )1F t  has the unique local minimal value in 

1

20,
β

 π
 
 

 at 0t  in (32) with 

( )
1 02 2

1 2
1 0 2 2

1 1

e
.

t
py

F t
αβ δ

α β

− +
=

+
                   (34) 

In addition, from Equations (32) and (23), we have 

1 2
1 0 1 1

1

arccot 2 , , arccot ,
p

t k k Z
y

α δβ θ θ
β

π π
  

+ = − π+ + ∈ = + −       
 

then 

1 2
1 0

1

arccot 2 arccot , .
p

t k k Z
y

α δβ
β

π
  

= − + − − ∈       
 

Since ( )1 0 pF y= − we must have ( )1 1 1 20 0pF yα β δ′ = − + ≥  to ensure 
( )1 pF t y> −  for 0t > . Moreover, consider the transversal condition  

( )( )11 1 1 20 1 0 0pyα β δ+ = − + ≠Ap a , then we have ( )1 1 1 20 0pF yα β δ′ = − + > . 
Thus 

1 2

1

0,
py

α δ
β

− > − >  

and we obtain that 

2 1

1

arccot arccot 0.
2 py

δ α
β

   
> − > − >      

π

 
 

Recall that 0
1

20,t
β
π 

∈ 
 

, we have 

https://doi.org/10.4236/jamp.2024.122033


M. H. Liu, R. M. Liu 
 

 

DOI: 10.4236/jamp.2024.122033 495 Journal of Applied Mathematics and Physics 
 

1 2
0

1 1

1 arccot arccot 2 .
p

t
y

α δ
β β

   
= − − − +       

π
  

 

Therefore, ( ) ( )1 11010 , 0tϕ >p  holds for 0t >  if and only if the second in-
equality in (14) and the first inequality in (15) hold. 

Next, we will prove that ( ) ( )1 110 01 , 0tϕ >p  holds 0t >  if and only if the 
third inequality in (14) and the second inequality in (15) hold. Consider the  

the first local minimal point 1t  of the function ( )2F t  in 
1

20,
β

 π
 
 

. 

( ) ( ) 1
2 2 1

1

0 tan .F t t β
θ β

α
′ = ⇔ + = −                  (35) 

Similar to the discussions of ( )1F t , the local minimal point 1t  of ( )2F t  in 

1

20,
β

 π
 
 

 satisfies 

( ) ( )1 1
2 1 1 2 1 12 2 2 2

1 1 1 1

sin 0, cos 0,t tβ α
θ β θ β

α β α β

−
+ = < + = <

+ +
     (36) 

and 

( )
1 12 2

1 1 2
2 1 2 2

1 1

e
.

t

F t
αβ ρ ρ

α β

− +
=

+
                   (37) 

To have ( )2 pF t z> −  for 0t > , we must have  
( )2 13 10 23 20 10 pF k k zζ ζ ρ= + = ≥ − , which is the third inequality in (15). If 
( )2 10 0pF zρ= = − < similar to the discussions of ( )1F t , we must have 
( )2 1 1 1 20 0F α ρ β ρ′ = + ≥ . 

From Equation (36), we have 

1
1 1 2

1

arctan 2 , with .t k k Zβ
β θ

α
 

+ = − + + ∈ 


π π


 

Consider formula (24), we have 

1
2 2 2

1 2

arcsin ,ρ
θ

ρ ρ

 
 =
 + 

 

for 2 0ρ ≥ , and 

1
2

2

arctan ,ρ
θ

ρ
 

= +  
 

π  

for 2 0ρ < . Then the local minimum point 1t  satisfies 

1 1
1 1 2 2

1 1 2

arctan 2 arcsin , ,t k k Zβ ρβ
α ρ ρ

    = − + + − ∈   
π

  
π

+
 

for 2 0ρ ≥ , and 

1 1
1 1

1 2

arctan 2 arctan , ,t k k Zβ ρβ
α ρ

   
= − + − ∈   

  
π
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for 2 0ρ < . 

Since 1
1

20,t
β
π 

∈ 
 

, we have 

1 1
1 2 2

1 1 1 2

1 arctan arcsin ,t β ρ
β α ρ ρ

    = − − +   +  

 
 π
 
 

 

for 2 0ρ ≥ . If 2 0ρ <  and 1 1 1 2 0α ρ β ρ+ ≤ , then we have 

1 1
1

2 1

tan .ρ β
θ

ρ α
= ≤ −  

Thus, we obtain that 

1 1

2 1

arctan arctan ,
2 2

ρ β
ρ α

   
− < ≤ − <   

  

π π


 

and 

1 1
1

1 1 2

1 arctan arctan .t β ρ
β α ρ

    
= − −    

    
 

If 2 0ρ <  and 1 1 1 2 0α ρ β ρ+ > , then we have 

1 1
1

2 1

tan .ρ β
θ

ρ α
= > −  

Thus, we obtain that 

1 1

2 1

arctan arctan 0,
2

ρ β
ρ α

   
> > − >   

   

π  

and 

1 1
1

1 1 2

1 arctan arctan 2 .t β ρ
β α ρ

    
= − − +    

    
π  

Therefore, ( ) ( )1 110 01 , 0tϕ >p  holds for 0t >  if and only if the third inequa-
lity in (14) and the second inequality in (15) hold. Of course, using the afore-
mentioned method, we can obtain the conditions for ( ){ }2 02, | 0t tϕ +< ⊂ Σp . 

From conditions of theorem (1), we have 

( )( )02 10 0 1 0,pz λ+ = − <Ap a  

( )( )02 2 2 10 0 1 0,qzα β σ+ = − + <Bp b  

( )( )11 1 1 20 1 0 0,py α β δ+ = − + >Ap a  

( )( )11 30 1 0 0.qyλ+ = − >Bp b  

In conclusion, conditions 1) - 5) hold if and only if conditions in Theorem 1 
hold. The proof of Theorem 1 is completed. 

5. The Proof of Theorem 2  

In this section, we will prove Theorem 2 through a two-step process based on 
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the methodology presented in reference [15]. 

Construct the Poincaré Map 

At first, if system (1) fulfills the conditions stated in Theorem 1, it possesses a 
heteroclinic cycle Γ which connects the fixed points p  and q . This heteroc-
linic cycle Γ transversely intersects 1Σ  at the points 11p  and transversely in-
tersects 1Σ  at the points 02p , as depicted in Figure 2. 

For a small real constant number 0 0γ > , let ( )1 2 3 4 0, , , 0,y y y y γ∈ , and 

2 1y y< , 4 3y y< , and 

( )1 1 2 3 2 1 1

0
| ,0 ,y y y y z

z
ζ ζ ζ γ

  
  Π = + ≤ ≤ < <  
  

  

p  

( )2 1 2 3 4 3 2

0
| ,0 ,y y y y z

z
ζ ζ ζ γ

  
  Π = + ≤ ≤ < <  
  

  

q  

( )3 1 2 3 1 1

3

| , ,
x
y x yζ ζ ζ ε ε
γ

  
  Π = + ≤ <  
  

  

p  

( )4 1 2 3 2 2

4

0
| , ,y x yζ ζ ζ ε ε

γ

  
  Π = + ≤ <  
  

  

q  

where 1 30γ γ> > , 2 40 γ γ< <  and 1 2, 0ε ε > , they are small enough such that 

1 3, +Π Π ⊂ Σ , 2 4, −Π Π ⊂ Σ . According to the aforementioned definition of the 
Poincaré sections iΠ , the heteroclinic cycle Γ intersects each iΠ  at a single 
point for 1,2,3,4i = . Suppose 

5 1 6 2, ,X X= Π ∩Γ = Π ∩Γ                    (38) 

7 3 8 4, .X X= Π ∩Γ = Π ∩Γ                    (39) 

then there exist 1 2, 0t t < , 3 4, 0t t > , such that 

( ) ( )1 1 5 11 1 3 7 02, , , ,t X t Xϕ ϕ= =p p                 (40) 

( ) ( )2 2 6 02 2 4 8 11, , , .t X t Xϕ ϕ= =p p                 (41) 

To create the Poincaré map of the system (1), we first require the subsequent 
outcomes. 

Let's consider the mapping 1P  from 1Π  to 3Π . For a point 

( ) 10 ,X P y z= + ∈Πp 
 

( )1P X  is defined as the first intersection of the trajectory ( )1 ,t Xϕ  with 3Π . 
By (10), we get 1 1 3:P Π →Π  
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1

1

1

1

3 31

1

3 31

1

3

sin ln
0

.
cos ln

y
z z

P y P
yz z z

α
λ

α
λ

γ γβ
λ

γ γβ
λ

γ

      −              + +                        
 

p p�           (42) 

Denote as 

( )
( ) 1 1

1 1

2 1 2

2 1 1 10 | , e e ,
k k

kS P y z y y y z
λ λ

β βγ γ
− + −π π  = + ≤ ≤ ≤ ≤ 

  
p      (43) 

then we have 

1
0

.k
k

S
∞

=

Π =∪  

Denote the upper boundary of kS  as uh , the lower boundary of kS  as dh , 
the left boundary of kS  as lv , and the right boundary of kS  as rv . 

( )
1

1

2

2 1 10 | , e ,
k

uh P y z y y y z
λ

βγ
π−  = + ≤ ≤ = 

  
p   

( )
( ) 1

1

2 1

2 1 10 | , e ,
k

dh P y z y y y z
λ

βγ
π− +  = + ≤ ≤ = 

  
p   

( )
( ) 1 1

1 1

2 1 2

2 1 10 | , e e ,
k k

lv P y z y y z
λ λ

β βγ γ
π− + −π  = + = ≤ ≤ 

  
p   

( )
( ) 1 1

1 1

2 1 2

1 1 10 | , e e .
k k

rv P y z y y z
λ λ

β βγ γ
π− + −π  = + = ≤ ≤ 

  
p   

Under the coordinate system { }1 2 3; , ,ζ ζ ζp , utilizing polar coordinates for 
the x and y components on 3Π , the transformation of the four boundaries by 
the function 1P  can be described as follows: 

( ) ( )

1 1
1 1

1 1
1 1

31
1

1 1

2 2
3 3

2 1
1 1

, | ln 2 ,

e , e ,

u

k k

P h r k

r y y

α α
α α

λ λ
β β

γβ
θ θ

λ γ

γ γ
γ γ

π π


 = = − +  
 


 

     ∈         

π

 

 

( ) ( ) ( )

( ) ( )1 1
1 1

1 1
1 1

31
1

1 1

2 1 2 1
3 3

2 1
1 1

, | ln 2 1 ,

e , e ,

d

k k

P h r k

r y y

α α
α α

λ λ
β β

γβ
θ θ

λ γ

γ γ
γ γ

π π+ +


 = = − + +  
 


 

     ∈         


π
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( ) ( ) ( )

( )1 1
1 1

1 1
1 1

3 31 1
1

1 1 1 1

2 1 2
3 3

2 2
1 1

, | ln 2 , ln 2 1 ,

e , e ,

l

k k

P v r k k

r y y

α α
α α

λ λ
β β

γ γβ β
θ θ

λ γ λ γ

γ γ
γ γ

+ π π


    = ∈ − + − + +         

π π
 


 

     ∈          

 

( ) ( ) ( )

( )1 1
1 1

1 1
1 1

3 31 1
1

1 1 1 1

2 1 2
3 3

1 1
1 1

, | ln 2 , ln 2 1 ,

e , e .

r

k k

P v r k k

r y y

α α
α α

λ λ
β β

γ γβ β
θ θ

λ γ λ γ

γ γ
γ γ

+ π π


    = ∈ − + − + +         

π π
 


 

     ∈          

 

From the above results, we have 
1

1
1

1

2
3

max 1
1

e 0
k

r y

α
α

λ
βγ

γ

π
 

= → 
 

, as k →∞ . 

For sufficiently large values of k, we have ( )1 3kP S ⊂Π . Based on the above 
calculations, we can roughly draw the graph of ( )1 kP S  as Figure 3. Using the 
same approach used to define 1P , we define the mapping 2P  from 2Π  to 

4Π : 
2

2

2

2

4 2 4

2

4 2 4

2

4

sin ln
0

.
cos ln

y
z z

Q y Q
yz z z

α
λ

α
λ

γ β γ
λ

γ β γ
λ

γ

      −              + +                        
 

q q�           (44) 

Denote as 

( )
( ) 2 2

2 2

2 1 2

4 3 2 20 | , e e ,
n n

nS Q y z y y y z
λ λ

β βγ γ
− + −π π  = + ≤ ≤ ≤ ≤ 

  
q     (45) 

then we have 

2
0

.n
n

S
∞

=

Π =∪  

Similar to the representation of ( )1 kP S , when n is sufficiently large, we can 
roughly draw the graph of ( )2 nP S  as Figure 4. Now, we introduce the mapping 

3P  from 3Π  to 2Σ . Note that the flight time of a point 

( )3 3 ,X P x y γ= + ∈Πq   

to reach 2Σ  corresponds to the largest negative solution of the equation 

( ) ( ) ( )1 , , 0 0 1 e 0.AtF t x y X = − + = p p              (46) 

By the first equality of (39), 7X  can be expressed as 

( )7 3 30 0 .X p P γ= + ∈Π  
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Figure 3. Geometric structure of 1P  and kS . 
 

 

Figure 4. Geometric structure of 2P  and nS� . 

 
Given the second equivalence in (40) 02 2∈Σp , we can conclude 

( )1 3 ,0,0 0,F t =  

from (46), we have 

3
1 33 3

1 ln ,pz
t

λ ζ γ
 

= − 
 

 

( ) 1 3
1 3 1 33,0,0 e 0.tF t λλ ζ= ≠  

Therefore, according to the implicit function theorem, there exists a neigh-
borhood 1U�  of 7X  such that 

( ) ( )3 1 2, 2 ,t x y t k x k y O= + + +� �  

where 1 2,k k� �  are constant real numbers. 
Then, neglecting the ( )2O  terms, the expression for 3P  is given by 

02 1

3

,
0

x x
P y PH y

γ

   
   + +   

  
  

p p�                  (47) 

where 

1 1

1 1 1
13 23

33 33

1 0 0
0

0 1 0
0 ,

0 0 0 0
H

µ ν
ν µ

ζ ζ
ζ ζ

 
−  

  =   − −    
 

 

1 1,ν µ  are constant real numbers. 
Note that 3P  is an affine map. Using the same method to define 3P , we can 

also define the following map. The transformation 4P  from 4Π  to 1Σ . There 
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exists a neighborhood 2U�  of 8X  such that the affine transformation 4P  is 
defined as 

11 2

4

,
0

x x
Q y PH y

γ

   
   + +   
   
   

q p�                   (48) 

where 

2 2
12 22

2 2 2
32 32

1 0 0 0
0 0 ,

0 0 0
0 1 0

H
µ ν

ζ ζ
ν µ

ζ ζ

 
−  

− −   =       
 

 

2 2,ν µ  are constant real numbers. 
The map 5P  from 2Π  to 2Σ . There exists a neighborhood 3U�  of 6X  

such that 5P : 

1 1

02 1 1

1

00 0
0 ,
0 0

a b

Q y P c d y
z e z

        + +              

q p

��
���
�

              (49) 

where 1 1 1 1 1, , , ,a b c d e� �� � �  are real constant numbers. 
The map 6P  from 1Π  to 1Σ . There exists a neighborhood 4U�  of 5X  

such that 6P : 

2 2

11 2

2 2

0 0 0
0 0 ,

0

a b
P y P e y

z zc d

    
    + +     

        

p p

��
��
��

              (50) 

where 2 2 2 2 2, , , ,a b c d e� �� � �  are real constant numbers. 
In the end, we construct the Poincaré map P as follows 

1 1
6 4 2 5 3 1.P P P P P P P− −= � � � � �                   (51) 

For convenience, let 
1

1 5 3 1 1 2: ,M P P P−= Π →Π� �                   (52) 
1

2 6 4 2 2 1: ,M P P P−= Π →Π� �                   (53) 

then we have 2 1P M M= � . 
Note that 3 4 5, ,P P P , and 6P  are all affine mappings. Based on the diagrams 

of ( )1 kP S  and ( )2 nP S�  shown in Figure 3 and Figure 4, we can select appro-
priate values of 1γ  and 2γ  such that ( )1 kM S  and ( )2 nM S�  can be 
represented as shown in Figure 5 and Figure 6 for sufficiently large values of k 
and n. 

Remark. Recalling Figure 3, under the mapping 1P , the right (resp. left) 
boundary of kS  is continuously mapped to the outer (resp. inner) boundary of 
an annulus-like object. Since the maps 3P  and 5P  are affine maps, the inner 
and outer boundaries of ( )1 kP S  correspond to the inner and outer boundaries 
of ( )1 kM S , respectively. 
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Figure 5. Geometric structure of 1M  and kS .  

 

 

Figure 6. Geometric structure of 2M  and kS� . 

 
Similarly, the inner and outer boundaries of ( )2 nP S�  correspond to the re-

spective inner and outer boundaries of ( )2 nM S� . 
Statement 1. Consider kS  for fixed k large enough, under the conditions of 

Theorem 2, there exists a positive integer n such that the inner boundary of 
( )1 kM S  intersects the upper boundary of nS�  in two points, moreover, the in-

ner boundary of ( )2 nM S�  intersects the upper boundary of kS  in two points. 
Proof: For fixed k large enough, any point in ( )1 kM S  can be expressed as 

( )0 .Q y z+q                        (54) 

For the points in ( )1 kM S  expressed above, there exists a constant 1T  such 
that the minimum value of z  satisfies 

( ) 1

1
1

2 1

1min
e ,

k

Mz T
α

β
+ π

≥  

Let n be the integer part of the number 

( )2 12 1

2 2 2 1

1
ln .

2
kT β αβ

λ γ λ β
+ 

− − 
 π

 

According to the definition of nS� , the points in nS�  can be expressed using 
the same formula as (54). Therefore, the maximum value of z  for points in 

nS�  can be determined 
2

2
1

2

2 minmax
e .

n

n

MSz z
λ

βγ
π−

= ≤�  

As a result, we can roughly draw in Figure 7 that the inner boundary of 
( )1 kM S  intersects with the upper boundary of nS�  at two points. 
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Figure 7. Geometric structure of kS  and nS� . 

 
Consider points in ( )2 nM S� , any point in ( )2 nM S�  can be represented as 

follows 

( )0 ,X P y z= +p                      (55) 

for the smallest z , there exists a constant 2T , 
( ) 2

2
2

2 1

2min
e ,

n

Mz T
α

β
+ π

≥  

On the other hand, the points kS  can be expressed in the same way as (55), 
and the largest absolute value of z kS  satisfies the following: 

1

1

2

1max
e .

k

k

Sz
λ

βγ
π−

=  

Hence, if we can prove that 

2 min

max

1,
k

M

S

z

z
>  

and we can roughly draw in Figure 7 that the inner boundary of ( )2 nM S�  in-
tersects with the upper boundary of kS  at two points. 

After performing straightforward calculations, we have 
( )1 2 1 2

2 1 2

2
min

max

e ,
k

k
M

S

z
K

z

λ λ α α
β λ

π −

=                    (56) 

where 
2

2 1 2
2

2 1 2
2

2 2

1 2

e .TK
T

α
α α α

λ
β β λγ

γ

 
− 


π

 
=  

 
 

Consider the condition in Theorem 2: 1 2 1 2 0λ λ α α− > , then from (56), we get 

2 min

max

, as .
k

M

S

z
k

z
→+∞ →+∞                   (57) 

Consequently, for k large enough, 2 min

max

1
k

M

S

z

z
> . 

Statement 2. For sufficiently large values of k, under the conditions of Corol-
lary 2, kS  contains an invariant Cantor set on which the Poincaré map P is to-
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pologically semiconjugate to a full shift on four symbols. 
Proof: For sufficiently large values of k, according to Statement 1, there exists 

a positive integer n such that the intersection of ( )1 kM S  and nS�  consists of 
two small disjoint vertical strips in nS� , denoted as 1nS�  and 1nS� . In other 
words, we have 

( )1 1 2 ,k n n nM S S S S∩ = ∪� � �  

and we can draw it as Figure 8. Based on Statement 1, we can conclude that the 
intersection of ( )2 nM S�  and kS  consists of two small disjoint vertical strips in 

kS , which are denoted by 1kiS  and 2kiS . In other words: 

( )2 1 2ni k ki kiM S S S S∩ = ∪�  

for 1,2i = . 
According to Remark 6, the top and bottom edges of kS  represent the inner 

and outer edges of ( )1 kM S , respectively. Similarly, the top and bottom edges of 

nS�  represent the inner and outer edges of ( )2 nM S� , respectively. 
So, with respect to 2M , the primage of the left (resp, right) vertical boundary 

of 2kiS  is included in the left (respectively, right) boundary of miS� . Similarly, 
the primage of the left (respectively, right) vertical boundary of 1kiS  is included 
in the right (respectively, left) boundary of niS� , where 1,2i = . 

More importantly, in response to 2M , the primage of the two 
non-overlapping vertical strips 22kS  and 21kS  consists of two separate hori-
zontal strips in 2S� . Similarly, the primage of the two disjoint vertical strips 11kS  
and 12kS  comprises two distinct horizontal strips in 1nS� . 

Let nijS�  represent the primage of kijS , for , 1,2i j = , as depicted in Figure 9. 
Using a similar approach, we can conclude that the primage of the four hori-

zontal strips associated with 1M  are four horizontal strips that are encom-
passed by kS . Moreover, each horizontal strip intersects the upper and lower 
boundaries of kijS  at two distinct points, respectively, for , 1,2i j = . 

Denote by kijS  the primage of nijS�  corresponding to 1M , 1,2i = , 1,2j = , 
which is shown in Figure 9. 
 

 

Figure 8. Geometric structure of kijS  and niS� . 
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Figure 9. Geometric structure of kijS  and nS� . 

 
Furthermore, it is evident that the left (resp, right) vertical edges of the pri-

mage 22kS  and 21kS  correspond to the left (resp, right) vertical edges of 22nS�  
and 21nS� , respectively. Similarly, the left (resp, right) vertical edges of the pri-
mage 12kS  and 11kS  correspond to the right (resp, left) vertical edges of 12nS�  
and 12nS� , respectively. 

In summary, we can conclude that: 

( ) ,kij kijP S S=  

for 1,2i = , 1,2j = . 
Additionally, it is clear that the left (resp, right, upper, lower) vertical bounda-

ries of the primage 22kS  and 11kS  correspond to the left (respectively, right, 
upper, lower) vertical boundaries 22kS  and 11kS , respectively. Similarly, the 
left (resp, right, upper, lower) vertical boundaries of the primage 12kS  and 

21kS  correspond to the right (respectively, left, lower, upper) vertical bounda-
ries 12kS  and 21kS , respectively. 

Then, by the Horse lemma, the proof is completed. 
Remark. Based on the assertions made in Statements 1 and 2, the demonstra-

tion of Corollary 2 is finalized. In a manner akin to the Shil’nikov Theorems ex-
pounded in [12] [16] [17], it becomes apparent that system (1) possesses a 
minimum of an enumerable infinite number of chaotic invariant sets. 

6. Conclusions 

This paper proposes an analytical method on the existence of heteroclinic cycles 
in a class of 3-dimensional piecewise affine systems. Under the study of the cor-
responding chaotic dynamics, it provides a way to construct chaotic systems. 
Our method also can be applied to piecewise affine systems with more intricate 
switching planes, enabling the generation of multiple homoclinic or heteroclinic 
cycles. Additionally, it is feasible to produce multi-scroll chaotic attractors. 

T his article conducts an analysis of the geometric structure of these systems, 
laying the groundwork for understanding how the types and positions of two 
equilibrium points, as well as changes in the geometric structure of invariant 
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manifolds, can affect the presence of singular cycles and chaos. The research 
presented in this article provides sufficient evidence to support the case where 
both equilibrium points are saddle-focus points and q  is situated in the 2S  
region. However, challenges still remain in studying other types of situations, 
necessitating further investigation by scientific researchers. 

The existence of singular cycles and chaos in such systems can be influenced 
by various factors, including the types and positions of equilibrium points, as 
well as the geometric structure of invariant manifolds. To gain a comprehensive 
understanding and analysis of the behavior of these systems in more general 
scenarios, additional research is required. 

Scientific researchers can continue to explore the dynamics of systems with 
different types of equilibrium points, investigating how changes in their posi-
tions can impact the presence of singular cycles and chaos. This may involve the 
development of novel mathematical techniques, conducting numerical simula-
tions, or even experimental studies, depending on the specific characteristics of 
the system under investigation. 

By addressing these unresolved challenges and conducting further research, 
scientists can deepen our comprehension of the dynamics exhibited by such sys-
tems, potentially uncovering new insights and phenomena. These advancements 
will contribute to the advancement of this field, fostering a more holistic under-
standing of complex dynamical behaviors. 
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