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Abstract 
A number of previous papers have studied the problem of recovering low-rank 
matrices with noise, further combining the noisy and perturbed cases, we 
propose a nonconvex Schatten p-norm minimization method to deal with the 
recovery of fully perturbed low-rank matrices. By utilizing the p-null space 
property (p-NSP) and the p-restricted isometry property (p-RIP) of the ma-
trix, sufficient conditions to ensure that the stable and accurate reconstruc-
tion for low-rank matrix in the case of full perturbation are derived, and two 
upper bound recovery error estimation ns are given. These estimations are 
characterized by two vital aspects, one involving the best r-approximation 
error and the other concerning the overall noise. Specifically, this paper ob-
tains two new error upper bounds based on the fact that p-RIP and p-NSP are 
able to recover accurately and stably low-rank matrix, and to some extent 
improve the conditions corresponding to RIP. 
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1. Introduction 
Low-rank matrix recovery (LMR) is a fast-growing field nowadays, attracting 
much attention in numerous applications such as quantum state tomography 
scanners [1], deep learning [2], nonlinear system identification [3], computer 
visualization [4], and medical imaging [5]. The mathematical expression of the 
low-rank matrix recovery issue is described as 

( )b X=                              (1) 

where 1 2m mX ×∈  is an unknown low-rank matrix or approximate low-rank 
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matrix, which need be recovered and Nb∈  is a known observation vector, 
1 2: m m N× →   is a given measurement operator or linear mapping which is 

defined by the following formula 

( ) ( )( ) ( )( ) ( )( ) T
1 2T T T, , , NX tr X B tr X B tr X B =  �             (2) 

where ( ) ( ) ( )1 2, , , NB B B�  are named the measurement matrices, TX  is the 
transpose matrix of X and ( )tr ⋅  is the trace function. The main goal of LMR is 
to recover the low-rank matrix X on the basis of observation vector b and oper-
ator  . 

Actually, the linear measurement b is affected by the noisy vector y. The noisy 
LMR model is shown by 

( )b̂ X y= + ,                         (3) 

b̂  is an observed measurement disturbed by the noise vector y, y is an additive 
noise that does not depend on X. 

Moreover, more LMR models may involve casein which the observed vector b 
is perturbed noise vector𝑦𝑦, meanwhile, the linear mapping   is hampered by 
Φ, i.e.,   is replaced by ˆ = +Φ   to bring about multiplicative noise Φ(X) 
associated with X. In a large number of applications of complete separation 
problems such as remote sensing [6], source separation [7], and telecommunica-
tion [8], complete perturbation problems usually arise. In order to require the 
optimal solution from this fully perturbed problems, a common approach is to 
solve a class of nuclear norm minimization issues (NNM) as described below: 

( )
1 2 , ,2

ˆ ˆ ˆmin s.t.
m m r b

X
X X b

× ∗∈
− ≤


  ,                (4) 

where , ,ˆ 0r y ≥  represents the overall noise, X
∗
 is the trace norm of the 

matrix X, namely the sum of its singular values. While 1 2m m=  and  
( )( )1mX diag x x= ∈  is diagonal matrix, issue (4) relegates into a compressed 

sensing issue 

1 , ,1 2
ˆ ˆ ˆmin s.t.

m r b
x

x x b
∈

− ≤


  ,                   (5) 

here 
1x  is 1l  the norm of the vector x , in a word, the sum of the absolute 

values of the elements of x . 
Chartrand’s study [9] revealed that nonconvex variants of (5) can produce 

accurate reconstruction with fewer measurements. Specifically, the 1l  norm 
minimization is substituted with the pl  norm minimization: 

1 , ,2
ˆ ˆ ˆmin s.t.

n

p
r bpx

x x b
∈

− ≤


  ,                   (6) 

in which ( )
1

p p
iipx x= ∑  is pl -quasi-norm of vector x . Even though the  

pl -quasi-norm is not a norm, but it satisfies the triangle inequality. 
Numerous studies have focused on the recovery of vector x  by pl  minimi-

zation ( 0 1p< ≤ ) [10] [11] [12]. Chartrand [9] conducts numerical experiments 
using random and non-random Fourier measurements, which acquied fewer 
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measurements are required for accurate restoration than when p = 1. Chartrand 
[13] extended the result of Restricted Isometry Property (RIP) in Candès and 
Tao [14] to the case of pl  minimization. Kong and Xiu [15] explored noncon-
vex relaxation methods for recovering the vector x. In summary, the case of (6) 
where x is free of the noise and perturbation for ( , ,ˆ 0r b = ) extends to the ma-
trix, referred to as pM -minimization: 

( )
1 2

min s.t.
n n

p
pX

X X b
×∈

=


 .                   (7) 

The related work [13] considers the scenario of matrix recovery with noise but 
without perturbation, i.e., where the linear mapping   is not interfered with 
by Φ. From an applied and practical perspective, it is crucial to investigate the 
problem of rank-r matrix recovery in the fully perturbed case. 

Therefore, we present the fully perturbed model of LMR through nonconvex 
Schatten p-norm minimization ( 0 1p< ≤ ): 

( )
1 2 , ,2

ˆ ˆ ˆmin s.t. ,
n n

p
r bpX

X X b
×∈

− ≤


                 (8) 

a p-norm of matrix X, and ( )( ) ( )
1

0 1i p p
ipX X pσ= < ≤∑ , its singular value  

decomposition (SVD) is ( )( ) TX Udiag X Vσ= , ( )i Xσ  being the ith singular 
value of X. This model characterizes the problem of rank-r matrix recovery in a 
fully perturbed scenario, with ( )r

 , ( )rη , κ , rα , rβ ,  , and y   as para-
meters in the model. 

Now, unlike the previous concept of restricted isometry constant, this paper 
follows the notion of restricted isometry property (p-RIP) given by Zhang in the 
article [13], which is viewed below: 

Definition 1.1 (p-RIP of the measurement mapping (or operator)  ) For the 
measurement operator : m n M× →  , a positive integer r and 0 1p< ≤ , the 
restricted p-isometry constant (p-RIC) of order r denoted by rδ  and for any 
matrix m nX ×∈  and ( )R X r≤ , which has 

( ) ( ) ( )1 1 .
pp p

r rF Fp
X X Xδ δ− ≤ ≤ +                (9) 

If ( )0,1δ ∈ , then   meets the restricted p-isometry property of order r. 
The restricted isometry property (RIP) of matrix is an essential tool for LMR 

theory analysis. For the accurate LMR (i.e., 0y = , 0Φ =  in (1)) or a noi-
sy/partly perturbed LMR (i.e., 0Φ =  in (7)), there are some sufficient condi-
tions based on RIP, which include 2 1k r kδ θδ θ++ < − , when 1θ >  and 

( )
2

22 0 1pk r pθ −
 
 
 

<


= ≤  [16], 
1 1 1 1

2 2
2

32 max ,2
2 2 2

p p
r k

k k kr k
r r

δ δ
− −

+
  + <    

 [17]. 

Moreover, another crucial tool for analyzing low-rank matrix recovery is the 
null space property (NSP) of the linear mapping  . Gao and Peng et al. [18] 
extended the general null space property to obtain the sparse vector p-null space 
property (p-NSP). Furthermore, we further extend sparse vector x recovery to 
the low-rank matrix, the notion is defined like this: 
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Definition 1.2 (p-NSP of measurement operator  ) For the measured oper-
ator : m n M× →  , with a constant 0 1s< <  and 0v > , for any matrix 

m nX ×∈  and ( )rank X r≤ , there exist 

( ) ,
p pp c

r rp pp
X s X v X≤ +                     (10) 

so the operator   fulfills the p-null space property of order r. 

2. Symbols and Main Results 

Before presenting the key results of this paper, some notations similar to those of 
the article [19] which quantize disturbances Φ and y with different upper 
bounds are given like such: 

( )

( )
2

2

, , ,
r

p p r
br

p p

Φ Φ Φ
≤ ≤ ≤   

 
                 (11) 

Here 
( )

1 2sup , with 0p m m
p

F

X
X X

X
×

  = ∈ ≠ 
  




  is the Schatten p-norm 

of the linear mapping   and  

( ) ( )
( )1 2sup , , 0,r p m m

p
F

X
X X R X r

X
×

  = ∈ ≠ = 
  




 , ( )r  is the norm of its 

initial image set of   consisting of nonzero matrix of order r, furthermore 

( )1 1
2

1, , , ,
1 1

r

cc
rr p pF rp

r r p
r r rF p

r F

XX

X
r X

δ
α β η κ

δ δ−

+
= = = =

− −



     (12) 

c
r rX X X= − , rX  stands for the best r-rank approximation of X whose singu-

lar values consist of the r-largest singular values of X. 
Secondly, two theorems are obtained based on the matrix of restricted 

p-isometry property (p-RIP) (see Definition 1.1) and the p-null space property 
(p-NSP) (see Definition 1.2) defined in section 1. Two theorems derive sufficient 
conditions guaranteeing stable and accurate recovery of rank𝑟𝑟matrices, and offer 
recovery error upper bounds. The content of two theorems is descripted as be-
low: 

Theorem 2.1: Let there be a linear operator : m n M× →  , ˆ My∈  and 
0 1p< ≤ . Let 1t >  and 2k tr= , if the restricted p-isometry constant of the li-
near operator   fulfills 

( )( ) ( )( ) ( ) ( )1 12 1 2 22 2
22 11 1 1 2 1 ,

p pp p pr t tr tr
trr t t tδ δ

− −+
++ + + + < − +          (13) 

a general matrix X with r-rank meets 

( )
1 ,r r rα β

η
+ <



                        (14) 

and the overall noise is 
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( ) ( )

( ) ( ), , 2
ˆ .

1

r r
r

r b yr
r r

b
η κ α
η α β

+
= +

−

 
  
 +
   




 
                 (15) 

m nX ×∈ , ( )rank X r≤ , ˆ = +Φ   and ( ) , ,2
ˆ ˆ ˆ r bX b− ≤   . *X  is the 

feasible solution of the fully perturbed Schatten p-norm minimization problem 

( )
1 2 , ,2

ˆ ˆ ˆmin s.t. ,
m m

p
r bpX

X X b
×∈

− ≤


                (16) 

The error estimation of X and *X  fulfills 

( )*
, ,ˆ ,

p pp c
r b rp p

X X C D X− ≤ +                 (17) 

where 

( )

( )( ) ( )( ) ( )( )

11 2

12 1 2 2
22 1

2 2
,

2 1 1 1 1

p
p

pp pr t tr
trr t

rM
C

tδ δ

−+

−+
+

=
− + + − + +  

 

( ) ( )

( )( ) ( )( ) ( )( )

1 22
2

12 1 2 2
22 1

4 1 1
2 .

2 1 1 1 1

p ptr
tr

pp pr t tr
trr t

t
D

t

δ

δ δ

−

−+
+

+ +
= +

− + + − + +



 



 
 

Theorem 2.2: For a given  , supposing that the linear measured operator 
  fulfills the p-null space property (p-NSP) with constants 0 1 2 pp

ps τ< < −     

and 
10 pp

p

v< <
 

 and conditions of (13) and (14) hold. Suppose m nX ×∈ , 

( )rank X r≤ , ˆ = +Φ  , ( ) , ,2
ˆ ˆ ˆ r bX b− ≤    holds. *X  is the feasible so-

lution to the completely perturbed Schatten p-norm minimization problem 

( )
1 2 , ,2

ˆ ˆ ˆmin s.t. ,
m m

p
r bpX

X X b
×∈

− ≤


                (18) 

then error estimation of X and *X  satisfies 

( )*
, ,ˆ ,

p pp c
r b rp p

X X C D X′ ′− ≤ +                 (19) 

where 

( )1 12 2 12 , .
1 2 1 2

p
p

p pp p
p p

svMC D
s v s v

− + +
′ ′= =

− − − −    
 

3. Proof of Key Results 

Proofs of our key results are presented in this section. To prove theorem 2.1 and 
theorem 2.2 such that we need the support of the following five lemmas and 
their proofs. We start this section with a lemma with respect to Schatten p norm. 

Lemma 3.1: If 0 1p< ≤ . Presume that , m nD E R ×∈  are matrices with 
T 0D E =  and T 0DE = . Then 
1) p p p

p p pD E D E+ = + ; 2) p p pD E D E+ ≥ + . 
When 1p = , p

pD  and pD  are the trace(or nuclear ) norm of matrix D. 
Lemma 3.2: For any ( ]0,1p∈ , there is 
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2 .
p ppc c

r r rpp p
Z Z X≤ +                       (20) 

Proof of the lemma 3.2 suppose *Z X X= −  and *X  is the optimal solu-
tion to the problem (8), which yields 

* .
pp p

p pp
X X X Z≥ = −                      (21) 

Applying the inverse triangle inequality to the above Equation (21), we get 

.
p p pp c c c c

r r r r r r r rp p p p
X Z X Z X Z X Z X Z− = − + − ≥ − − −        (22) 

Again, by Lemma 3.1 and inequality (22), we obtain 

.

p p p ppc c c c
r r r r r r r rpp p p p

p pp pc c
r r r rp pp p

X Z X Z X Z X Z

X Z X Z

− − − = + − −

≥ + − −
        (23) 

Combining (21), (22), (23) and integrating their shifted terms, it is easy to 
show that 

2

p pp p pc c
r r r rp p pp p

pp pc
r r rp pp

pp c
r rp p

Z X X X Z

X X X Z

Z X

≤ − + +

≤ − + +

≤ +

                (24) 

which finishes the proof of the above lemma. 
Lemma 3.3: For any vector by∈ , there is 

1
2

2 .
p

p p
py b y

−
≤                        (25) 

Proof of the lemma 3.3 By definition of the pl  norm, there is  

( )
1

1
p p

ii
b

py y
=

= ∑ , and exploiting the Holder’s inequality, we suffice to obtain 

( ) ( )
2 2 1 12 2

1 1 1 21 1 .

p
p p

p pp pp p
i ii i ip

b b by y y b y
− −

= = =

 
  


⋅


= ≤ ⋅ =∑ ∑ ∑  

Therefore, the lemma 3.3 is proved. 
Next, the restricted isometry constant RIC rδ  and the relative disturbance 

upper bound ( )r
  of the measured operator   which does not have perturba-

tions are already present, and Lemma 3.4 gives p-RIP condition of the perturbed 
measurement operator ̂  and r̂δ . 

Lemma 3.4: (The perturbed measurement operator ̂  of the P-RIP) Assume 
that the r-order RIC of the   is denoted as rδ , and the upper bound on the 
relative perturbation corresponding to the operator Φ is ( )r

  and fix constant 
( ) ( )( ),max

ˆ 1 1 1
pr

r rδ δ= + + − , then ˆ = +Φ   of the RIC ,max
ˆ ˆ
r rδ δ≤ , r̂δ  as 

the smallest and positive number that obeys 

( ) ( ) ( )ˆ1 1
p pp

r F r Fp
X X Xδ δ− ≤ ≤ +                (26) 
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for any matrices X which are r-rank. 
Proof of the lemma 3.4 inspired by [20], first we define rt  and rµ  are the 

smallest positive or zero numbers that satisfy 

( ) ( ) ( )ˆ1 1
pp p

r rF Fp
t X X Xµ− ≤ ≤ +               (27) 

for any matrix X with rank at most r. 
Using the triangle inequality, (9) and (11), we acquire 

( ) ( ) ( )( )
( )( )

( ) ( )( )
( )( )

( ) ( )( )

ˆ

1

1

1 1

1 1

pp

p pp

pr pp
r p F

pr prp
r p F

p prp p
r r F

p pr
r F

X X X

X

X

X

X

δ

δ

δ δ

δ

= + Φ

≤ + + Φ

≤ + +

≤ + + +

≤ + +







 

 





             (28) 

Because of the concept of rµ , it means that 

( ) ( )( )1 1 1
pr

r rµ δ+ ≤ + +  ,                   (29) 

by applying the above inequality (29), we obtain a minimum upper bound 

( ) ( )( )1 1 1.
pr

r rµ δ= + + −                    (30) 

Similarly, taking advantage of the inverse triangle inequality, combined with 
the concept of RIC and (11) yields 

( ) ( )( )1 1 1
pr

r rt δ= − − −  .                   (31) 

Observe carefully that 1 1r rtµ− ≤ −  and 1 1r rt µ+ ≤ + . Based on the given 

rδ  and ( )r
 , we choose ,max

ˆ
r rµ δ=  the smallest nonnegative constant that 

makes (27) symmetric. Clearly, the true RIC of ˆ
r̂δ  satisfies ,max

ˆ ˆ
r rδ δ≤ . The 

proof of Lemma 3.4 is completed. 
Finally, the following lemma 3.5 clarifies that the perturbed measurement op-

erator ̂  can also comply with p-NSP, provided that the constants s and τ sa-
tisfy specific conditions and the measurement operator ̂  satisfies p-NSP. 

Lemma 3.5: For the given  , the measured operator ̂  satisfies the p-null 
space property with a constant 0 1 2 pp

ps v< < −    and a constant  
10 pp

p

v< <
 

, which satisfies the condition of (10) for any m nX ×∈ , and fix 

two constants ˆ
1 pp

p

v
v

v =
−  

 and 
( )1

ˆ
1

p

pp
p

v
s s

v

ρ +
= +

−






 
. Then two constants  

ˆ0 1s< <  and ˆ 0v > , and the perturbed measurement operator ̂  satisfies 
p-NSP. 

Proof of the lemma 3.5 Utilizing (11) and the inequality, there are 
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( ) ( ) ( )

( )

( )

ˆ

.

p p p

p pp

p p p
p pp

p p pp
p pp

X X X

X X

X X

≤ + Φ

≤ + Φ

≤ + 

 



  

               (32) 

Since   satisfies the p-null space property and 
pp p c

r rp p p
X X X≤ +  holds, 

we achieve 

( )

( )

( ) ( )
ˆ

ˆ .

p pp c
r rp pp

pp p pc p
r p pp p

pp pp pc p c
r r rp pp pp

X s X v X

s X v X v X

s X v X v X X

≤ +

≤ + +

≤ + + +







  

  

       (33) 

Then we collapse the inequality (33) to conclude that 

( )ˆ .
1 1

pp
ppp p c

r rp pp p pp p
p p

s v vX X X
v v

+
≤ +

− −



 

 


   
 

Let ˆ
1 pp

p

v
v

v =
−  

 and ˆ
1

pp
p
pp
p

s v
s

v

+
=

−





 

 
, basing the fact that 0v >  to 

make ˆ 0v > , we need to solve the following inequality 0
1 pp

p

v
v

>
−  

, which 

imitates 
10 pp

p

v< <
 

. 

In view of   in (11), and it is also known that 0s >  to make ˆ 0s > , we 
must solve 

0 1,
1

pp
p
pp
p

s v

v

+
< <

−





 

 
 

after sorting out the above inequality, we obtain 

1 2 .p pp p
p pv s v< < −      

Combining the above, while two constants 
10 pp

p

v< <
 

 and  

0 1 2 pp
ps v< < −   , we are able to come true ˆ 0v >  and ˆ0 1s< < , hence the 

measurement operator ̂  obeys p-RNSP. In summary, we prove the Lemma 
3.5. 

After the previous preparations, we now prove two theorems. The upper 
bound estimation of the error of a real matrix X to be recovered with the optimal 
solution *X  of problem (8) is derived from the restricted isometry property, 
i.e., theorem 2.1. 

Proof of the theorem 2.1 Let *Z X X= − , X be the real matrix that we expect 
to recover, *X  be the optimal solution to the problem (8). We apply the block 
decomposition of the SVD of the matrix Z given by 
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11 12T

21 22

,
Z Z

U ZV
Z Z
 

=  
 

 

where i jm n
ijZ ×∈  with 1 1m n r= =  and 2 2m n m r= = − , c

r rZ Z Z= + , 

11 12 T T

21 22

0 0
, ,

0 0
c

r r

Z Z
Z U V Z U V

Z Z
   

= =   
   

 

it is clear that ( ) ( ) ( )11 12 21 0 2rrank Z rank Z Z rank Z r≤ + ≤       , and  

( )T
0c

r rX Z =  and ( )T 0c
r rX Z = . 

Let SVD of ( ) ( )
22

m r m rZ − × −∈  be described by 

( )( ) T
22 22 ,Z Hdiag Z Gσ=  

where matrices ( ) ( ), m r m rH G − × −∈  are orthogonal, 
( ) ( ) ( ) ( )( )T

22 1 22 2 22 22, , , m rZ Z Z Zσ σ σ σ −= �  denotes a vector consisting of the 
singular values of 22Z  and ( ) ( ) ( )1 22 2 22 22 0m rZ Z Zσ σ σ −≥ ≥ ≥ ≥� . We divide 
( )22Zσ  into the sum of the vectors ( )( )22 1,2,

iT Z iσ = � , 
( )2 1 1, ,2iT r i ri= − + � , 1 2 1,2, ,J m rT T T = −�∪�∪ ∪ , each iT  has sparsity 2r (ex-

cept possibly JT ). Then, 
1TZ  is the portion of c

rZ  that corresponds to the 
( )2k k tr=  largest singular values, 

2TZ  is the part that corresponds to the next 
k largest singular values, then so forth. Obviously, for all i j≠ , T 0

i jT TZ Z =  and 
T 0

i jT TZ Z = , and ( )iTrank Z k≤ . 
The following results can be derived from [17] 

( )
1

1
22 ,

j j

pp p

T TF p
Z tr Z

−

−≤                     (34) 

( ) ( )
1

1 1
2 22 2 .
p p pp p

r r r Tp F F
Z r Z r Z Z− −≤ ≤ +              (35) 

According to (34), we get 

1

1 1
2 2

2 2 .
j j

p pp p pc
T T rj j pF p

Z k Z k Z
−

− −

≥ ≥
≤ =∑ ∑             (36) 

Applying Lemma 3.2 to (36), we can have 

( )
( )

( )

1

1

1
2

2

1 112 22

1 12 2

2

2 2

2 2 .

j

pp pp c
T r rp pFj

p pp p pc
r T r pF

p pp pc
r T r pF

Z k Z X

k r Z Z k X

t Z Z tr X

−

≥

− −−

− −

≤ +

≤ + +

= + +

∑

          (37) 

Since ( ) , ,2
ˆ ˆ ˆ r bX b− ≤    and the triangular inequality, it suffices to 

( ) ( ) ( ) , ,2 2 2
ˆ ˆ ˆˆ ˆ ˆ2 .r bZ X b X b∗≤ − + − ≤      

Therefore, by combining the above equation with lemma 3.3, we have 

( ) ( ) ( )1 1
2 2

, ,2
ˆ ˆ ˆ2 .

p pp p p
r bp

Z M Z M
− −

≤ ≤                (38) 

Moreover, by Lemma 3.4 and (37), we get 
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( ) ( ) ( )

( ) ( )
( ) ( )

( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

1 1

1

1

1

1

2

2 2 2
2

1 12 22 22 1

12 1 2 2
22 1

2

ˆ ˆ ˆ

ˆ ˆ

1 1

1 1 2 1 2

2 1 1 1 1

2 1

j

j

p pc
r T r Tp p

pp

r T Tp pj

pp

r tr r T tr TF Fj

p pp pc
tr r T tr rr t pF

pp p pr t tr
tr r Tr t F

t

Z Z Z Z Z

Z Z Z

Z Z Z

t Z Z tr X

t Z Z

δ δ

δ δ δ

δ δ

δ

≥

+
≥

− −
+

−+
+

= + + −

≥ + −

≥ − + +

 
≥ − − + + − + 
 
 

≥ − + + − + + + 
 

− +

−

∑

∑

 

  

 

 

( )( ) ( ) 12 21 2 ,
pp ptr c

r r p
tr X−+ 

 

(39) 

in that case 

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
1

1 1 22 2, , 2

12 1 2 2
22 1

ˆ2 2 2 1 1

2 1 1 1 1

p p p pp tr c
r b tr rp p

r T pF p pr t tr
trr t

M tr X
Z Z

t

δ

δ δ

− −

−+
+

+ + +
+ ≤

− + + − + +

 

 

 

 
    (40) 

From (40) and Lemma 3.2, we have that 

( )

( )

( )( ) ( )( ) ( )( )
( )

( ) ( )

( )( ) ( )( ) ( )( )

1

1
2

11 2

, ,
12 1 2 2

22 1

1 22
2

12 1 2 2
22 1

2 2

2 2 2

2 2
ˆ

2 1 1 1 1

4 1 1
2

2 1 1 1 1

p p pp p pc c c
r r r r r rp p pp p p

p p pc
r T r pF

p
p

p
r bpp pr t tr

trr t

p ptr
ptr c

rp pp pr t tr
trr t

Z Z Z Z Z Z Z

r Z Z X

rM

t

t
X

t

δ δ

δ

δ δ

−

−+

−+
+

−

−+
+

≤ + ≤ + ≤ +

≤ + +

≤
− + + − + +

 
+ + 

+ + 
  − + + − + + 



 



 


 



 

 (41) 

which finishes the proof of theorem 2.1. 
When constants 0 1p< ≤  and 1t > , setting 2k tr= , a new RIP condition 

that can robustly and accurately recover low-rank matrices is obtained i.e., (2 - 3) 
in Theorem 2.1, and it is slightly weaker than the sufficient condition of Zhang 
M [16] 2 1k r kδ θδ θ++ < − . 

Theorem2.2 is based on this element of the NSP of matrix, and provides an 
error-bound estimation of the actual r-rank matrix X to be found and the op-
timal solution *X  of problem (8). Its proof steps as below: 

Proof According to Lemma 3.4, while ̂  meets the p-null space property 
(pNSP), there exist 

( )ˆˆ ˆ .
ppp c

r rp p p
X s X v X≤ +                     (42) 

Let *Z X X= − , it is obvious that we get that by the lemma 3.2 and (42), we 
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( ) ( ) ( )* * ˆˆ ˆ2 2 ,
p p pc p p pc c c

r r rp p pr r ppp
X X X X X s X v X X− ≤ − + ≤ + +   (43) 

holds through the lemma 3.2 and (42). After simplifying, we further obtain 

( ) ( )* 1 ˆˆ 2 .
ˆ1

p pc pc
r pr pp

X X v X X
s
 − ≤ + 

−  
             (44) 

Finally, we conclude from (38), (43) and (44) that 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

* * *
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1
2

, ,

1 12

, ,

ˆ

ˆ

ˆˆ
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2 11 ˆˆ1
1 1

2 1ˆ2 ˆ2
1 1

2 1

1
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ˆ ˆ
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ˆ ˆ

2 ˆ .
1 2 1 2

pp cp
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r p rp p

ppc
r p p
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r pp

p
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r b r p

p
p pp c

r b rp p p

s

s

s

X X X X X X

s
s s

s

X v X X X

X v X

v X X

v M X

svM X
s v

s s

v s

−

− +

− ≤ − + −

≤ + + −

≤ ++

 ++
≤ + +

− −

+
≤ +



− −

+
≤ +

− − − −

 
 




 










 

 

holds for 0 1p< ≤ . Meanwhile, we finish the proof of the theorem 2.2. 
In brief, the above completes all proofs of the two theorems. 

4. Conclusion 

We primarily investigate mainly study fully perturbed problem of reconstructing 
a low-rank matrix through nonconvex Schatten p-norm minimization and give 
sufficient conditions for recovering the error along with corresponding upper 
bound estimations. These results show that nonconvex Schatten p-minimization 
provides a stable and accurate guarantee for reconstructing low-rank matrix in 
the existence of overall noise. The obtained results involve two implications, 
firstly, it suffices to guide the selection of measurement operators for low-rank 
matrix reconstruction, i.e., operators that satisfy weaker RIC sufficient condi-
tions can also better promote the recovery capacity; secondly, it provides theo-
retical support for boundary error by taking advantage of the following two 
properties, respectively p-RIP and p-NSP. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Recht, B., Fazel, M. and Parrilo, P.A. (2010) Guaranteed Minimum Rank Solutions 

of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review, 52, 
471-501. https://doi.org/10.1137/070697835 

https://doi.org/10.4236/jamp.2024.122032
https://doi.org/10.1137/070697835


Z. Y. Sun et al. 
 

 

DOI: 10.4236/jamp.2024.122032 486 Journal of Applied Mathematics and Physics 
 

[2] Chang, X., Zhong, Y., Wang, Y. and Lin, S. (2019) Unified Low-Rank Matrix Esti-
mate via Penalized Matrix Least Squares Approximation. IEEE Transactions on 
Neural Networks and Learning Systems, 30, 474-485.  
https://doi.org/10.1109/TNNLS.2018.2844242 

[3] Batselier, K. (2022) Low-Rank Tensor Decompositions for Nonlinear System Iden-
tification: A Tutorial with Examples. IEEE Control Systems Magazine, 42, 54-74.  
https://doi.org/10.1109/MCS.2021.3122268  

[4] Dass, J., Wu, S., Shi, H., et al. (2023) Vitality: Unifying Low-Rank and Sparse Ap-
proximation for Vision Transformer Acceleration with a Linear Taylor Attention. 
2023 IEEE International Symposium on High-Performance Computer Architecture 
(HPCA). Montreal, 25 February-01 March 2023, 415-428.  
https://doi.org/10.1109/HPCA56546.2023.10071081 

[5] Wang, Z., Qian, C., Guo, D., et al. (2022) One-Dimensional Deep Low-Rank and 
Sparse Network for Accelerated MRI. IEEE Transactions on Medical Imaging, 42, 
79-90. https://doi.org/10.1109/TMI.2022.3203312 

[6] Wang, Y., Lin, L., Zhao, Q., et al. (2017) Compressive Sensing of Hyperspectral Im-
ages via Joint Tensor Tucker Decomposition and Weighted Total Variation Regula-
rization. IEEE Geoscience and Remote Sensing Letters, 14, 2457-2461.  
https://doi.org/10.1109/LGRS.2017.2771212 

[7] Gundupalli, S.P., Hait, S. and Thakur, A. (2017) A Review on Automated Sorting of 
Source-Separated Municipal Solid Waste for Recycling. Waste Management, 60, 
56-74. https://doi.org/10.1016/j.wasman.2016.09.015 

[8] Ye, G., Pan, C., Dong, Y., et al. (2021) A Novel Multi-Image Visually Meaningful 
Encryption Algorithm Based on Compressive Sensing and Schur Decomposition. 
Transactions on Emerging Telecommunications Technologies, 32, e4071.  
https://doi.org/10.1002/ett.4071 

[9] Chartrand, R. (2007) Exact Reconstruction of Sparse Signals via Nonconvex Mini-
mization. IEEE Signal Processing Letters, 14, 707-710.  
https://doi.org/10.1109/LSP.2007.898300 

[10] Lai, M.J., Xu, Y. and Yin, W. (2013) Improved Iteratively Reweighted Least Squares 
for Unconstrained Smoothed ql  Minimization. SIAM Journal on Numerical Analy-
sis, 51, 927-957. https://doi.org/10.1137/110840364 

[11] Wang, Y., Wang, J. and Xu, Z. (2014) Restricted P-Isometry Properties of Noncon-
vex Block-Sparse Compressed Sensing. Signal Processing, 104, 188-196.  
https://doi.org/10.1016/j.sigpro.2014.03.040 

[12] Wang, J., Zhang, J., Wang, W., et al. (2015) A Perturbation Analysis of Nonconvex 
Block-Sparse Compressed Sensing. Communications in Nonlinear Science and 
Numerical Simulation, 29, 416-426. https://doi.org/10.1016/j.cnsns.2015.05.022 

[13] Chartrand, R. (2007) Nonconvex Compressed Sensing and Error Correction. 2007 
IEEE International Conference on Acoustics, Speech and Signal Processing- 
ICASSP’07. Honolulu, 15-20 April 2007, III-889-III-892.  
https://doi.org/10.1109/ICASSP.2007.366823 

[14] Candes, E.J. and Tao, T. (2005) Decoding by Linear Programming. IEEE Transac-
tions on Information Theory, 51, 4203-4215.  
https://doi.org/10.1109/TIT.2005.858979 

[15] Kong, L.C. and Xiu, N.H. (2011) Exact Low-Rank Matrix Recovery via Nonconvex 
Mp-Minimization. Optimization. 

[16] Zhang, M., Huang, Z.H. and Zhang, Y. (2013) Restricted P-Isometry Properties of 

https://doi.org/10.4236/jamp.2024.122032
https://doi.org/10.1109/TNNLS.2018.2844242
https://doi.org/10.1109/MCS.2021.3122268
https://doi.org/10.1109/HPCA56546.2023.10071081
https://doi.org/10.1109/TMI.2022.3203312
https://doi.org/10.1109/LGRS.2017.2771212
https://doi.org/10.1016/j.wasman.2016.09.015
https://doi.org/10.1002/ett.4071
https://doi.org/10.1109/LSP.2007.898300
https://doi.org/10.1137/110840364
https://doi.org/10.1016/j.sigpro.2014.03.040
https://doi.org/10.1016/j.cnsns.2015.05.022
https://doi.org/10.1109/ICASSP.2007.366823
https://doi.org/10.1109/TIT.2005.858979


Z. Y. Sun et al. 
 

 

DOI: 10.4236/jamp.2024.122032 487 Journal of Applied Mathematics and Physics 
 

Nonconvex Matrix Recovery. IEEE Transactions on Information Theory, 59, 
4316-4323. https://doi.org/10.1109/TIT.2013.2250577 

[17] Kong, L. and Xiu, N. (2013) Exact Low-Rank Matrix Recovery via Nonconvex 
Schatten P-Minimization. Asia-Pacific Journal of Operational Research, 30, Article 
1340010. https://doi.org/10.1142/S0217595913400101 

[18] Gao, Y., Peng, J., Yue, S., et al. (2015) On the Null Space Property of ql -Minimization 

for 0 1q< ≤  in Compressed Sensing. Journal of Function Spaces, 2015, Article ID 
579853. https://doi.org/10.1155/2015/579853 

[19] Herman, M.A. and Strohmer, T. (2010) General Deviants: An Analysis of Perturba-
tions in Compressed Sensing. IEEE Journal of Selected Topics in Signal Processing, 
4, 342-349. https://doi.org/10.1109/JSTSP.2009.2039170 

[20] Huang, J., Wang, J., Zhang, F., et al. (2021) Perturbation Analysis of Low-Rank Ma-
trix Stable Recovery. International Journal of Wavelets, Multiresolution and Infor-
mation Processing, 19, Article 2050091. https://doi.org/10.1142/S0219691320500915 

 
 

https://doi.org/10.4236/jamp.2024.122032
https://doi.org/10.1109/TIT.2013.2250577
https://doi.org/10.1142/S0217595913400101
https://doi.org/10.1155/2015/579853
https://doi.org/10.1109/JSTSP.2009.2039170
https://doi.org/10.1142/S0219691320500915

	A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
	Abstract
	Keywords
	1. Introduction
	2. Symbols and Main Results
	3. Proof of Key Results
	4. Conclusion
	Conflicts of Interest
	References

