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Abstract 
Feynman-Path Integral in Banach Space: In 1940, R.P. Feynman attempted 
to find a mathematical representation to express quantum dynamics of the 
general form for a double-slit experiment. His intuition on several slits with 
several walls in terms of Lagrangian instead of Hamiltonian resulted in a 
magnificent work. It was known as Feynman Path Integrals in quantum 
physics, and a large part of the scientific community still considers them a 
heuristic tool that lacks a sound mathematical definition. This paper aims 
to refute this prejudice, by providing an extensive and self-contained de-
scription of the mathematical theory of Feynman Path Integration, from 
the earlier attempts to the latest developments, as well as its applications to 
quantum mechanics. About a hundred years after the beginning of modern 
physics, it was realized that light could in fact show behavioral characteris-
tics of both waves and particles. In 1927, Davisson and Germer demonstrated 
that electrons show the same dual behavior, which was later extended to 
atoms and molecules. We shall follow the method of integration with some 
modifications to construct a generalized Lebesgue-Bochner-Stieltjes (LBS) 
integral of the form ( ),du f µ∫ , where u is a bilinear operator acting in the 

product of Banach spaces, f is a Bochner summable function, and μ is a vec-
tor-valued measure. We will demonstrate that the Feynman Path Integral is 
consistent and can be justified mathematically with LBS integration ap-
proach. 
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1. Introduction 
1.1. Introduction to Young’s Double Slit Experiment 

In modern physics, the double-slit experiment is a demonstration that light and 
matter can display characteristics of both classically defined waves and particles; 
moreover, it displays the fundamentally probabilistic nature of quantum mechan-
ical phenomena [1]. Thomas Young in 1801 is a demonstration of the wave beha-
vior of visible light [2]. At that time, it was thought that light consisted of either 
waves or particles. 

About a hundred years later, it was realized that light could in fact show beha-
vior characteristic of both waves and particles. In 1927, Davisson and Germer 
demonstrated that electrons show the same behavior, which was later extended 
to atoms and molecules [3] [4]. 

Thomas Young’s experiment with light was part of classical physics long be-
fore the development of quantum mechanics and the concept of wave-particle 
duality. He believed it demonstrated that the wave theory of light was correct, 
and his experiment is sometimes referred to as Young’s experiment or Young’s 
slits. 

The experiment belongs to a general class of “double path” experiments, in 
which a wave is split into two separate waves (the wave is typically made of many 
photons and better referred to as a wave front, not to be confused with the wave 
properties of the individual photon) that later combine into a single wave. Changes 
in the path lengths of both waves result in a phase shift, creating an interference 
pattern. 

A wide-ranging interview with the legendary mathematical physicist Freeman 
Dyson, in which he discusses his work with Richard Feynman, his attempts to build 
a spaceship propelled by nuclear bombs and his controversial views on climate 
change. 

1.2. From Double Slit to Multiple Slit and Multiple Screen Wall 

In 1940, Richard P. Feynman attempted to find a mathematical representation 
to express quantum dynamics of the general form of double-slit experiment. It 
was known as Feynman Path Integrals in quantum physics [5] [6]. 

The scientific community considers his work a heuristic tool that lacks a sound 
mathematical foundation. 

This paper aims to refute this prejudice, by providing an extensive and self- 
contained description of the mathematical theory of Feynman Path Integration. 
We will use a new approach called Lebesgue-Bochner-Steiltjes or briefly LBS In-
tegration Approach [7]. 

1.3. Characteristic of the Path Integral 

We will review a traveling a particle-wave through double, triple, or multiple slits. 
In this experiment, the light wave may be passing through one or several walls 
with slits from the source labeled S to a destination object called O. Feynman Path 
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Integrals, suggested heuristically by Feynman in the 40 s, have become the basis 
of much contemporary physics. 

Applications: 1) To non-relativistic quantum mechanics to quantum fields, 
gauge fields, gravitation, and cosmology. 2) In areas of mathematics like topolo-
gy and differential geometry, algebraic geometry, infinite-dimensional analy-
sis and geometry, and number theory. Vectors are considered in infinite dimen-
sional Banach Spaces. 

1.4. Review of STEPS in Rieman Integration 

• Input: Function f, domain, and range of the integration: 
A continuous function [ ]: ,f X a b R=   is a Riemann Integral function if 

there exists A R∈  such that for any ε > 0, there exists a δ > 0 such that for any 
partition of the domain [a, b] into a finite number of intervals. 
• Impose an arbitrary partition in the domain: Assume { }, 1, ,i i N=∆   such 

that max i δ∆ < and any choice of sampling points i it ∈∆ , where 

{ } [ ]{ }0 1 2 3 1, , , , , and Δ , , 1, ,N i i iP a t t t t b t t t i N−= = = = ∆ = = 

 
• The approximation of objective element: ( )i iA f t∆ ≅ ∆ . 
• Evaluate upper and lower Riemann SUM: 

( ) ( )( ), sup i iU f A f t∆ = ∆ ≅ ∆
 

• Total estimated value: 
The corresponding Riemann SUM: 

 { } { }( ) ( )1, ,R i i i ii
NS f t f t
=

∆ = ∆∑  (1.1) 

is as close as we desire to a constant value. 
• A constant limit exists: 

 ( )1
N

i ii f t A ε
=

∆ − <∑  (1.2) 

Or we can interpret A as the limit of the Riemann SUM when N is approach-
ing infinity. That is, 

( )1limN i ii
N f t A→∞ =

∆ =∑ . 

• Integral: We define the value of A when the limit in (1.2) exists, and the Rie-
mann Integral denoted by: 

( )db

a
A f t t= ∫  

1.5. Review of STEPS in Riemann Stieltjes Integral 

• Input: Functions f and α, domain, and range of the integration: 
A function [ ]: ,f X a b R=   is a Riemann-Steiltjes Integral function if there 

exists A R∈  such that for any ε > 0, there exists a δ > 0 such that for any parti-
tion of the domain [a, b] into a finite number of intervals. We accept a condition 
for function Y = f(x) to be a continuous function on [a, b]. 
• Define upper and lower Riemann-Stieltjes SUM by: Assume :f X Y→  for 
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X = [a, b]: 
( ) ( ){ }1, ,Δ sup : i ii

NU f f t tα α
=

= ∈∆ ⋅∆∑  where ( ) ( )1i i it tα α α −∆ = −  (1.3) 

( ) ( ){ }1, ,Δ inf : i ii
NL f f t tα α
=

= ∈∆ ⋅ ∆∑  
Notice that when the function α is a nondecreasing function, then we can drop 

absolute value. 
• Definition: For every, there exists a ∆-partition such that  

( ) ( ), , , ,U f L fα α ε∆ − ∆ < . 
• For every 0ε > , ∃  a partition ( )P ε  and for every choice of the point 

[ ]1,k i it t t−∈ , there exists a value A such that, 

 ( ) ( )1, , i ii
NS f A f t Aα α ε
=

∆ − = ∆ − <∑  (1.4) 

• In this case, we use ( )1limN i ii
N f t Aα→∞ =

∆ =∑ . 
• Riemann-Steiltjes integral: 

 ( ) ( )d d
b b

a a
A f f t tα α= =∫ ∫  (1.5) 

Important notice: When ( )t tα = , then, the Reimenn-Steiltjes integral will re-
duce to just Riemann integral. 

1.6. Toward the LBS Integration in Banach Space 

• Path Integral can be justified in a Complete Normed Linear Space (Banach 
Space). 

Note: Many people contributed to this theory: H. Lebesgue, S. Banah, G. Fu-
bini, S. Saks, F. Riesz, N. Dunford, and H. Halmos [8]-[13]. 
• (G, ∗ ) = Group G with a Binary Operation “∗ ”: This set with binary opera-

tion is closed, associative, with identity, and every element in this set is in-
vertible. 

• Boolean ring of binary operation on sets: Assume A and B are subsets of the 
power set of the abstract space X. Let us use two operations of union and in-
tersection   and   of sets in a set V = P(X). Define: 

 ( ) ( )\A B A B A B∗ =    (1.6) 

 A B A B⋅ =   (1.7) 

1.7. Semiring of Subsets and Partition of an Abstract SPACE 

• Lemma: Prove the symmetric differences: 

( ) ( )\ \A B A B B A∗ =   

Semi-ring of subsets: Assume X is an abstract space and V is a family of sub-
sets in X. For a set ( )V P X∈ , a triple ( ), ,V ∗ ⋅  is said to be a semi-ring. 
• V contains empty set, i.e. V∅∈ . 
• The triple ( ), ,V ∗ ⋅  is closed under both operations. 
• Closure under symmetric differences: ( ) ( )\ \A B A B B A∆ =  . 

Semi-ring of disjoint sets: For every set A and B in V, there exists an integer k 
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and mutually disjoint sets 1 2, , , kB B B V∈ such that ( ) 1
\ j k

jj
A B B=

=
=


. The 
triple ( ), ,V ∆   is a semi-ring. 

1.8. Measure (Volume) on a Semi-Ring ( )V , ,∆   

Assume a function from a semi-ring ( ), ,V ∆   to a Banach Space Z: :V Zµ →  
satisfies the following conditions: for every countable family of disjoint sets, we 
partition the set A into mutually disjoint sets, then, 

 ( ) ( )t tTT
A A V A Aµ µ= ∈ → =∑

 (1.8) 

The SUM in (1.8) is convergent. For every A V∈ ⇒ : 

 ( ) ( ){ }sup tTA Aµ µ= < ∞∑  (1.9) 

where the supremum is taken over all possible decompositions of the space. The 
measure (volume) is positive if it has only nonnegative values. 

Norm of the positive measure: let v be a positive measure (volume) defined 
in a semi-ring V. Define a subspace M for all volumes :V Zµ →  such that, 

( ) ( )A cv Aµ ≤  for some constant number c and all { }minA V cµ∈ → = . 
Thus: 

 ( ) ( ){ }min : , for allc R A cv A A Vµ µ= ∈ ≤ ∈  (1.10) 

In the following Sections 1.9, 1.10, and 1.11, we will describe Lebesgue-Bochner- 
Steiltjes approach to the integration in Banach Space. 

1.9. Space of Simple Functions (Basic): Define a Space of Simple 
Function S(Y) 

 ( ) { }1 21 2:
kA A k AS Y h h y c y c y c= = + + +  (1.11) 

For all iy Y∈ , and ( ), 1, 2, ,iA V i k∈ =  . 
Vectorial Form: Assume 1 2, , , ky y y y= 

  and 
1 2
, , ,

kA A Ac c c c=


  then 
the relation (1.11) can be described by: 

 1,
i

i k
i Aih y c y c=

=
= = ∑ 

 (1.12) 

where the characteristic function 
iAc  can be defined by: ( )

1 if
0 ifi

i
A

i

t A
c t

t A
∈

=  ∉
. 

The norm of the relation (1.12): Let 

( ) ( ) ( ) ( )1 2, , , kv A v A v A v A= 

  then 

( ) ( )1, i k
i iih y v A y v A=

=
= =∑ 

 

Notice that the symbol iy  represents the absolute value of the i-th compo-
nent of y. 

1.10. Generalized Lebesgue-Bochner-Stieltjes (LBS) Integral 

Here is a general form of presenting integration based on a bilinear operator u 
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acting on h with a measure μ: 

( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

1

1 1 2 2 3 3

,d ,

, , , ,

i k
i ii

k k

u h u y A

u y A u y A u y A u y A

µ µ

µ µ µ µ

=

=
=

= + + + +

∫ ∑


(1.13) 

Bochner Integral: 

 ( )( ) ( )( ) ( )( ) ( )( )1 1 2 2 3 3d k ky v y v A y v A y v A y v A= + + + +∫   (1.14) 

These two operators are well defined, that is they are independent of the choice 
( )h S Y∈  in (1.11) where h h=∫ . 

1.11. Basic Sequence of Simple Functions and Summability 

A sequence of functions ( )ns S Y∈  is a BASIC if there exists a sequence  
( )nh S Y∈  and a constant M > 0 such that, 

 1 2n ns h h h= + + +  and 4 n
nh M−≤ , for 1,2,n =   (1.15) 

The space of Summable functions: The space of summable function L(Y) is 
the set of all functions f which, 

( ) ( ) ( ){ }: Basic such that lim a.en n nL Y f s S fY s→∞ == ∃ ∈ −
 

Conclusion: 

 ( ) ( ),d lim ,d and d lim dn n n nu f u s f v s vµ µ→∞ →∞= =∫∫ ∫ ∫  (1.16) 

2. Some Characteristics of Path Integral 

The objective is to justify the mathematics of multi-slit and multi-screen expe-
riments in both classical and quantum senses, particularly the mathematical jus-
tification of Feynman Path Integral. 

The original definition presented in (1.14) and demonstrated in Reference [7], 
did not present the precise definition and conditions for the integral operator. 
However, it was claimed that this integral operator is well defined, and it is in-
dependent of the choice of h. It was concluded that it is well-defined. 

We will demonstrate that this originally undefined and not clarified conclu-
sion has an amazing and powerful application in a variety of disciplines. 

Notice that this work is just a mathematical justification according to theory 
of integration in Banach Space. No numerical computation or new experiment 
will be presented. This new approach of Feynman Path Integral is open for ap-
plication to other parts of mathematical Physics for further research. 

2.1. Justification to Have Infinite Dimensional Abstract Space for 
Feynman Path Integral 

Quantum interference of different paths depending on their phases, and hence 
their classical action, will have all possible paths. The question is, what is the 
probability density of the amplitude in Δt = 10 Nano sec., of the infinite number 
of walls with infinite number of slits? 

Thus, a finite dimensional Riemann-Steiltjes integral does not work for Feyn-
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man Path Integral. The infinite dimensional Bochner integral which is designed 
in Banach or Hilbert Space is feasible for this problem. 

Dealing with some problems in Quantum Mechanics, as we are expecting in 
this article, like solving the Schrodinger Equation, requires certain conditions to 
analyze and describe the physical phenomenon. Thus, we need some rigorous 
mathematical work to justify the Feynman Path Integral, which was originally 
accepted intuitively. Many attempts were made to bridge the gap of mathemati-
cal work; thus, much research and investigation produced some significant results. 

We try to show some of the foundations and principles of the Feynman Path 
Integral, which requires us to begin in the following mathematical language: 

1) Paths are decided to be within an infinite dimensional space. As a result, 
the integration will be designed in Banach Space using Bochner integration [14] 
[15]. 

2) Feynman Paths satisfy the Orthogonality condition. 
3) Due to the Uncertainty Principle the trajectories must be selected from the 

probability distribution spaces. As a result, we may select normalized functions 
with orthonormal paths. 

4) The Lebesgue Integration theory can be used properly for Probability dis-
tribution functions. 

5) Due to many impulsive responses for a variety of operators, we need to in-
clude integration theory which can include Dirac’s Delta functions. Thus, we are 
including Dirac’s Integration System. 

6) In our investigation, we will demonstrate that Bogdan’s approach toward 
Lebesgue-Bochner-Stieltjes integration will be a feasible approach for Feynman 
Path Integral. 

7) Operator Integral is a necessary step toward the general definition of Using 
Lebesgue-Bochner-Stieltjes integral in Banach space (see [16] and [17]). 

We are looking for some integration methods in which we can cover all these 
characteristic conditions. In addition to the list of 1) - 7), we need to apply oper-
ators to the natural phenomenon like Hamiltonian, position, momentum, …, 
and energy operators to be able to justify Feynman Path Integral. 

In the last stage of Lebesgue-Bochner-Stieltjes integration, we try to use the 
following general formulation. 

2.2. Integrals with Operators 

Assume that Y, Z, and W are Banach Spaces. Let a be a fixed bilinear operator 
:u U Y Z W∈ × → . Let us define a set of operators U such that, 

 ( ){ }: , ,d dU u Y M Z u y yµ µ= × → =  (2.1) 

One example of this operator integral is the following Hamiltonian wave 
function: 

( )u tφ=  such that ( ) e i Httφ −=   

where t∈ , and H-Hamiltonian. 
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For fixed operator u U∈ , and Mµ ∈ , we define a vector 1 2, , , ky y y y=  : 

 
( ) ( )( )

( )( ) ( )( ) ( )( )
1

1 1 2 2

,d ,

, , ,

j jj

k

k

k

u y u y A

u y A u y A u y A

µ µ

µ µ µ
=

=

= + + +

∑∫


 (2.2) 

such that 
1 21 2 kA A k Ay y y yχ χ χ= + + + , where jy Y∈ , and jA V∈ . 

We would like to replace a wave-particle for the operator such that bra vector: 

1 2, , , k j jju a a a u aψ ψ= ⇒ =∑

 
We can define the measure on a one-dimensional x-axis: 

 ( )( ) ( )( )1, k
j j j j jju A a Aψ µ ψ µ

=
= ⋅∫ ∑  (2.3) 

Now, let us assume that ,u a b=  is a vector and u is operating on two 
components ( )( ),j jAψ µ . We may define the bilinear or trilinear operator 

( )( ) ( ),j j j ju A a b Aψ µ ψ µ= + . 
We can use the general operator defined in (2.2) and demonstrate the integral 

using the Hamiltonian operator such that, 

( ) ( )H uψ ψ=  

where ( )H i
t

ψ ψ∂
=

∂
 . 

( ) ( ),d e 0 d
i Ht

u ψ µ ψ µ
−

=∫ ∫ 

 
Example of Orthogonality of paths: Verify that two sequence functions: 

 ( ) sinn
n xf x
L
π =  

 
 and ( ) sinm

m xg x
L
π =  

 
 (2.4) 

are orthogonal, that is 
0 for

,
2 forn m

m n
f g

m n
≠

=  π =
. 

2.3. Position Operator 

We let u represent a position operator on the x-axis. As a result, when u is ap-
plied to a wave-particle ψ with Dirac’s bra-kett symbolic notation: 

u xψ ψ= , thus,  

 ( ) du x x u x xψ ψ ψ ψ ψ ψ∗= → =   ∫  (2.5) 

The symbol ψ ∗  is the complex conjugate (see [18] and [19]). 
Eigenvalue λ and eigenvector of the position operators can be calculated: 

( ) ( ) [ ] ( ) 0x x x x xψ λψ λ ψ= ⇒ − =  
This implies that ( ) 0xψ =  everywhere except at x λ= . This is a behavior of 

Dirac Delta function for eigenvector. That is, 

 ( )
0 if

if
x

x
x

λ
δ λ

λ
≠

− = ∞ =
 (2.6) 

Let us apply the relation (2.3) for two different values ix λ=  and jx λ= , 

https://doi.org/10.4236/jamp.2024.122028


R. R. Ahangar et al. 
 

 

DOI: 10.4236/jamp.2024.122028 440 Journal of Applied Mathematics and Physics 
 

where (i and j are integer subscripts). The integral (2.4) can be evaluated at these 
points: 

( ) ( )d di j i j ijx x x x xψ ψ ψ ψ δ∗ ∗= =∫ ∫  
The relation (2.6) demonstrates the Orthogonality of the wave-particles. 
In addition, the next relation proves the impulsive behavior, 

 ( )d 1.x xδ λ
−

∞

∞
− =∫  (2.7) 

2.4. Momentum Operator 

It is well known that the momentum operator acting on a wave-particle ψ can be 
described by: 

P i u p
x

ψ ψ∂
= − ⇔ =

∂


 
For eigenvalue and eigenfunction, we can demonstrate: 

 p i
x

ψ ψ∂
= −

∂
  (2.8) 

This differential equation can be solved by separation of variables. Thus, 

 ( )d d e e
ipx

ikxi p x x A Aψ ψ
ψ

= ⇒ = ⋅ = ⋅ 



 (2.9) 

where A is a constant of proportionality. It should be normalized, and it will be 
in the following form: 

 ( ) 1 exp
2

ipxxψ  =  π  

 (2.10) 

Assume p and p’ represent momentum of the wave-particles ( )xψ  and ( )xψ ′  
at two different points x and x’. Using Dirac’s Quantum model and identity op-
erator: 

 ( )p I p p pδ′ ′= −  (2.11) 

 ( )1 dd e
2

i k k xp x x p x x′−

−∞ −∞

+∞ ∞
′ =

π∫ ∫


 (2.12) 

Notice that (2.12) is a result of the product of the following using the relation 
(2.10) when they are acting on the wave-particle: 

 ( ) 1 exp
2

ipxp x xψ ∗ − ′ = =  π  



 and  (2.13)  

 ( ) 1 exp
2

ipxx p xψ  = =  π  

 (2.14) 

Combine these two relations (2.13) and (2.14): 

 
0 if

d
1 ifj iji

i j
x

i j
ψ ψ δ∗ ≠

=


=  =
∫  (2.15) 

This proves the orthonormality of the paths. 
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3. Schrodinger Wave Equation 

The Schrodinger wave equation is a fundamental equation of quantum mechan-
ics that describes the behavior of quantum particles, such as electrons or pho-
tons. It was conceived by the Austrian physicist Erwin Schrodinger in 1925. 

Derivation using wave equation: The derivation of the Schrodinger equation 
starts with the classical wave equation, which describes the propagation of waves. 
The classical wave equation is given by, 

 
2

2 2
2 0v

t
ψ ψ∂
− ∇ =

∂
 (3.1) 

where ψ is the wave function, 
2

2t
ψ∂

∂
 is the second derivative of ψ with respect 

to time, 2ψ∇  is the Laplacian operator acting on ψ, and v is the velocity of the 
wave. In quantum mechanics, the wave function ψ is a complex-valued function 

( )ei kx tωψ −=  that carries information about the particle’s probability density. 
Schrodinger postulated that the wave function satisfies a similar equation, called 
the Schrodinger equation, but with a modified form: 
 H Eψ ψ=  (3.2) 

where H is the Hamiltonian operator, which represents the total energy of the 
particle, E is the energy of the particle and ψ is the wave function. 

The Hamiltonian operator H is defined as: 

 21
2

H p V
m

= +  (3.3) 

We represent the total energy of the system, where m is the mass of the par-
ticle, p is the momentum operator, and V is the potential energy, by substituting 
the classical wave equation into the Schrodinger equation, we obtain: 

 21
2

p V E
m

ψ ψ + = 
 

 (3.4) 

To simplify this equation, we make use of the de Broglie relation, which states 
that the momentum of a particle is related to its wavelength by: 

p k=  , where 2h= π  is the reduced Planck’s constant and k is the wave 
number or constant vector [20] [21] [22]. 

Substituting p k=   into the equation and rearranging terms, we get: 

 ( ) ( )21
2

k V E
m

ψ ψ= −  (3.5) 

This is a time-independent Schrodinger equation for a particle with fixed energy 
E. 

To obtain the time-dependent Schrodinger equation, we introduce the con-
cept of a time evolution operator, denoted by U(t), which allows us to evolve the 
wave function ψ at different points in time. 

Assume that a wave function is described by: 

 ( )ei kx tωψ −=  (3.6) 
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The time derivative of the wave function will be: 

 i i
t t
ψ ψωψ ωψ∂ ∂

= − → =
∂ ∂

 (3.7) 

Next, multiply both sides of the Plank-Einestein equation E ω=   by ψ → : 

 Eψ ωψ=   (3.8) 

Now, multiply both sides of (3.8) by 
i−


: 

 
i iE i E iψ ωψ ωψ ψ ωψ− −

= = − ⇒ =

 

 (3.9) 

We can use the relation (3.7) to replace ti i
t

ωψ ψ∂Ψ
= =

∂
 in (3.9) and obtain: 

 tE iψ ψ=   (3.10) 

Now, let’s take the second partial derivative of the wave function (3.6) w.r.t x: 

 
22

2 2 2
2 xx xx

pk p
x
ψ ψ ψ ψ ψ ψ∂  = − ⇒ ∂ = − ⇒ = − ∂  





 (3.11) 

The time evolution operator (3.8) satisfies equation (3.5), where i is the im-
aginary unit. By substituting the expression for H and rearranging terms, we get: 

( )2 21 1
2 2ti k V i p V

t m m
ψ ψ ψ ψ ψ∂Ψ

= + ⇒ = +
∂

  

Substituting (3.11) in this equation: ( )21
2t xxi V

m
ψ ψ ψ= − ∂ + , and writing in 

a proper order we will get the final form of the Schrodinger equation: 

 ( )( ) ( ) ( ) ( )
2

, , , 0
2 xx tx t i x t V x x t

m
ψ ψ ψ−

− + =


 (3.12) 

This is the time-dependent Schrodinger equation, which describes the time 
evolution of a particle’s wave function. 

In summary, the Schrodinger wave equation is derived by applying the prin-
ciples of quantum mechanics to the classical wave equation and introducing the 
concept of a Hamiltonian operator to represent the total energy of the particle. 
The resulting equation, called the Schrodinger equation, describes the behavior 
of the particle’s wave function and allows for the calculation of its probabilities 
and energies. 

4. Discussion 

For a brief review of the Lebesgue-Bochner-Stieltjes (LBS) integration, we started 
to show the operator integration. This is a generalization of integration in Ba-
nach space, which was done by Bochner [23]. Authors are not aware that any prior 
application of this “operator integration” to sciences or engineering education was 
used by others. 

The operator integration (LBS) is a form ( ),du f µ∫ , where u is a bilinear 
operator acting in the product of Banach spaces, f is a Bochner summable func-
tion, and μ is a vector-valued measure. 
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This article has been intended as a mathematical justification of Feynman Path 
Integral using the integration theory in Banach Space. The theory of integration 
evolved from Riemann, Steiltjes, and Lebesgue throughout past centuries. Boch-
ner provided the integration theory in Banach spaces. The Feynman Path Integral 
was originally motivated and presented heuristically. 

Several characteristics of the path integral guide us to plan for the rigorous ma-
thematical work. 1) It should work in infinite dimensional space. 2) It should be 
consistent with Dirac’s Integral System. 3) It should be working with a variety of 
operator differential equations. 4) The position vector can be selected as a com-
plex variable. 5) The nature of the quantum-level computation is required to use 
the Lebesgue-Stieltjes measurable space. 

Much research has been justified by the integration theory based on Hilbert 
space or Banach space [24] [25]. Operator integration approach, called Lebesgue 
Bochner-Steiltjes, is used in this paper to demonstrate that Feynman Path Integral 
is a mathematically consistent theory. This work is an introductory development 
of Feynman Path Integral, and it is yet to be used in many other applications in 
theoretical physics. 
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